Multigrid Solvers in Space and Time for Highly Concurrent Architectures

Future CFD Technologies Workshop, Kissimmee, Florida

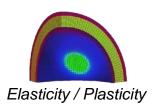
Robert D. Falgout Center for Applied Scientific Computing

Outline

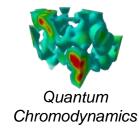
- Multigrid (in space)
 - Motivation and background
 - Geometric multigrid, algebraic multigrid (AMG), parallel multigrid
 - Example of current research
- Multigrid in time
 - Motivation and basic approach
 - MGRIT multigrid reduction (MGR) in time
 - Some progress and current research
- Summary and conclusions

Multigrid will play an important role for addressing exascale challenges

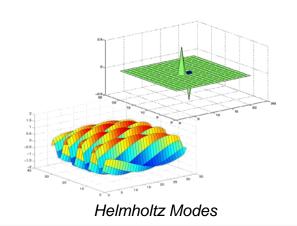
 For many applications, the fastest and most scalable solvers are multigrid methods



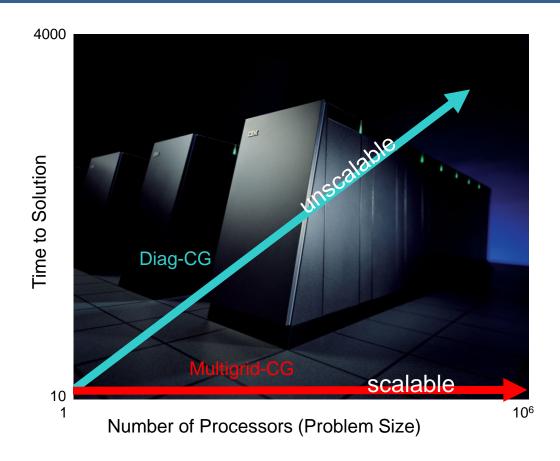
- Exascale solver algorithms will need to:
 - Exhibit extreme levels of parallelism (exascale → 1B cores)
 - Minimize data movement & exploit machine heterogeneity
 - Demonstrate resilience to faults



- Multilevel methods are ideal
 - Key feature: Optimal O(N)
- Research challenge:
 - No optimal solvers yet for some applications, even in serial!
 - Parallel computing increases difficulty

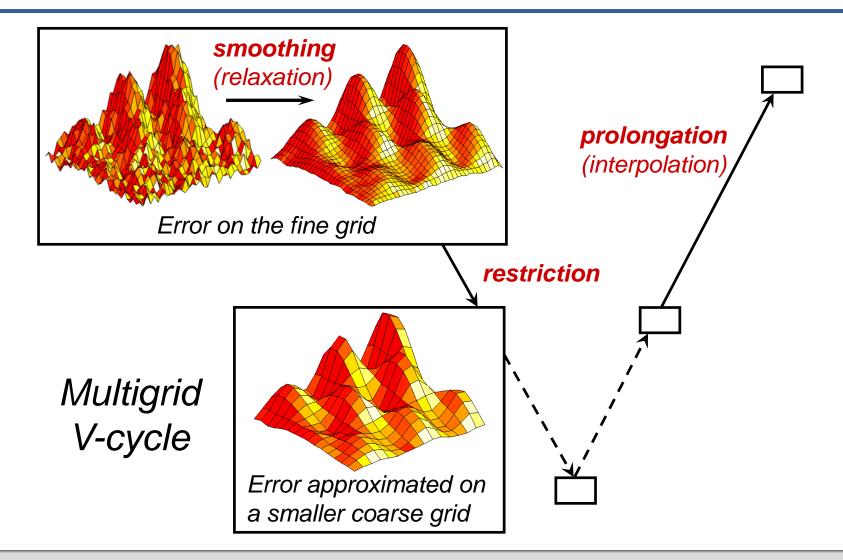


Multigrid solvers have O(N) complexity, and hence have good scaling potential



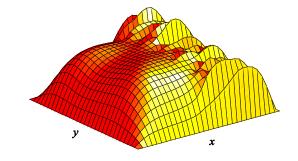
 Weak scaling – want constant solution time as problem size grows in proportion to the number of processors

Multigrid (MG) uses a sequence of coarse grids to accelerate the fine grid solution



Algebraic Multigrid (AMG) is based on MG principles, but only uses matrix coefficients

- Many algorithms (AMG alphabet soup)
- Automatically coarsens "grids"
- Error left by pointwise relaxation is called algebraically smooth error
 - Not always geometrically smooth

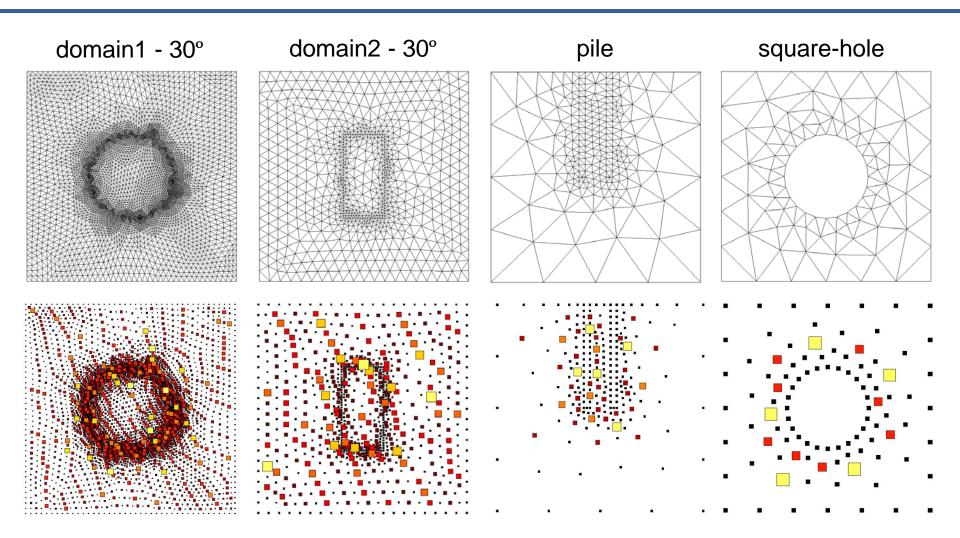


 Weak approximation property: interpolation must interpolate small eigenmodes well

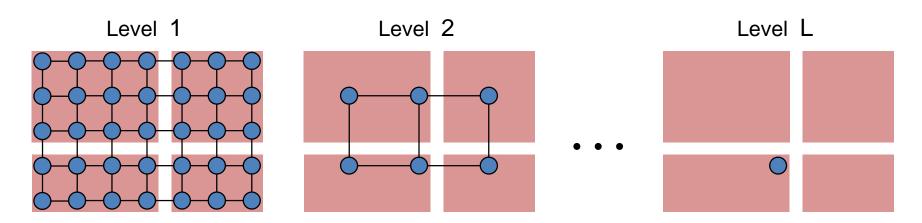
$$||E_{TG}||_A^2 \le 1 - \frac{1}{K}; \quad K = \sup_e ||A|| \frac{||(I - P[0 \ I])e||_2}{||e||_A^2}$$

Near null-space is important!

AMG grid hierarchies for several 2D problems



Straightforward MG parallelization yields optimal-order performance for V-cycles



- ~ 1.5 million idle cores on Sequoia!
- Multigrid has a high degree of concurrency
 - Size of the sequential component is only O(log N)!
 - This is often the minimum size achievable
- Parallel performance model has the expected log term

$$T_V = O(\log N)$$
 (comm latency) + $O(\Gamma_p)$ (comm rate) + $O(\Omega_p)$ (flop rate)

Parallel computing imposes restrictions on multigrid algorithm development

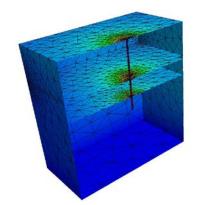
- Avoid sequential techniques
 - Classical AMG coarsening
 - Gauss-Seidel smoother
 - Cycles with large sequential component
 - F-cycle: O(log² N)
 - W-cycle: O(2^{log N}) = O(N)

Control communication

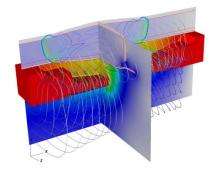
— Galerkin coarse-grid operators (P^TAP) can lead to high communication costs in AMG

Need both CS and Math advances!

- New methods have new convergence and robustness characteristics
- Successful addressing issues so far

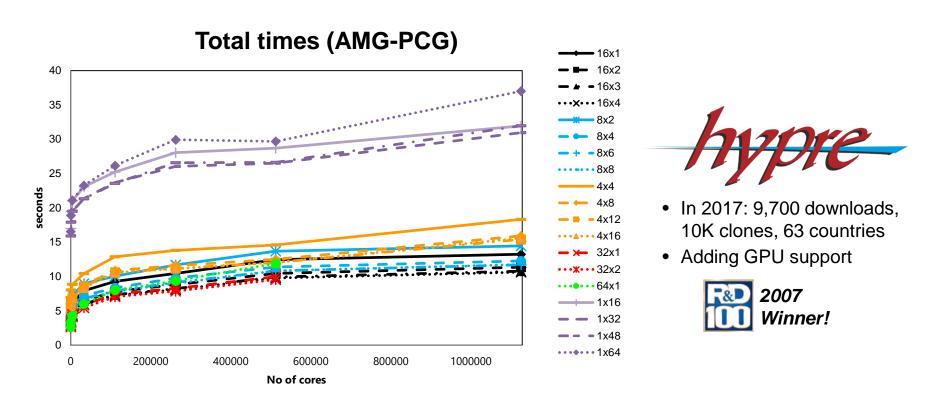


10x speedup for subsurface problems with new coarsening and interpolation approach



Magnetic flux compression generator simulation enabled by MG smoother research

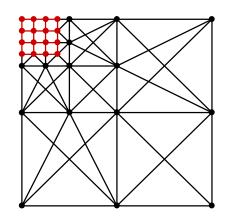
Parallel AMG in *hypre* scales to 1.1M cores on Sequoia (IBM BG/Q)

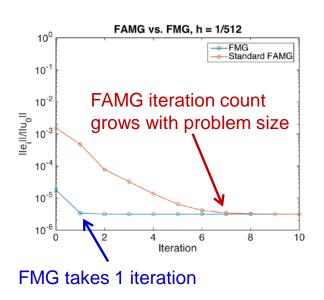


- m x n denotes m MPI tasks and n OpenMP threads per node
- Largest problem above: 72B unknowns on 1.1M cores

Reducing communication is the key to improving performance in parallel algebraic multigrid (AMG)

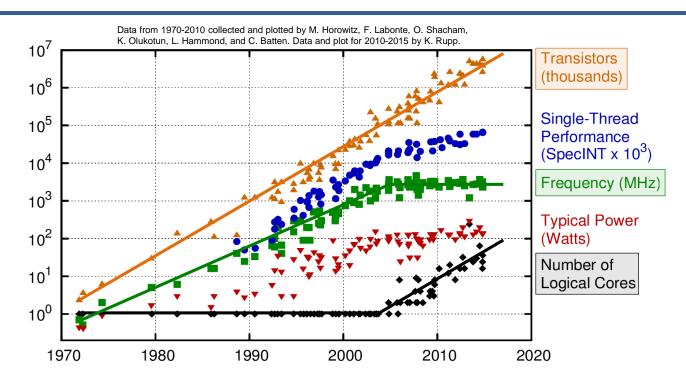
- AMG domain decomposition (AMG-DD) employs cheap global problems to speed up convergence
 - Constructs problems algebraically from an existing parallel AMG method
 - Developed a setup phase algorithm with the same
 O(log N) communication overhead as multigrid
 - Asymptotic convergence is unfortunately not better than the underlying AMG method
- Potential: FMG-like O(N) convergence to discretization accuracy with only log N latency (vs log² N)!
- Issue: Standard FAMG does not produce FMG-like convergence!
 - FAMG is AMG with an F-cycle





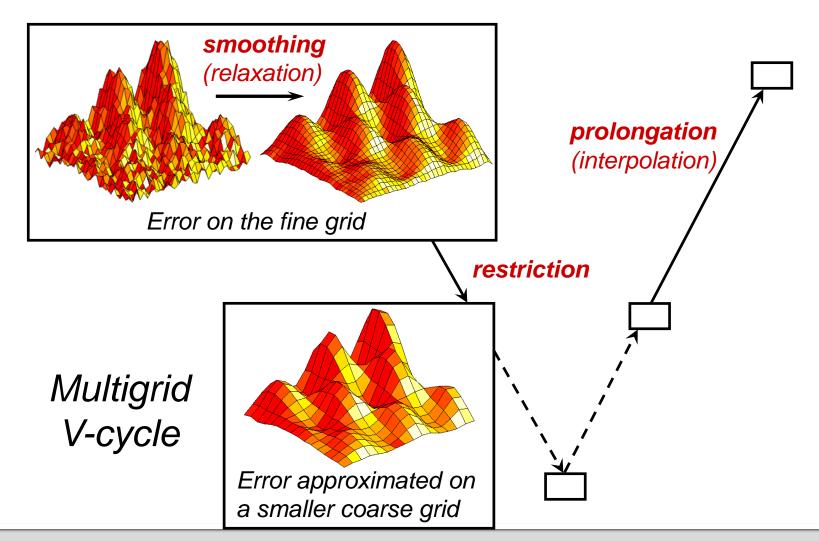
Parallel Time Integration

Parallel time integration is a major paradigm shift driven by hardware design realities

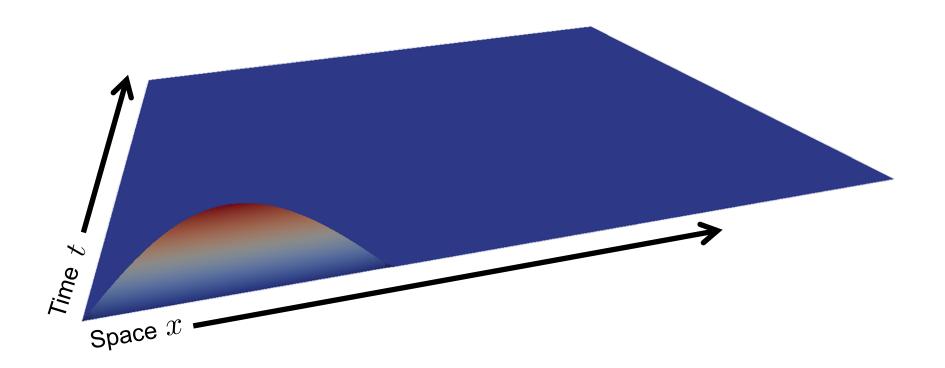


- Architecture trend: flat clock rates, more concurrency
 - Traditional time stepping is becoming a sequential bottleneck
- Continued advancement in scientific simulation will require algorithms that are parallel in time

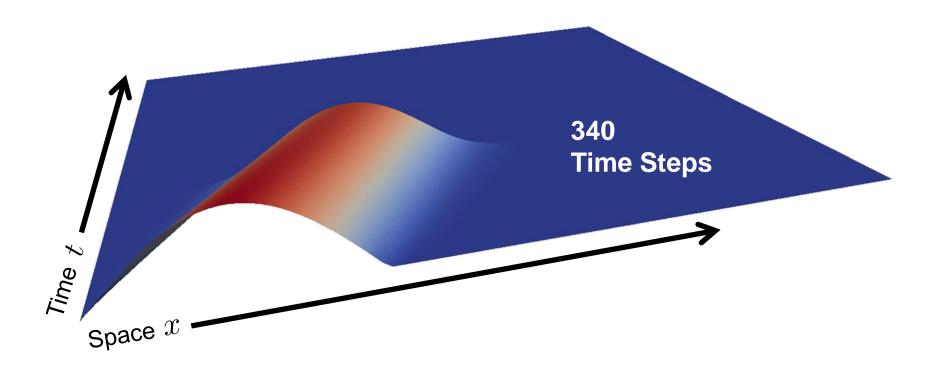
Our approach for parallel-in-time: leverage spatial multigrid research and experience



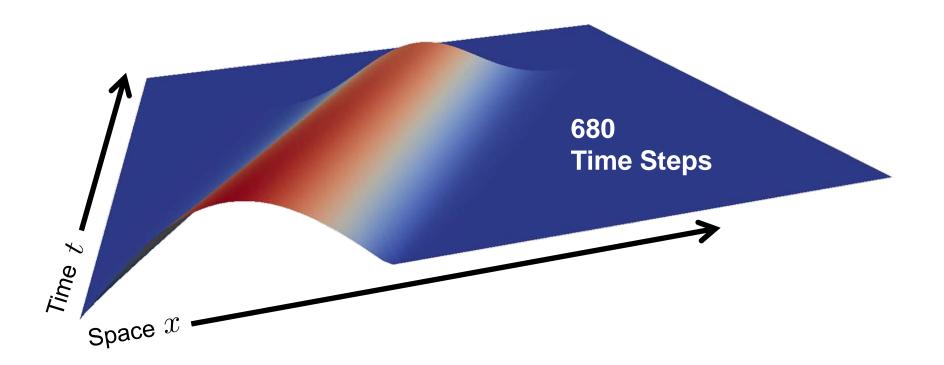
- Simple advection equation, $u_t = -cu_x$
- Initial condition is a wave



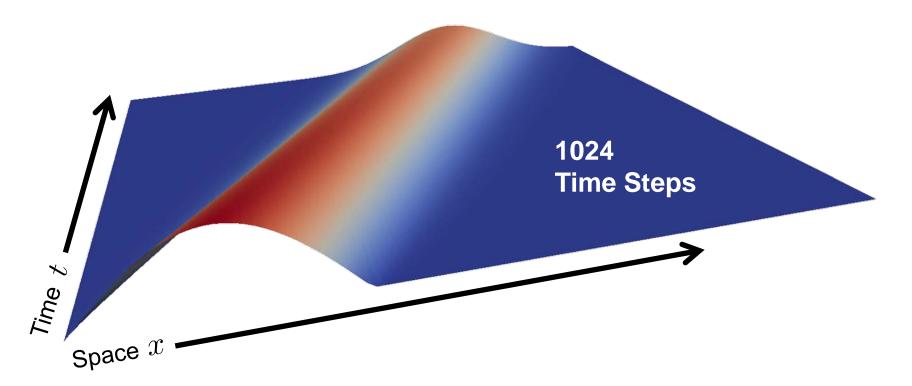
- Simple advection equation, $u_t = -cu_x$
- Wave propagates serially through space



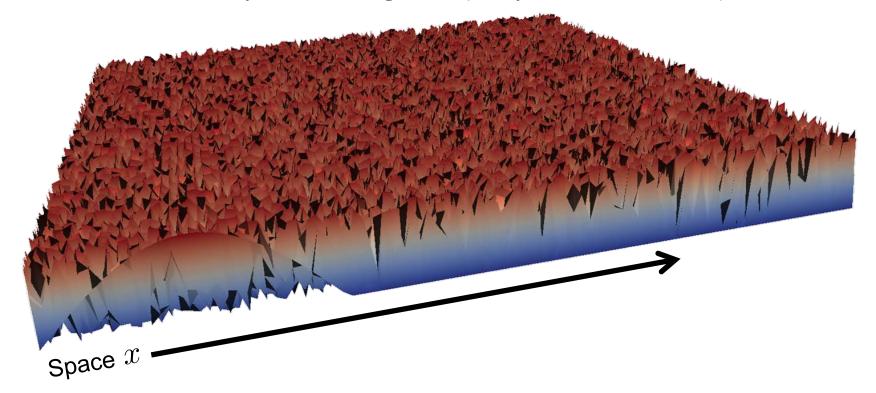
- Simple advection equation, $u_t = -cu_x$
- Wave propagates serially through space



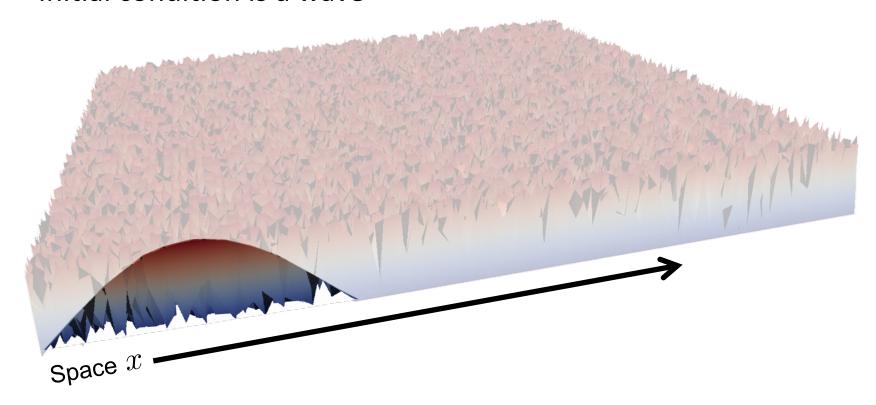
- Simple advection equation, $u_t = -cu_x$
- Wave propagates serially through space



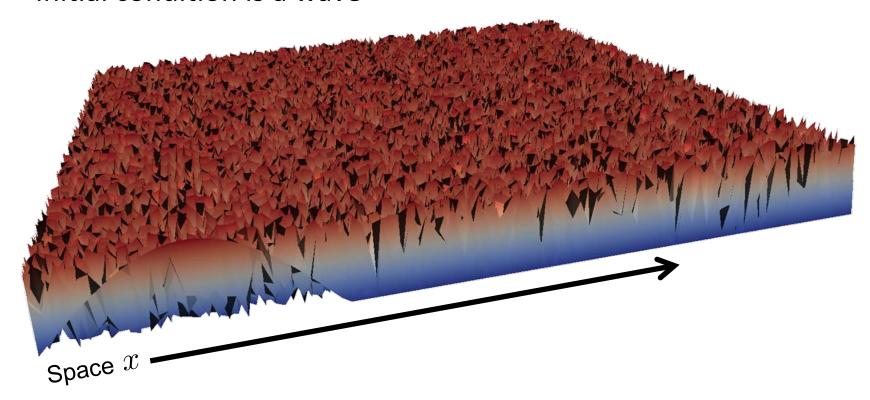
- Simple advection equation, $u_t = -cu_x$
- Random initial space-time guess (only for illustration)



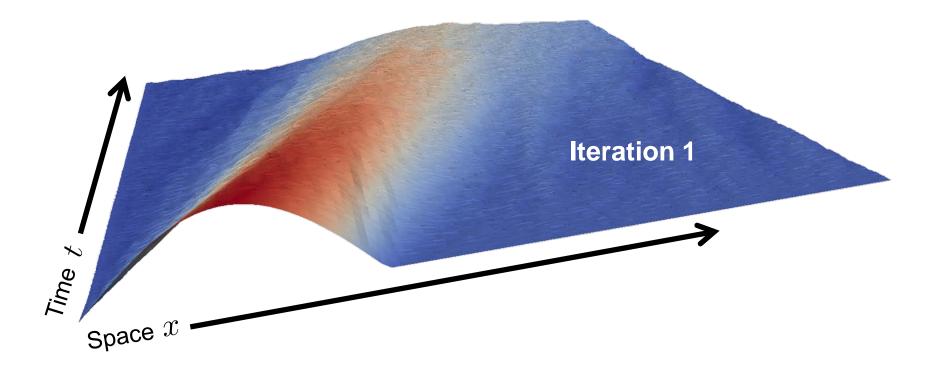
- Simple advection equation, $u_t = -cu_x$
- Initial condition is a wave



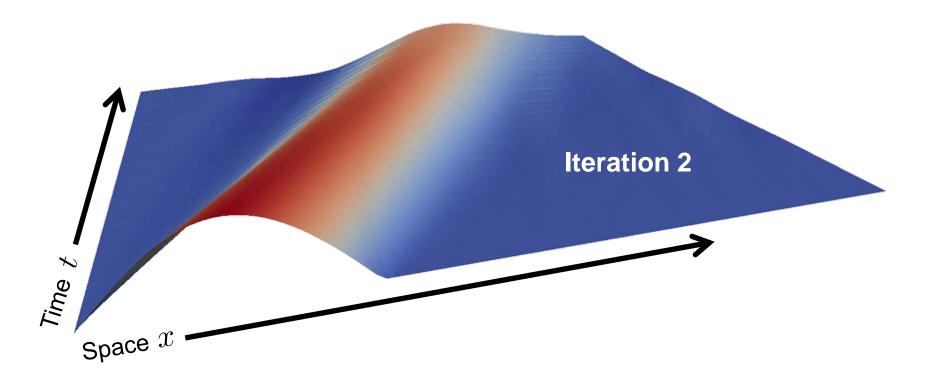
- Simple advection equation, $u_t = -cu_x$
- Initial condition is a wave



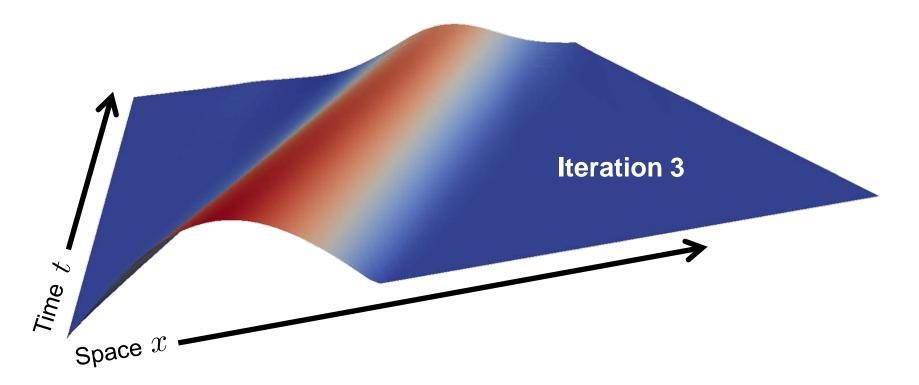
- Simple advection equation, $u_t = -cu_x$
- Multilevel structure allows for fast data propagation



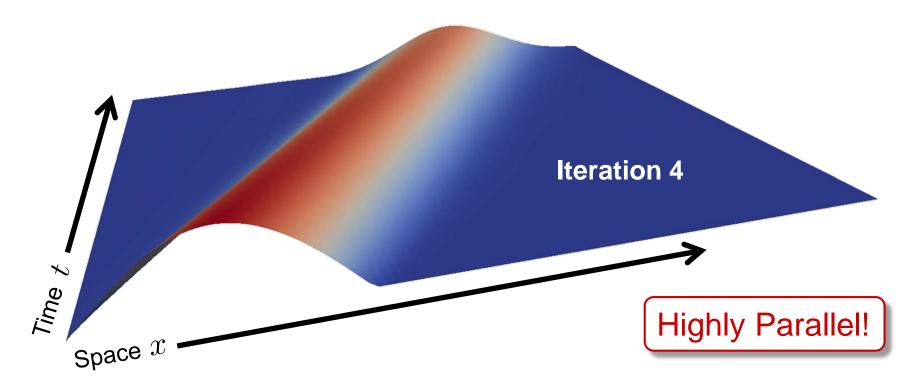
- Simple advection equation, $u_t = -cu_x$
- Multilevel structure allows for fast data propagation



- Simple advection equation, $u_t = -cu_x$
- Multilevel structure allows for fast data propagation

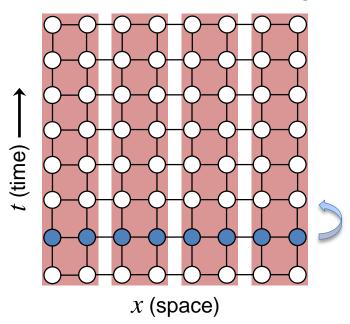


- Simple advection equation, $u_t = -cu_x$
- Already very close to the solution



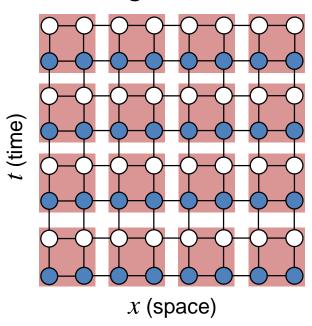
Significantly more parallel resources can be exploited with multigrid in time

Serial time stepping



- Parallelize in space only
- Store only one time step

Multigrid in time



- Parallelize in space and time
- Store several time steps

It's useful to view the time integration problem as a large block matrix system

General one-step method

$$u_i = \Phi_i(u_{i-1}) + g_i, \quad i = 1, 2, ..., N$$

- Linear setting: time marching = block forward solve
 - -O(N) direct method, but sequential

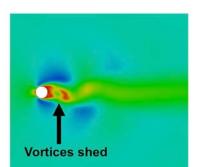
$$A\mathbf{u} \equiv \begin{pmatrix} I & & & \\ -\Phi & I & & \\ & \ddots & \ddots & \\ & & -\Phi & I \end{pmatrix} \begin{pmatrix} \boldsymbol{u}_0 \\ \boldsymbol{u}_1 \\ \vdots \\ \boldsymbol{u}_N \end{pmatrix} = \begin{pmatrix} \boldsymbol{g}_0 \\ \boldsymbol{g}_1 \\ \vdots \\ \boldsymbol{g}_N \end{pmatrix} \equiv \mathbf{g}$$

- Our approach is based on multigrid reduction (MGR) methods (approximate cyclic reduction)
 - -O(N) iterative method, but highly parallel

Our MGRIT approach builds as much as possible on existing codes and technologies

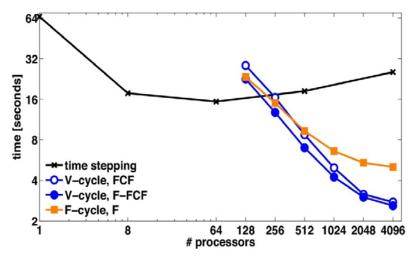
- Combines algorithm development, theory, and software proof-of-principle
- Goal: Create concurrency in the time dimension
- Non-intrusive, with unchanged time discretization
 - Implicit, explicit, multistep, multistage, ...
- Converges to same solution as sequential time stepping
- Extends to nonlinear problems with FAS formulation

- XBraid is our open source implementation of MGRIT
 - User defines two objects and writes several wrapper routines (Step)
 - Only stores C-points to minimize storage
- Many active research topics, applications, and codes
 - Adaptivity in space and time, moving meshes, BDF methods, ...
 - Linear/nonlinear diffusion, advection, fluids, power grid, elasticity, ...
 - MFEM, hypre, Strand2D, Cart3D, LifeV, CHeart, GridDyn



Parallel speedups can be significant, but in an unconventional way

- Parallel time integration is driven entirely by hardware
 - Time stepping is already O(N)
- Useful only beyond some scale
 - There is a crossover point
 - Sometimes need significantly more parallelism just to break even
 - Achievable efficiency is dictated by the space-time discretization and degree of intrusiveness



3D Heat Equation: 33³ x 4097, 8 procs in space, 6x speedup

- The more time steps, the more speedup potential
 - Applications that require lots of time steps benefit first
 - Speedups (so far) up to 49x on 100K cores

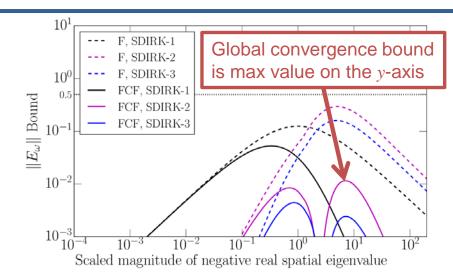
Some Progress and Current Research Directions

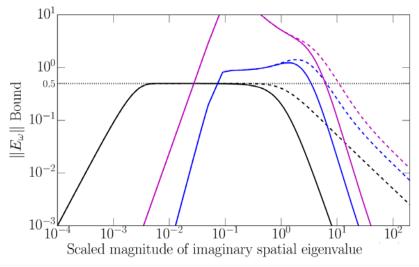
We developed a linear two-grid convergence theory to guide MGRIT algorithm development

- Assume Φ and Φ_{Δ} are simultaneously diagonalizable with eigenvalues λ_{ω} , μ_{ω}
- Sharp bound for error propagator

$$||E|| \le \max_{\omega} |\lambda_{\omega}^{m} - \mu_{\omega}| \frac{1 - |\mu_{\omega}|^{N_{T} - 1}}{1 - |\mu_{\omega}|} |\lambda_{\omega}|^{m}$$

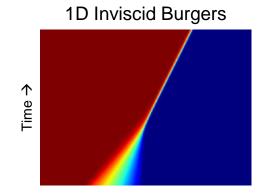
- Agnostic to space-time discretization
 - But discretization affects convergence
- Eigenvalues (representative equation):
 - Real (parabolic)
 - Imaginary (hyperbolic without dissipation)
 - Complex (hyperbolic with dissipation)
- Insights:
 - FCF significantly faster
 - High order can be faster or slower
 - Artificial dissipation helps a lot
 - Small coarsening factors sometimes needed

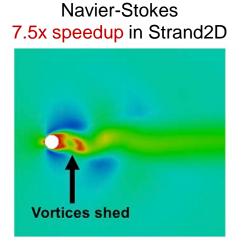




Hyperbolic problems are a major new emphasis for our MGRIT algorithm research

- We have already had some initial success...
- 1D/2D advection and Burgers' equation
 - F-cycles needed (multilevel), slow growth in iterations
 - Requires adaptive spatial coarsening
 - Dissipation improves convergence
 - Mainly SDIRK-k (implicit) schemes to date
- Combination of FCF relaxation, F-cycles, and small coarsening factors improves robustness
 - Confirmed by theory
- Navier-Stokes in 2D and 3D
 - Multiple codes: Strand2D, Cart3D, LifeV, CHeart
 - Compressible and incompressible
 - Modest Reynolds numbers (100 1500)

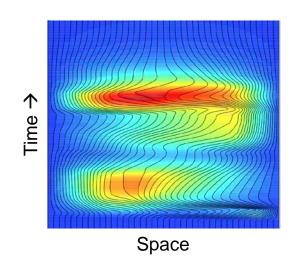


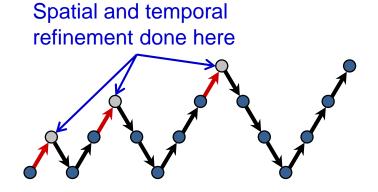


Adaptivity is an important feature of many codes and we have begun to develop support for it in XBraid

- Moving spatial mesh
 - 1D diffusion with time dependent source
 - Unsteady flow around moving cylinder
- Temporal refinement via Full Multigrid (FMG)
 - ODE simulation of satellite orbit
 - DAE power grid simulations in GridDyn (25x speedup)
- Temporal and spatial refinement
 - 2D heat equation with FOSLS (6x speedup)

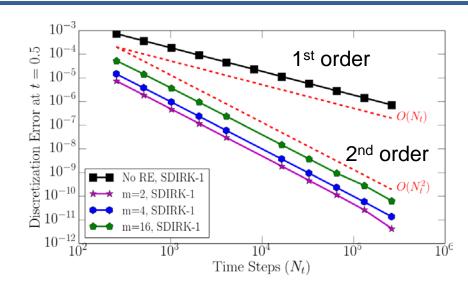
 Demonstrating parallel speedup is the eventual goal

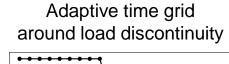


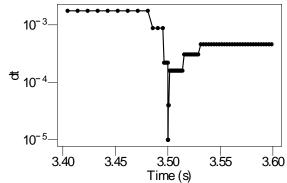


Other developments and research directions

- Higher order with Richardson
 Extrapolation MGRIT at no cost
- Adjoint-based MGRIT solver for design optimization
- Showed potential for speeding up neural network training
- Power grid simulation with discontinuities and adaptivity
 - WECC 179 bus system
 - 10x to 50x speedup
 - Investigating approaches for unscheduled discontinuities







Summary and Conclusions

- Multigrid methods are ideal for exascale
 - Optimal, naturally resilient to faults, minimize data movement
- Parallel computing imposes additional restrictions on multigrid algorithmic development, especially for AMG
 - Success scaling to BG/Q-class machines
- Parallel time integration is needed on future architectures
 - Major paradigm shift for computational science!
- MGRIT algorithm extends multigrid reduction "in time"
 - Non-intrusive yet flexible approach (open-source code XBraid)
 - Demonstrated speedups for a variety of problems
- There is much future work to be done!
 - More problem types, more complicated discretizations, performance improvements, adaptive meshing, ...

Our Multigrid and Parallel Time Integration Research Team

Veselin Dobrev

Rob **Falgout**

Tzanio Kolev

Ruipeng

Daniel Osei-Kuffuor Schroder

Jacob

Panayot Vassilevski

Lu Wang

Ulrike Yang

- Collaborators and summer interns
 - CU Boulder (Manteuffel, McCormick, Ruge, O'Neill, Mitchell, Southworth), Penn State (Brannick, Xu, Zikatanov), UCSD (Bank), Ball State (Livshits), U Wuppertal (Friedhoff, Kahl), Memorial University (MacLachlan), U Illinois (Gropp, Olson, Bienz), U Stuttgart (Röhrle, Hessenthaler), Monash U (De Sterck), CEA (Lecouvez)
- Software, publications, and other information

http://llnl.gov/casc/hypre

http://llnl.gov/casc/xbraid

Thank You!

