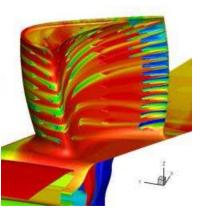
Status and Challenges of CFD at ONERA

Future CFD Technolgies Workshop Kissimmee, Florida, January 2018

Presented by Vincent Couaillier

prepared by ONERA/DAAA & ONERA/DMPE


return on innovation

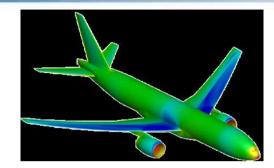
Introduction: Some aspects of CFD

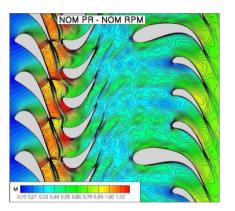
- CFD considered as mature technology for nominal flow configurations
 - Many CFD codes and assessed models are daily used in industrial design
 - At ONERA the main CFD codes are:
 elsA for aerodynamics, aeroelasticity, aeroacoustics
 CEDRE for energetics, aeroacoustics, mutiphysics
 These codes are used by industrial partners Airbus, Safran,
 CNES, EDF and ONERA CFD expertise used by Dassault

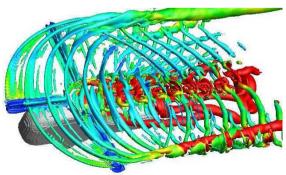
- Expertise of end-users still needed to provide « correct results »
- Error margins still not mastered
 Computational errors (Verification process)
 Uncertainties due to physical model, boundary/initial conditions
- Efficiency (cost) in particular for unsteady CFD dealing with scale-resolving problems for new computers architecture
- CFD used in a multiphysics environment
- Outline
 - Status of elsA and CEDRE ONERA CFD codes
 - ONERA CFD challenges & roadmap

elsA*: general description

☐ Multi-purpose CFD simulation platform


- Internal and external aerodynamics
- From low subsonic to high supersonic
- Compressible 3-D Navier-Stokes equations
- Moving deformable bodies
- Aircraft, helicopters, turbomachinery,
- CROR, missiles, launchers...


□ Design and implementation


- Object-Oriented with Kernel in C++/Fortran
- User interface in Python
- Python-CGNS interface for CGNS extraction
- and coupling with external software

■ Models and numerics

- Turbulence : RANS, HRLES (ZDES), LES
- MB meshes : Str with Chimera, Uns, Hybrid Str/Uns
- CC for discretization : 2nd order Jameson, Roe, ...
- HO FV for MB/Str meshes
- Implicit (LUSSOR, GMRES), Multigrid
- DTS, TSM/HBT for unsteady simulations

*: elsA is ONERA-Airbus-Safran property

Main turbulence & transition models in elsA

Turbulence model for RANS

Eddy viscosity models: k-ε (JL,LS,Chien), k-ω (Wilcox, Menter BSL & SST, Kok) + buoyancy, k-l (Smith),

SA, and curvature correction, ...

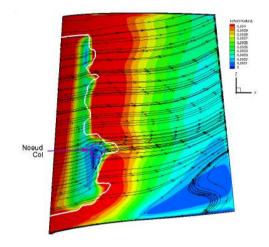
Algebraic Reynolds stress models:

- **-** ASM-ε Shi-Zhu-Lumley
- EARSM k-ω Hellsten + EAHFM (thermal)

Reynolds stress models

- Speziale-Sarkar-Gatski (SSG) + ω Menter
- Other DRSM models

Scale Adaptive Simulation

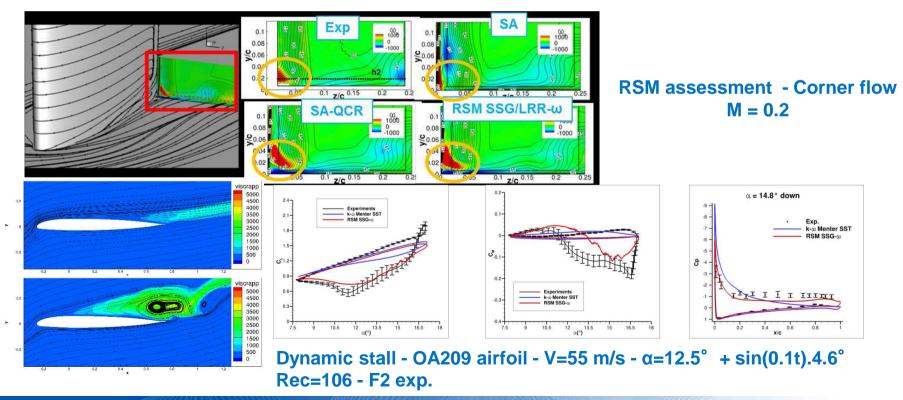

- Original version (Menter)
- Improved version (ONERA)

Transition

- Local correlation
- γ -Re_{θ}
- Local criteria
- Criteria with transport equations / Non local criteria

Wall roughness

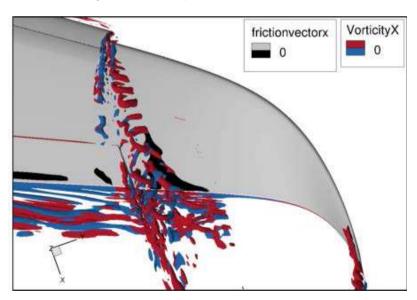
- Dynamic model
- Thermal model
- Model for transition

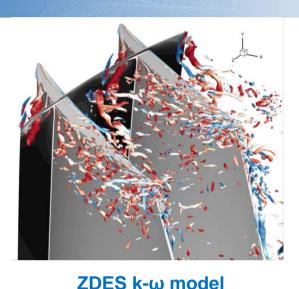


Non local criteria

ONERA participates to AIAA Turbulence Discussion Group

elsA: RSM / K-omega


- Reynolds-Stress-Modelling (RSM) less restrictive than classical one/two eq. models (kε, ...)
 using Boussinesq hypothesis
- For steady simulation of turbulence
- Robustness has to be improved for industrial test cases


ZDES with elsA

Hybrid RANS-LES models are strongly progressing

- Strong cost reduction compared to pure LES
- Demonstration of good capacities for massively separated flows on fundamental configurations
- Nevertheless cost still prohibitive for realistic cases (eg: complete aircraft at cruise Re number, multistage compressor...)

ZDES for winglet stall

Y

SAS Menter Model
Comparison on tip-leakage vortex

ADJOINT

Theoretical background

The adjoint solver in elsA gives solution to : $\lambda^T \frac{\partial R}{\partial W} = -\frac{\partial J}{\partial W}$

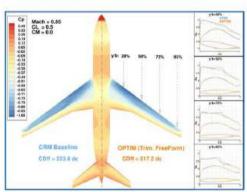
Main use for shape gradient computation (but not only*):

$$\frac{dJ}{d\alpha} = \left(\frac{\partial J}{\partial X} + \lambda^T \frac{\partial R}{\partial X}\right) \frac{dX}{d\alpha} = \frac{dJ}{dX} \frac{dX}{d\alpha}$$

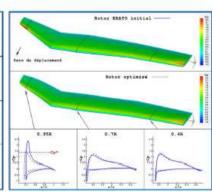
with R: discrete residual of the RANS equations

J: function of interest

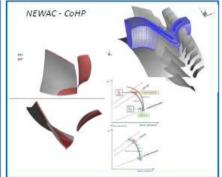
W : discrete conservative field


 λ : adjoint vector associate to J

with α : shape parameter X : volumic mesh


* Also error estimation and goal-oriented mesh refinement see work of J. Peter and M. Nauyen-Dinh

Shape optimization applications


- Adjoint framework developed for multiple application context :

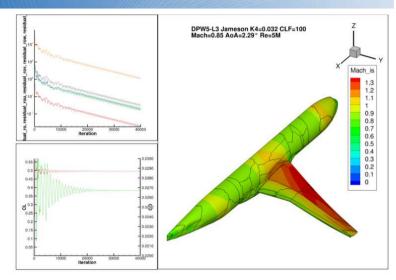
Aircraft context: AIAA-ADODG test case n°5 Optimization of the wing with lift and pitching moment constraints (C-P 3.2)

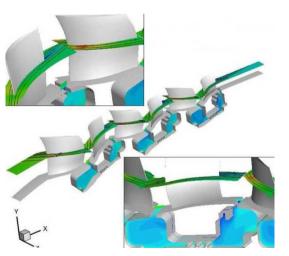
Helicopter context: ERATO blade performance optimization in hover (compliancy with propeller application)

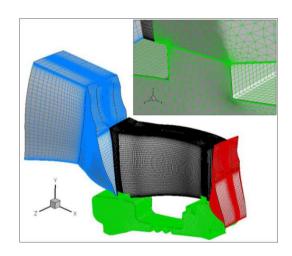
Turbomachinery context: NEWAC High Pressure Compressor efficiency optimization under mass flow and pressure ratio constraints

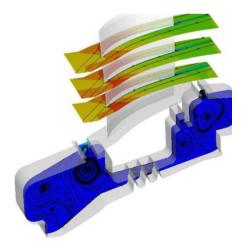
On going developments and perspectives

- Adjoint functionalities available and validated inside FSDM (C-P 1.7)
- Use of dJ/dX mode ('adjoint_mesh') for memory efficiency (aircraft context only):




Status of elsA: Unstructured and hybrid mesh/solver


The process to set-up high-quality and efficient CFD methods needs flexible, robust and accurate meshing/solver strategies


- elsA initially developed with SMB approach
 (CANARI,FLU3M): Accuracy and efficiency of the solvers
- Capacity of Overset grid (chimera grids) approach to account for rigid body motion and to add grid components
- Cartesian meshes for High Order accurate simulations in the flow field without body-fitted region
- Extension of elsA to unstructured grids (UNS MB solver) and to hybrid grids mixing ijk structured blocks and unstructured blocks: mesh flexibility and CFD accuracy

Unstructured and hybrid CRM

Hybrid: Compressor CREATE: Structured grids on blades / unstructured seal cavity

CFD for Energetics at ONERA: Main topics

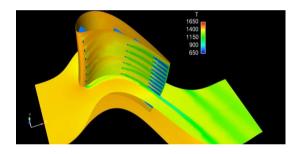
Fluid flows

- Mach: from incompressible to hypersonics
- Reynolds: from laminar to full turbulent
- Complex thermodynamics (Cp(T), mixing gaz laws, state laws of real gases,...)
- Complex molecular diffusion
- Chemical reactions Combustion instabilities
- Multiphase flows (dense or disperse phases)

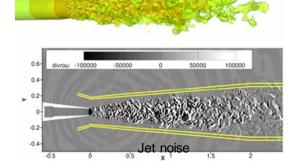
Coupling with other physical systems:

Other states of the matière : solid, plasma

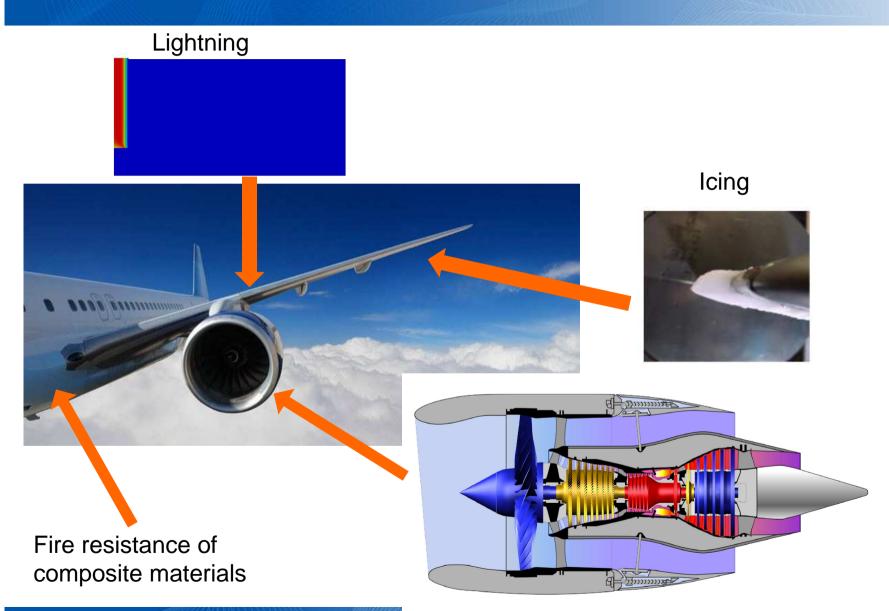
Electromagnetics waves



CEDRE: Flow simulation for Energetics


- ☐ CEDRE : CFD multi-physics software for energetics and propulsion organized as a set of solvers
- CHARME : Reacting gas solver
- SPIREE: Eulerian dispersed phase solver
- SPARTE : Lagrangian solver
- ACACIA: Conduction
- FILM: Study of liquid films ASTRE and REA radiation
- Numerics
- General Polyhedral meshes with multidomain approach
- 2nd Order Muscl schemes or HO FV (k-exact)
- Code architecture well adapted to HPC and of pre- / postprocessing utilities
- GMRES implicit time integration
- Coupling for Multiphysics : Use of in-house library CWIPI
- □ Key points in energetics : Stiff PDE with high dispersion of time/space physical scales :
 - for instance multiphase, characteristic times of liquid oxygen injection / gas oxygen dynamics

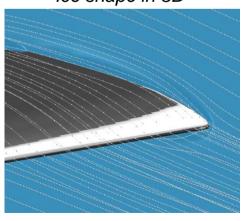
TBD



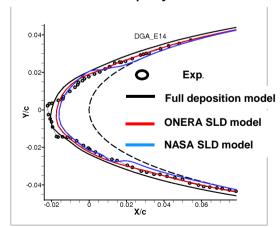
CM2012 case: cooled blade

CEDRE: Civil aircraft

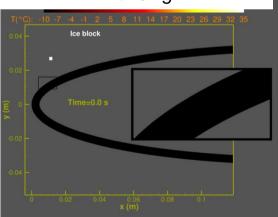
Numerical methods for Ice accretion prediction


Regulation is strengthening following recent accidents

- Take into account Ice Crystals and SLD (Super-cooled Large Droplets)
- Necessity to improve simulation tools (trajectories, complex impacts, erosion,
 + deicing and anti-icing)


Examples of recent simulations

- Modeling of ice accretion (predictor / corrector or multistep approaches, structured or unstructured meshes, SLD, crystals ...)
- Modeling protection systems (deicing, anti-icing)


Ice shape in 3D

SLD: EXTICE project database

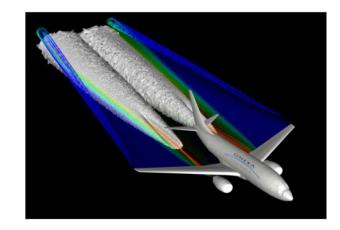
Anti-icing

Status of CEDRE: Contrails

From few seconds...

... Until several hours

Artificial regional cloudiness



Physical aspects

- Generation of contrails : ice crystals from condensation nuclei (essentially soot particles)
- Possible evolution in artificial cirrus
- Modification of radiative forcing
- Possible impact on climate

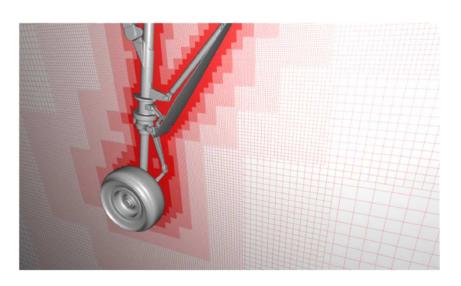
Key points

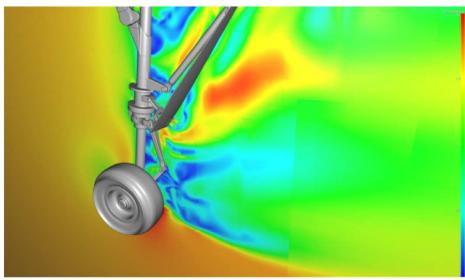
- Importance of wingtip vortices on component dispersion
- Disparity of the scales involved
- Complexity of the microphysical model

ONERA CFD Challenges / Roadmap

- ☐ Automatization and Accuracy Control: From End-users expertise to Expert CFD system
- Automatic mesh generation/adaptation for geometric complexity and high accuracy including flexible
 Pre-, Post and Co- Processing
- Mastering Computational errors thanks to High-Fidelity methods using mathematical & physical indicators and h-p adaptation
- Develop robust methods for stiff system and multiscale with model adaptation : → m-adaptation
- Low Cost CFD for pre-design loops
- ☐ HPC and efficiency of integration methods
 - Management of exaflopic for advanced numerical simulations: efficient parallel integration methods using advanced linear algebra
 - Efficient programming on heterogeneous platforms : Close cooperation with computer manufacturers
- ☐ CFD into the certification process
 - Manage operational/model uncertainties : introduction of CFD into certification processes
 - Synergy (hybridization) processes between CFD and experience for aerodynamic data production representative of the model in flight
 - Adjoint approaches necessary for optimization and data assimilation
- Advanced multiphysics simulation
 - Numerical methods for robust and accurate system coupling
 - Standardization of interface for mesh/solver/multiphysics
- ☐ Integrate CFD platforms for research and industry : software architecture with interoperable components to manage complex physical/numerical modelling and multidisciplinary simulations

Immersed boundary method on Cartesian grids


Automatic workflow from CAD surface


Automatic Adaptive Cartesian Grids

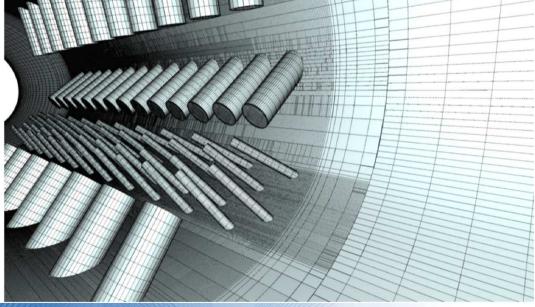
Immersed boundaries (Ghost Cell Direct Forcing Approach, wall-modeled for RANS and RANS-LES simulations)

Use in combination with the Cartesian solver of FastS HPC Navier-Stokes solver developed by ONERA

Réf : S. Péron et al., An Immersed Boundary Method for preliminary design aerodynamic studies of complex configurations, AIAA paper 2017-3623

Mesh Intersections

- The kernel is a Boolean operator for 3D-arbitrary meshes
- Multiple applications:
 - >2nd-order Conservative Remapping
 - >Mesh generation by assembling pre-meshed components
 - >Applications with an overset grid strategy:
 - o Pre-processing: Blanking
 - o Conservative Interpolations
 - Post-processing


Boolean Operator

CAD-2017 Landier

Conservative interpolations & Chimera applications

AIAA-2018 Landier et al.

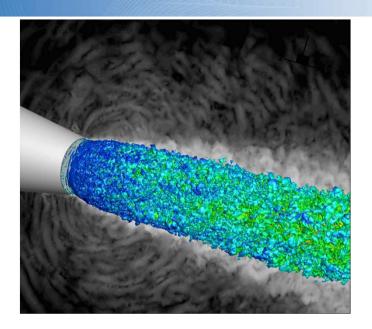
MVC-06, Meshing Techniques, January 10, 2018

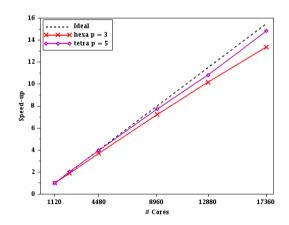
AGHORA: ONERA HPC code based on Discontinuous Galerkin method

Scientific challenge

 High accuracy and efficiency for complex turbulent flows on HPC plateformes

Physical modeling and numerics

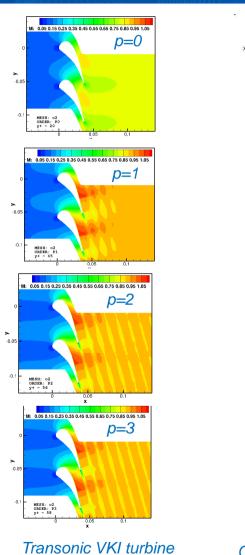

- DG modal or nodal approach
- Unstructured High-Order polyhedra
- Efficient integration for steady and time-accurate
- Internal and external flows
- Turbulence modeling : RANS, DES, LES, DNS
- Local automatic h/p adaptation, multiscale VMS

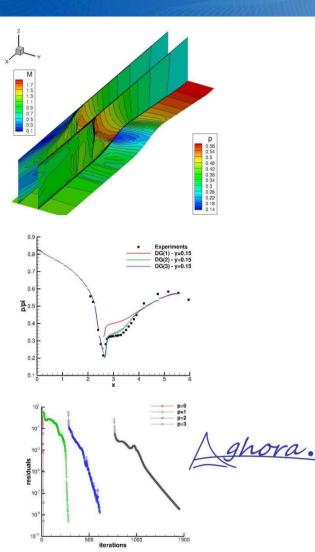

Aghora software prototype

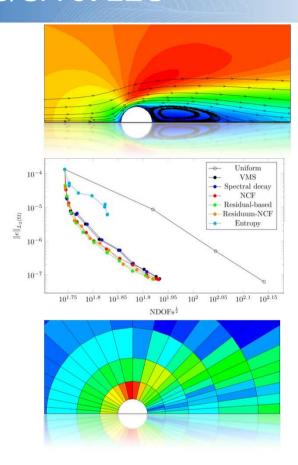
- Efficient HPC programming on advanced architectures
- Collaboration INRIA, BULL, INTEL
- Multiphysics using code coupling with CWIPI library
- Real Gas effects / Aeroelasticity
- Adjoint method for data assimilation and flow control

Collaborations / Benchmarking

- European projects IDIHOM, TILDA, ANADE, SSeMID
- International High-Order Workshops




JEAN nozzle - Strong scalability : 218M DoFs/eq Comparison of parallel efficiency at Iso-DoFs

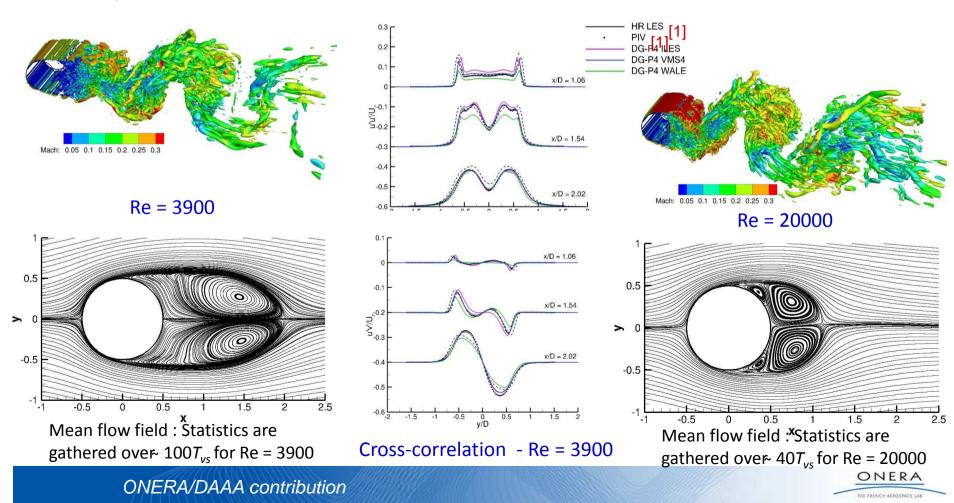

Aghora – Turbine transsonique VKI LS89 Calculs DG avec modèle RANS/SA et LES

Transonic VKI turbine at iso-Mesh: from p=0 to p=3

ONERA 3D swept Bump (Exp. J. Délery) Efficient implicit method for HO-DG

FD-09. CFD Solver Techniques
AIAA-2018-0368.
Fabio Naddei et al.

Laminar cylinder - Efficiency of local p-refinement with various error indicators



Aghora: Analysis of DG for LES Flow Simulations

LES with HO-DG method: Analysis of ILES / WALE / VMS-LES

DG-P4 (5th order) - VMS approach assessed on the cylinder teste case

DG-VMS provides best match with experimental data compared to no-model (ILES) and WALE

ONERA & HPC computer: 2017

IN House:

SGI ICE: NHM (2009) + WESTMERE + upgrade (2013) (2880 cores lvy Bridge) - 01/2014: 7872 Intel cores – Peak performance 115 Tflops

Spring 2017 : NEC - 17360 cores BDW > 579 Tflops

Linpack: 342 position TOP 500 June 2017

End 2018 option Skylake -> 1 Pflops

CCRT / TGCC — Partner

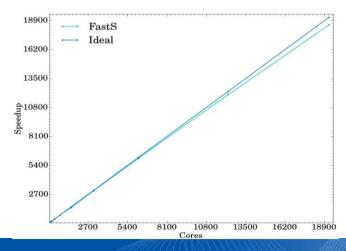
Access to GENCI: 35 Mh in 2017

PRACE : Several preparatory access

HPC Ecosytem + Many-core programming optimization

ONERA partner in:

ORAP, Ter@tec shareholder in CERFACS ETP4HPC


Project with computer manufacturer Atos/Bull

Intel labeling: ONERA IPCC 2017-2018

(Intel Parallel Computing Center) solver optimization for KNL / Skylake

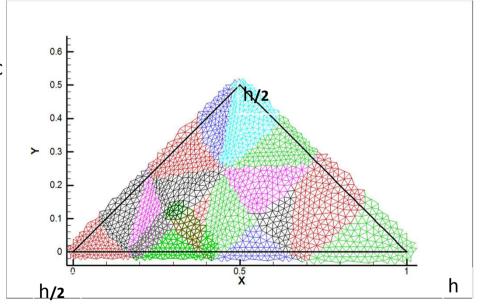
FAST S: structured implicit solver for LES / RANS

- On the fly optimized I J K subpartitions in OpenMP shared memory for cache filling
- SIMD Vectorization along I; Performance 600 M cell*ite/s on XeonPHI KNL socket (72 cores)

Cluster MareNostrum IV (Barcelone)
PRACE Preparatory Project
95% parallel efficiency 19200 cores
~147 Tflops

FAST: LES computation

Many-core programming optimization for node performance

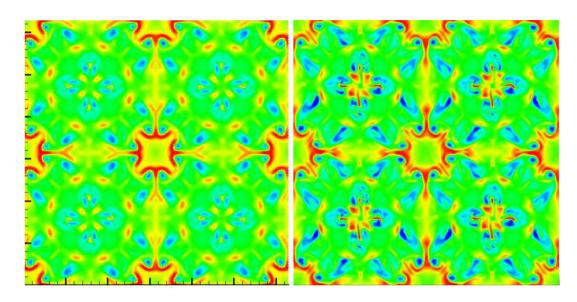

keywords: « Mpi / OpenMP / AVX512 / cache filling / deep memory»

IPCC 2017-2018: solver optimization for KNL / Skylake

NXO unstructured explicit solver (DTS implicit) for grid templates

Grid and memory hierarchy: embedded conforming triangular grids in quadtrees (here in 2D)

- L2 cache filling with the OpenMP stack
- Topological vectorization
 along the subpartition index
 full vector data model for flow / metric
- Performance in 2D for Navier-Stokes RHS
 - 110 M Rhs /s on KNL socket
 - 160 M Rhs /s on dual Skylake node


Self-vectorized grid embedded in a coarse octree 16 subpartitions with identical connectivity / halos

GPU implementation of the NextFlow solver 3D k-exact reconstruction of flux density tensor components 2.5D periodic spanwise, MULTI-GPU / MPI

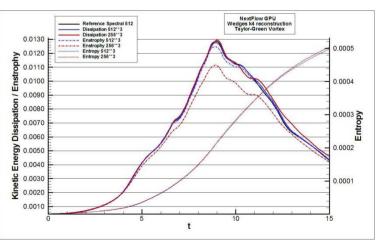
TAYLOR-GREEN Vortex on respectively 256³ and 512 ³ wedges

Total energy slice at z=-pi/2, t=8 dissipation peak

Performance on one GPU:

in k3 25 ns per Rhs, 40 M Rhs /s

in k4 42 ns per Rhs, 24 M Rhs/s

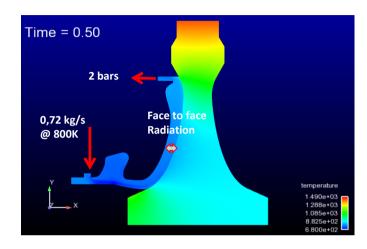

Taylor Green vortex 256**3: wall-clock 1600 Hours CPU Intel core :

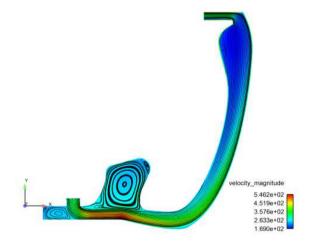
12 hours on 16 IVY-Bridge processors (128 cores)

25 minutes on 16 Tesla K20M GPUs

Taylor Green vortex 512**3 : wall-clock

4 hours on 16 Tesla K20M GPUs

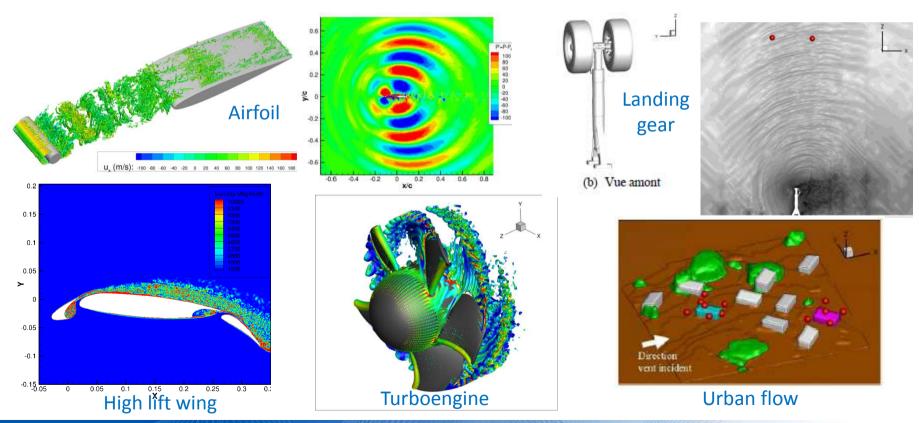



High-Precision Methods For Coupled Fluid-Structure Problems

New Interface Treatments for Conjugate Heat Transfer (CHT) Problems

- From a Simplified Coupled Model Problem:
 Normal mode decomposition -Stability analysis –
 Godunov-Ryabenkii theory...
- A fundamental transition has been highlighted!
- Optimal coupling coefficients :
 - Monotonic convergence
 - Unconditional stability of the coupled problem
 - Fastest convergence rate
- Optimal coefficients mature enough to be used in the industry
- Used in a variety of applications :
- Steady (weak coupling): CPU time divided by 5!
- Unsteady (strong coupling): analysis of the metallic heat load (turbine disk) over the duration of a flight cycle

Coupled Computation: Cooling of an HP Turbine Disk



CFD Computation: Cooling circuit

Lattice-Boltzmann: ONERA's activities in the ProLB project

- Developments/improvements
 - Efficient wall laws for attached boundary layers
 - Reliable conditions for 2-1 resolution boundaries in octree grids
 - Others: Mach > 0.4, plasmas, multi-phase, GPU, fluid/structure, optics
- Evaluation of the solver for aeronautic configurations (acoustics, aerodynamics ...)

Roadmap for softwares

Research studies with elsA

Turbulence and transition modelling
Numerical methods
Unstructured and hybrid meshes
Aerothermics, Aeroelasticity,
Aeroacoustics
Cartesian/IBC capacities
Co-/post-processing, easy management
of Boundary conditions

Prepare the future

FV-HPC prototype Fast DG-HPC prototype Aghora Funded by 2 internal projects

Research studies with CEDRE

Thermic, Multiphase, Combustion, Radiation, Acoustics ZDES, LES Hybrid Eulerian-Lagragian (sues...)

Premio (ONERA)

- Component approach
- Aerodynamics, Energetics, Multiphysics
- Sustainability and sharing of CFD tools including elsA modernization,
 CEDRE modules, prototypes

Strong interaction with Mosaic (Safran)

 Component approach of **PREMIO** to be shared thanks to common module interfaces

RHEA NewGen CFD code (Airbus/DLR/ONERA)

- New cooperation launched end 2017
- Integrating FV, DG, hybrid approaches with various levels of turbulence modelling for aerodynamics

