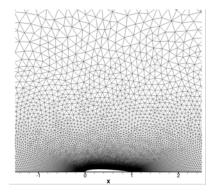
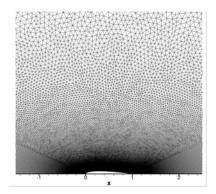


Adjoint based, Error Controlled, Loosely Coupled, Unstructured Design Optimization and Adaptive Mesh Refinement Using FUN3D

Troy Lake Masters Candidate Prof. Dimitri Mavriplis Professor

High Altitude CFD Lab, Department of Mechanical Engineering, University of Wyoming, Laramie, WY

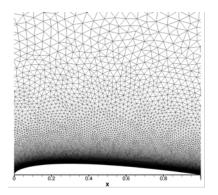

Outline

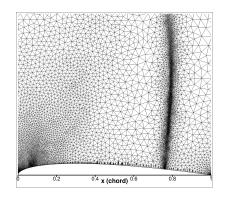

- Introduction
- Motivation & Objective
- Methodology
- Results
- Conclusions
- Recommendations for Future Work



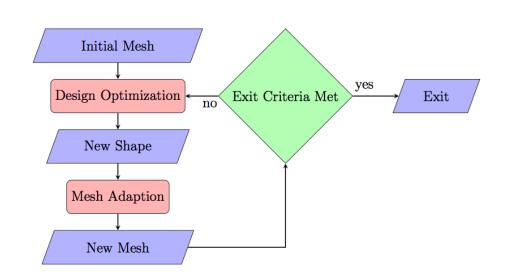
Introduction

- Gradient-Based Design Optimization
 - Current best practices use fixed-complexity meshes
 - Unknown discretization error





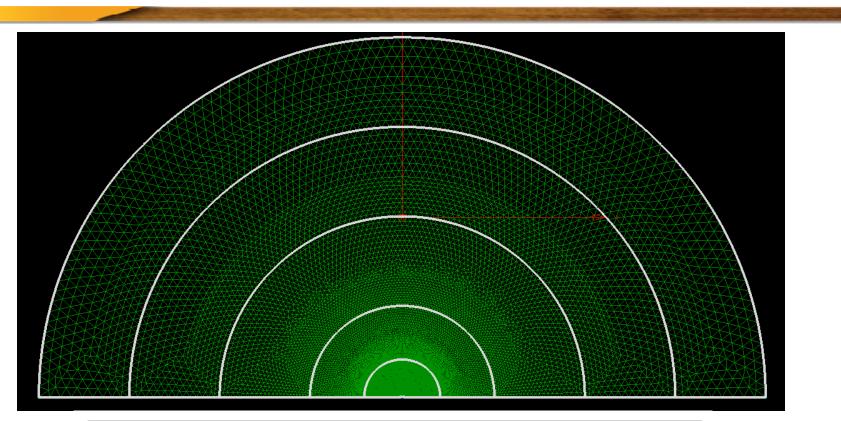
Introduction


- Adjoint-Based Adaptive Mesh Refinement
 - Start with initial mesh with unquantified error
 - Quantify and reduce discretization error related to objective or functional
 - Adjoint provides functional error estimate

- Used to drive adaption process

Motivation & Objective

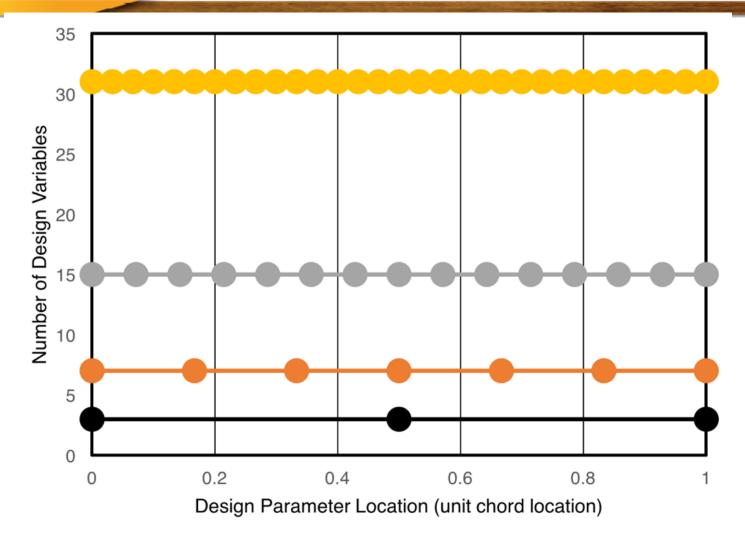
- Previous work has combined design optimization and AMR using Finite Element Methods (Li and Hartmann, 2016) and Cartesian Cell Finite Volume Methods (Anderson, 2015)
- This work will combine these two adjoint based features using FUN3D, a Finite Volume, unstructured solver



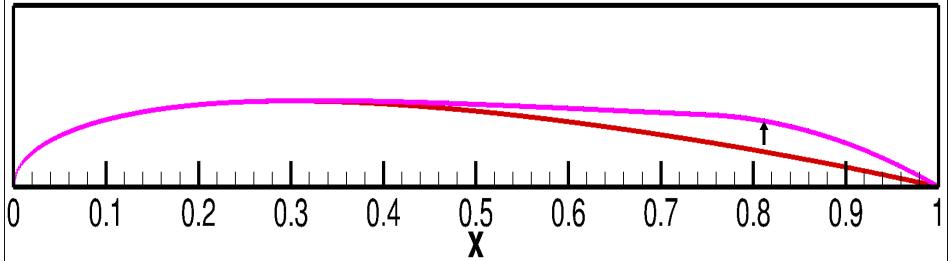
Flow Solver

FUN3D

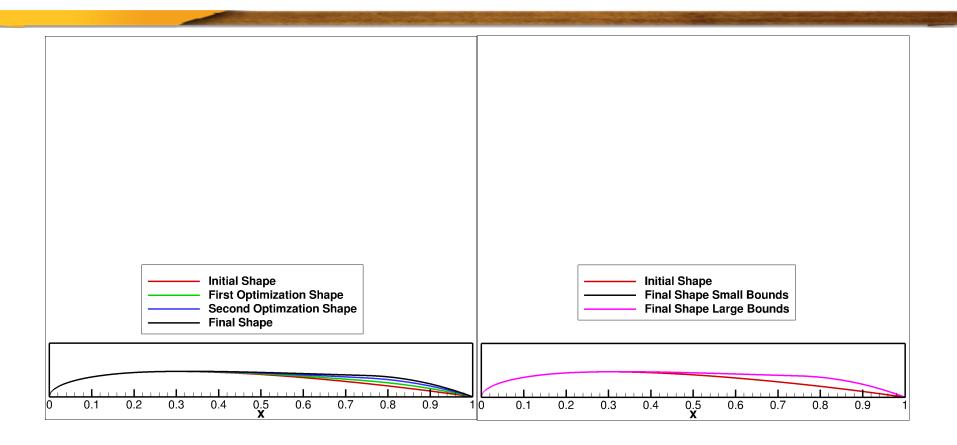
- 3D unstructured finite-volume RANS solver.
- 2nd –order accurate in space and time.
- Van Leer Flux vector splitting method
- Test Case 1 Compressible, Euler Equations
 - Adjoint Formulation Available
- Test Case 2 RANS* using the one equation 1992 Spalart-Allmaras turbulence model
 - Adjoint Formulation Available
- Deforming mesh capability
- Mesh adaption capability


Collared Mesh Approach

Boundary Distance	Collared Mesh Node Count	Non-Collared Mesh Node Count
5	10752	10752
10	11600	10892
25	12615	11120
50	13514	11229
75	14110	11329
100	14564	11255


7

Fixed and Progressive Parameterization


Term Definition

- Bounds
- Reparameterization and effective bounds
- Optimization circuit
- Two approaches for bounds
 - Small bounds with frequent reparameterization
 - Max bounds with fewer reparameterizations
 - User interaction to find max bounds

Design Variable Bounds

Small Bounds

Large Bounds

Objective Function

- Goal of the design
- Penalty Functions
 - Test Case 1: Inviscid, symmetric airfoil
 - L = Cd
 - Test Case 2: RANS, lifting airfoil
 - $L = Cd^2 + (0.7 Cl)^2$
- Optimization Complexity Function
 - $0.C.F. = L^2 * \sqrt{0.1 * F.S.C.* 10 * 0.C.* 0.01 * M.C.}$
 - F.S.C.: Flow Solver Calls
 - O.C.: Optimization Circuit
 - M.C.: Mesh Complexity
 - Rewards a small objective function but penalizes small objective functions that require increased user interaction and cost of flow solution

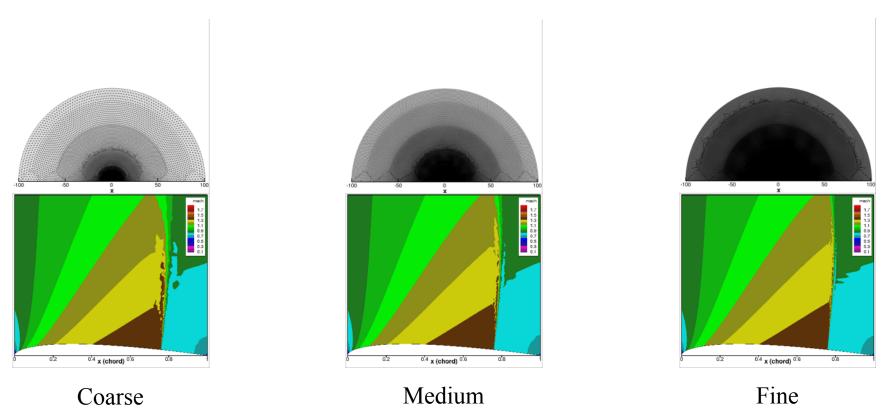
Coupling of AMR and Optimization

- Adapt then Design or Design then Adapt
 - Purpose is to determine impacts of the order of workflow on final solution for Finite Volume method
 - Micheletti(2011) performed with Finite
 Element for an advection-diffusion-reaction
 equation, reaching same solution for both
 methods

*

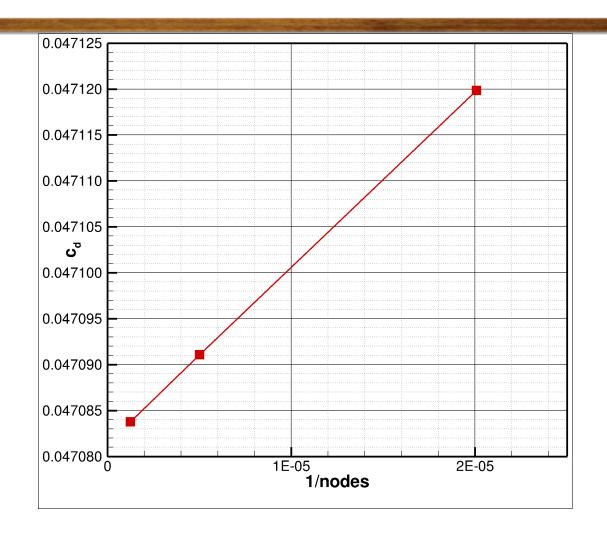
Test Case 1

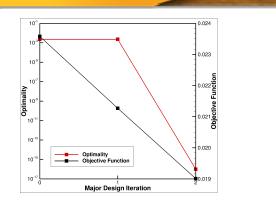
- NACA-0012
- Inviscid flow
- Mach 0.85, 0° incidence, symmetric airfoil
- Objective: L = Cd
- FUN3D Flow solver using:
 - Van Leer Flux vector splitting
 - Newton Krylov solver with 2500 Krylov Vectors
 - Adjoint computed sensitivities
- SNOPT optimizer (unconstrained)
 - Objective function values
 - Optimality
- Analytic solution is 0 drag (Spalart, 2015)

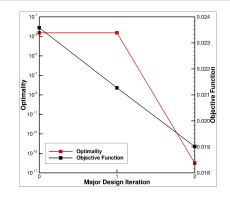


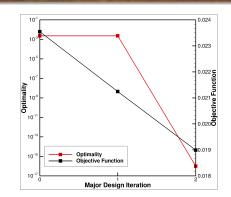
Overview of Test Case 1

- Fixed-complexity meshes
 - Optimization for 3, 7, 15 and 31 design variables
 - Results for first optimization circuit
 - 3 design variables with no reparameterization
 - Fixed bounds and max bounds
 - Multiple optimization circuits
 - Progressive parameterization optimization
- Loosely-coupled AMR and optimization
 - Max bounds for 3, 7, 15 and 31 design variables
 - Progressive parameterization
- Progressive mesh complexity optimization
 - Fixed bounds for 3 and 7 design variables
 - Progressive parameterization for 3, 7 and 15 design variables


Test Case 1: Initial Conditions

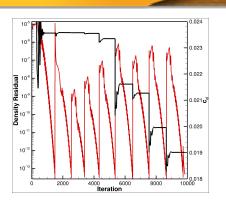

Mesh	Boundary Decay	Airfoil Spacing	Node Count
Coarse	0.9875	0.001	49804
Medium	0.99715	0.0005	199284
Fine	0.99929	0.00025	801073

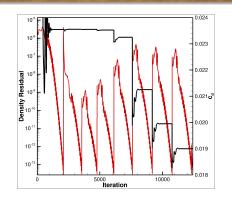

Test Case 1-Drag Convergence

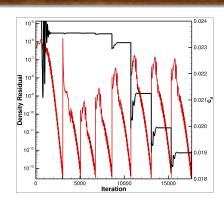

- Slope approximately 2, indicative of second order accuracy
- Fine mesh value: 470.84
- Infinite value: 470.82

Test Case 1: 3 Design Variables First Optimization Circuit Fixed Parameterization Fixed Bounds

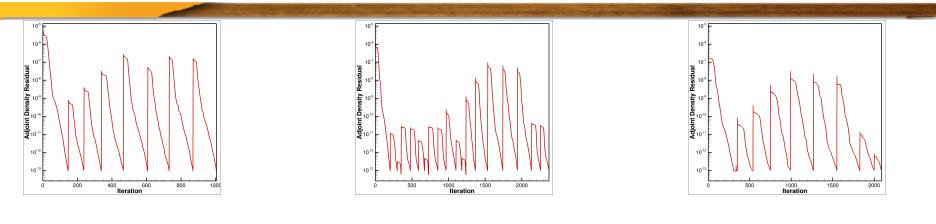
Coarse


Medium


Fine


- Major design iterations performed by SNOPT
 - Include multiple flow solver/adjoint calls
- All meshes reached machine precision for optimality on first optimization circuit
- Multiple circuits performed to converge the objective function, as the design is against the bounds for this optimization circuit

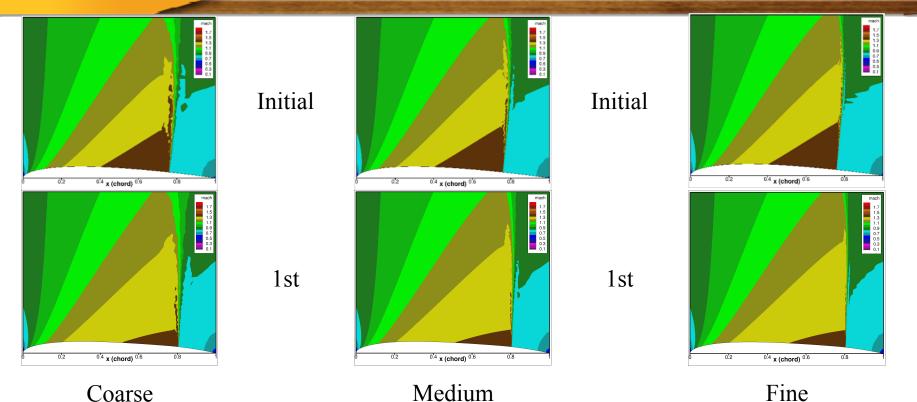
Test Case 1- 3 Design Variables First Optimization Circuit Fixed Parameterization Fixed Bounds


Coarse

Fine

- Total of 8 flow solver calls by SNOPT for medium and fine mesh
- Total of 9 flow solver calls by SNOPT for coarse mesh
- All flow solver call residuals were converged to 1e-13
- This was a requirement of the design process

Test Case 1: 3 Design Variables First Optimization Circuit Fixed Parameterization Fixed Bounds


Coarse

- All adjoint solver call residuals were converged to 1e-13
- This was a requirement of the design process

Test Case 1: 3 Design Variables First Optimization Circuit Fixed-Parameterization Fixed-Bounds

Shock moves ~ 0.05 chord units

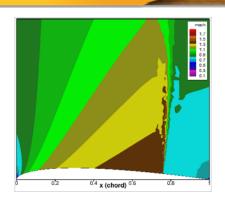
٠

• Drag is reduced by ~ 90 counts

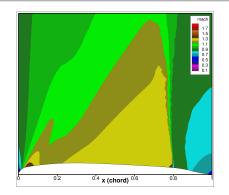
Mesh	Flow Solver Calls	Objective Function: C_d	Optimality	Optimization Complexity Function
Coarse	9	0.038022	1e-16	0.09679
Medium	8	0.037994	1e-16	0.18227
Fine	8	0.037980	1e-16	0.36517

Test Case 1: 3 and 7 Design Variable Final Values Fixed Parameterization Fixed Bounds

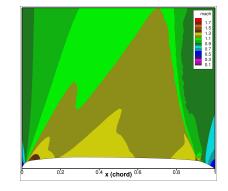
- Multiple optimization circuits performed, allowing for larger effective bounds
 Mesh Optimization Flow Objective Optimality Optimization
- 3 DV case able to reduce drag by ~ 180 counts
- Coarse mesh reached machine precision on optimality, used as stopping point for other two meshes
- 7 DV case able to reduce drag by ~ 330 counts
- Coarse mesh reached machine precision on optimality, used as stopping point for other two meshes


Mesh	Optimization Circuits	Flow Solver Calls	Objective Function: Cd	Optimality	Optimization Complexity Function
Coarse	4	48	0.029248	1.0e-16	0.26453
Medium	4	48	0.029194	4.5e-8	0.52720
Fine	4	78	0.029152	7.7e-10	1.34354

3 Design-Variables

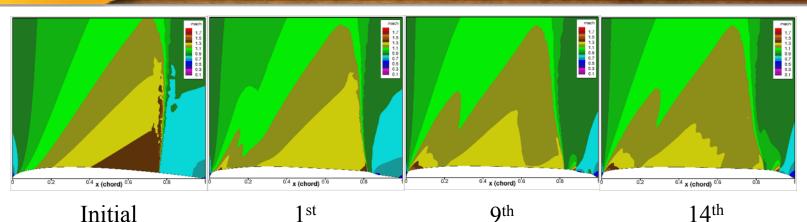

Mesh	Optimization Circuits	Flow Solver Calls	Objective Function: Cd	Optimality	Optimization Complexity Function
Coarse	7	221	0.013624	1.0e-16	0.16292
Medium	7	269	0.013606	1.5e-6	0.35861
Fine	7	277	0.013598	1.2e-8	0.72874

7 Design-Variables


Test Case 1: 15 Design Variables Fixed Parameterization Fixed Bounds

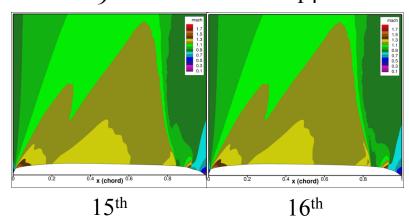
Initial

1 st



4th

- "Dove-tail" formed, causing increases in drag followed by reductions throughout the optimization circuits
- Only coarse mesh used moving forward unless denoted otherwise
- 15 DV able to reduce drag ~ 410 counts


Optimization Circuits	Flow Solver Calls	Objective Function: C_d	Optimality	Optimization Complexity Function
17	472	0.005898	8.3e-2	0.06954

Test Case 1: 31 Design Variables Fixed Parameterization Fixed Bounds

• "Dove-tail" formed, causing increases in drag followed by reductions throughout the optimization circuits

 31 DV able to reduce drag ~ 430 counts

Optimization Circuits	Flow Solver Calls	Objective Function: C_d	Optimality	Optimization Complexity Function
28	926	0.004146	7.6e-8	0.06177

Test Case 1 – Fixed Parameterization Max Bounds

- Max bounds able to achieve approximately same values as fixed bounds case at a lower OCF
- Max bounds required much more trial and error to get completed optimization circuit

Design Variables	Optimization Circuits	Flow Solver Calls	Objective Function: C_d	Optimality	Optimization Complexity Function
3	1	21	0.029246	1.7e-5	0.08747
7	1	72	0.013620	4.3e-7	0.03513
15	5	573	0.004044	3.4e-6	0.01954
31	18	677	0.004075	5.1e-8	0.04091

Max Bounds

Design Variables	Optimization Circuits	Flow Solver Calls	Objective Function: C_d	Optimality	Optimization Complexity Function
3	4	48	0.029248	1e-16	0.26453
7	7	221	0.013624	1e-16	0.16292
15	17	472	0.005898	8.3e-2	0.06954
31	28	926	0.004146	7.6e-8	0.06177

Fixed Bounds

Test Case 1: Progressive Parameterization

- Max bounds able to achieve approximately same values as fixed bounds case at a lower OCF for most cases
- Max bounds required much more trial and error to get completed optimization circuit

Design Variables	Optimization Circuits	Flow Solver Calls	Objective Function: Cd	Optimality	Optimization Complexity Function
3	1	21	0.029246	1.7e-5	0.08747
7	1	26	0.013646	4.6e-10	0.02119
15	11	364	0.007244	1.7e-5	0.07410
31	7	321	0.003858	5.9e-7	0.01575

Max Bounds

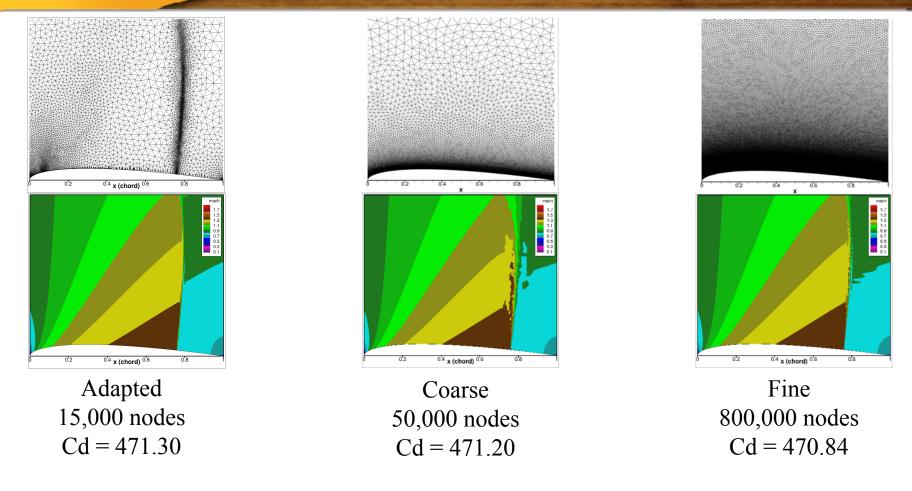
Design Variables	Optimization Circuits	Flow Solver Calls	Objective Function: Cd	Optimality	Optimization Complexity Function
3	4	48	0.029248	1.0e-16	0.26453
7	4	216	0.013956	1.9e-5	0.12776
15	6	166	0.006396	1.2e-9	0.002881
31	10	400	0.004442	1.6e-5	0.002785

Fixed Bounds

Test Case 1: Progressive vs Fixed Parameterization

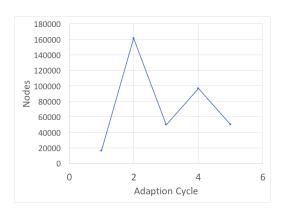
• Max bounds required much more trial and error to get completed optimization circuit

Method	Design Variables	Optimization Circuits	Flow Solver Calls	Objective Function: Cd	Optimality
Fixed	31	18	677	0.004075	5.1e-8
Progressive	31	20	732	0.003858	5.9e-7


Max Bounds

Method	Design Variables	Optimization Circuits	Flow Solver Calls	Objective Function: Cd	Optimality
Fixed	31	28	926	0.004146	7.6e-8
Progressive	31	24	830	0.004442	1.6e-5

Fixed Bounds


Test Case 1: Adapted Mesh

- Adapted mesh has sharper shock line
- Accurate solution with fewer mesh nodes

Test Case 1: Adapted Mesh, Max Bounds

- Able to achieve approximately same values at each design variable step
- Fewer optimization circuits required for more refined parameterizations
- Meshes may increase in size above the final mesh value during adaption process

Design Variables	Optimization Circuits	Flow Solver Calls w/ AMR	Flow Solver Calls w/o AMR	Mesh Size (nodes)	Objective Function: Cd	Optimality
3	3	75	45	30515	0.029178	1.9e-11
7	6	301	241	32072	0.013600	7.6e-9
15	4	278	238	3696 <u>4</u>	0.007478	1.6e-5
31	4	542	502	49591	0.004264	1.3e-7

Adapted

Design Variables	Optimization Circuits	Flow Solver Calls	Mesh Size (nodes)	Objective Function: Cd	Optimality			
3	1	21	50000	0.029246	1.7e-5			
7	1	72	50000	0.013620	4.3e-7			
15	5	573	50000	0.004044	3.4e-6			
31	18	677	50000	0.004075	5.1e-8			

Max Bounds, Coarse Mesh

Test Case 1:

Adapted Mesh, Progressive Parameterization

- Able to achieve approximately same values as fixed complexity mesh
- 31 DV case not completed for progressive parameterization as the mesh grew to approximately 1,000,000 nodes.

Design Variables	Optimization Circuits	Flow Solver Calls w/ AMR	Flow Solver Calls w/o AMR	Mesh Size (nodes)	Objective Function: Cd	Optimality
3	3	75	45	30515	0.029178	1.9e-11
7	2	155	135	30502	0.013944	5.2e-6
15	8	373	293	56998	0.007738	4.1e-8

Tauptou									
Design Variables	Optimization Circuits	Flow Solver Calls	Mesh Size (nodes)	Objective Function: Cd	Optimality				
3	1	21	50000	0.029246	1.7e-5				
7	1	26	50000	0.013646	4.6e-10				
15	11	364	50000	0.007244	1.7e-5				
31	7	321	50000	0.003858	5.9e-7				

Adapted

Fixed-Complexity Coarse mesh

Test Case 1 - Adapt then Design vs Design then Adapt

- Achieved approximately same solution
- Design then AMR achieved this sooner
- Final shapes are the same

Method	Optimization Circuits	Flow Solver Calls	Mesh Size (nodes)	Objective Function: Cd	Optimality
AMR then Design	6	301	32072	0.013600	7.6e-9
Design then AMR	4	172	35198	0.013680	1.7e-5

Test Case 1:

Progressive Mesh, Fixed Parameterization

- Slight improvements seen during the progressive mesh design for the fixed parameterization
- Could be useful for complex 3D geometries and for fine tuning
- Reduced total flow solver calls required for Fine mesh computations

Mesh	Optimization Circuits	Flow Solver Calls	Objective Function: Cd	Optimality	Optimization Complexity Function
Coarse	1	21	0.029247	1.7e-5	0.08748
Medium	1	22	0.029193	2.6e-8	0.17845
Fine	1(3)	11 (54)	0.029151	2.0e-6	0.25225
Fine- Fixed	4	78	0.029152	7.7e-10	1.34354

3 Design-Variables

31

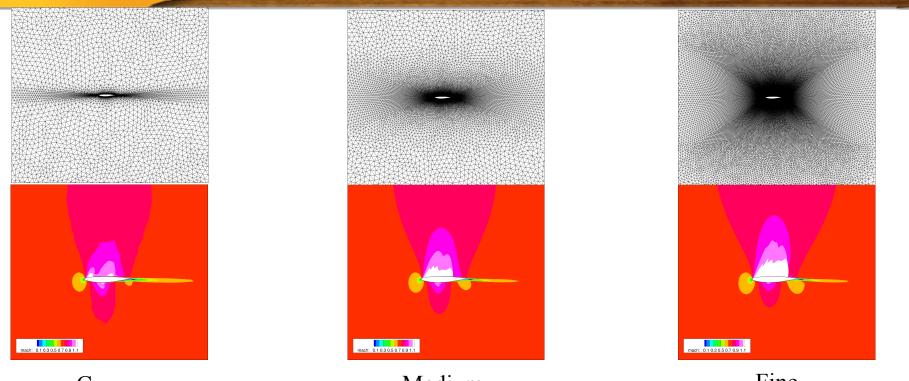
Mesh	Optimization Circuits	Flow Solver Calls	Objective Function: Cd	Optimality	Optimization Complexity Function					
Coarse	1	72	0.013621	4.3e-7	0.03513					
Medium	1	52	0.013604	2.6e-6	0.05958					
Fine	1(3)	41 (165)	0.013598	3.7e-6	0.10597					
Fine- Fixed	7	277	0.013598	1.2e-8	0.72874					
	7 Design-Variables									

Test Case 1: Progressive Mesh, Progressive Parameterization

- Larger improvement seen over fixed parameterization case
- Can be used on adapted meshes with ever decreasing discretization tolerance
- Able to perform 15 design variable on Fine mesh, as it was too expensive before
- Combining the two makes it even better

Mesh	Optimization Circuits	Flow Solver Calls	Objective Function: Cd	Optimality	Optimization Complexity Function
Coarse	1	21	0.029247	1.7e-5	0.08748
Medium	1(2)	41 (62)	0.013635	1.1e-6	0.05314
Medium- Fixed	7	269	0.013606	1.5e-6	0.35861
Fine	1(3)	33 (95)	0.012148	2.3e-7	0.07588

Test Case 2


- TMA-0712, 12% thick, design C_I 0.7, design Mach 0.78
- Viscous flow
- Mach 0.78, 0° incidence, lifting airfoil
- Objective: $L = C_d^2 = (0.7 C_l)^2$
- FUN3D Flow solver using:
 - Van Leer Flux vector splitting
 - Newton Krylov solver with 1000 Krylov Vectors
 - Adjoint computed sensitivities
- SNOPT optimizer (unconstrained penalty function)
 - Objective function values
 - Optimality

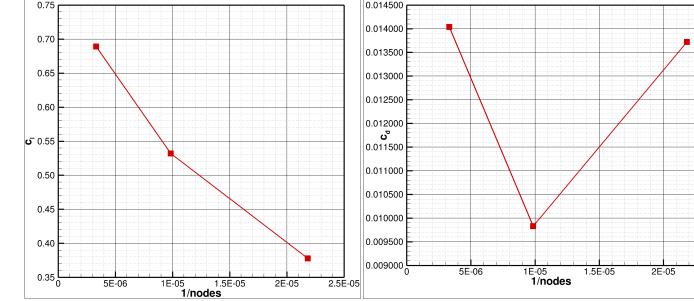
Overview of Test Case 2

- Fine mesh
 - Optimization for 7 design variables
 - Fixed bounds
 - Multiple optimization circuits
 - Progressive parameterization optimization
- Loosely-coupled AMR and optimization
 - Unable to be performed due to isotropic mesh requirement
- Progressive mesh complexity optimization
 - Unable to be performed as the coarse and medium mesh were under resolved and could not provide feasible design

Test Case 2: **Initial Conditions**

Coarse

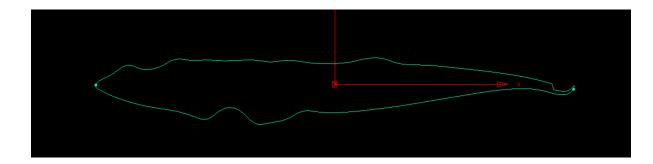
Modium
Medium


Fine

Mesh	Boundary Decay	Airfoil Spacing	Node Count	Viscous Layers	y+	Growth Rate
Coarse	0.5	0.004	45819	40	3	1.2
Medium	0.982	0.002	101520	40	1.5	1.2
Fine	0.99815	0.001	300782	39	1	1.2

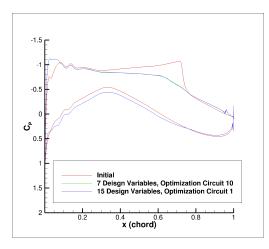
35

Test Case 2: Drag and Lift Convergence


- Fine lift value: 0.6816
- Fine drag value: 0.0134
- Infinite values not realistic as the mesh family does not provide proper convergence

Test Case 2

- The coarse and medium meshes were under refined and lead to infeasible design shapes
- The fine mesh performed well, and was able to provide reasonable initial designs


Test Case 2: 7 Design Variables

- 7 thickness and 7 camber design variables were used for this design
- Multiple optimization circuits were used
- Drag reduced by 55 counts
- Lift increased by 0.0178

Mesh	Optimization Circuits	Flow Solver Calls	Lift	Drag	Objective Function	Optimality
Fine	10	1313	0.6994	0.007908	0.0006257	2.2e-6

Test Case 2: Progressive Parameterization

- 7 design variables, followed with 15 design variables
- Minor improvements made to both lift and drag, with lift reaching the target goal

Design Variables	Optimization Circuits	Flow Solver Calls	Lift	Drag	Objective Function	Optimality
7	10	1313	0.6994	0.007908	0.0006257	2.2e-6
15	1	19	0.7000	0.007904	0.0006247	9.1e-5

Test Case 2: Adaptive Mesh Refinement

- Unable to resolve an adapted mesh using isotropic mesh adaption
 - Required surface resolution for unit length airfoil with a Reynolds Number of 30 million is ~2,000,000 nodes

Conclusions

- More design variables lead to more optimal shape
- Number of flow solver calls increases with number of design variables
- Number of flow solver calls increases with mesh complexity
- Bound settings can dramatically impact total cost
- Progressive parameterization reduces number of flow solver calls and cost of optimization
- Progressive mesh complexity reduces number of flow solver calls
- Combination of the two further reduces cost
- AMR with opt reduces cost through mesh complexity reduction
 - Cost increases due to additional flow solver calls for AMR, and user interaction doubled for each optimization circuit

Operational Lessons Learned

- Fully converge flow and adjoint solutions
 - Prevents stalling of optimization problem
- Fully converge mesh movement problem
 - Necessary to avoid negative cell volumes
- Tightening bounds
 - Bounds can have significant effect on optimization progress and results
- Isotropic mesh adaption
- Restart vs freestream start
 - Convergence issues observed with freestream initializations
- Bounds on adapted meshes
 - Intermediate irregular shapes lead to large mesh sizes

Future Work

- Progressive AMR error tolerances
- Anisotropic mesh adaption
- Global design searches
- Uncertainty quantification
- Coupling FUN3D design and adaption framework
- Three-dimensional

Questions?