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Introduction

• Gradient-Based Design Optimization
– Current best practices use fixed-complexity 

meshes
– Unknown discretization error
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Introduction

• Adjoint-Based Adaptive Mesh Refinement
– Start with initial mesh with unquantified error
– Quantify and reduce discretization error 

related to objective or functional
• Adjoint provides functional error estimate

– Used to drive adaption process
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Motivation & Objective
• Previous work has 

combined design 
optimization and AMR 
using Finite Element 
Methods (Li and 
Hartmann, 2016) and 
Cartesian Cell Finite 
Volume Methods 
(Anderson, 2015)

• This work will combine 
these two adjoint based 
features using FUN3D, a 
Finite Volume, 
unstructured solver
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Flow Solver

FUN3D
• 3D unstructured finite-volume RANS solver.
• 2nd –order accurate in space and time.
• Van Leer Flux vector splitting method
• Test Case 1 - Compressible, Euler Equations

– Adjoint Formulation Available
• Test Case 2 – RANS* using the one equation 1992 

Spalart-Allmaras turbulence model
– Adjoint Formulation Available

• Deforming mesh capability
• Mesh adaption capability

6*RANS: Reynolds Averaged Navier-Stokes



Collared Mesh Approach
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Fixed and Progressive 
Parameterization
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Term Definition
• Bounds
• Reparameterization and effective bounds
• Optimization circuit
• Two approaches for bounds

– Small bounds with frequent 
reparameterization

– Max bounds with fewer reparameterizations
• User interaction to find max bounds
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Design Variable Bounds
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Small Bounds Large Bounds



Objective Function
• Goal of the design
• Penalty Functions

– Test Case 1: Inviscid, symmetric airfoil
• 𝐿	 = 	𝐶𝑑

– Test Case 2: RANS, lifting airfoil
• 𝐿	 = 	𝐶𝑑2	 +	(0.7	– 	𝐶𝑙)2

• Optimization Complexity Function
– 𝑂. 𝐶. 𝐹. = 𝐿1 ∗ 0.1 ∗ 𝐹. 𝑆. 𝐶.∗ 10 ∗ 𝑂. 𝐶.∗ 0.01 ∗ 𝑀. 𝐶.�

– F.S.C.: Flow Solver Calls
– O.C.: Optimization Circuit
– M.C.: Mesh Complexity

• Rewards a small objective function but penalizes small objective 
functions that require increased user interaction and cost of flow 
solution
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Coupling of AMR and Optimization

• Adapt then Design or Design then Adapt
– Purpose is to determine impacts of the order 

of workflow on final solution for Finite Volume 
method

– Micheletti(2011) performed with Finite 
Element for an advection-diffusion-reaction 
equation, reaching same solution for both 
methods
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Test Case 1
• NACA-0012
• Inviscid flow
• Mach 0.85, 0o incidence, symmetric airfoil
• Objective: L = Cd
• FUN3D Flow solver using:

– Van Leer Flux vector splitting
– Newton Krylov solver with 2500 Krylov Vectors
– Adjoint computed sensitivities 

• SNOPT optimizer (unconstrained)
– Objective function values
– Optimality

• Analytic solution is 0 drag (Spalart, 2015)
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Overview of Test Case 1
• Fixed-complexity meshes

– Optimization for 3, 7, 15 and 31 design variables
• Results for first optimization circuit

– 3 design variables with no reparameterization
• Fixed bounds and max bounds

– Multiple optimization circuits
– Progressive parameterization optimization

• Loosely-coupled AMR and optimization
– Max bounds for 3, 7, 15 and 31 design variables
– Progressive parameterization

• Progressive mesh complexity optimization
– Fixed bounds for 3 and 7 design variables
– Progressive parameterization for 3, 7 and 15 design 

variables
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Test Case 1:
Initial Conditions
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Coarse Medium Fine



Test Case 1-Drag Convergence
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• Slope approximately 2,
indicative of 
second order accuracy
• Fine mesh value: 470.84
• Infinite value: 470.82



Test Case 1:
3 Design Variables First Optimization Circuit Fixed 

Parameterization Fixed Bounds
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Coarse Medium Fine

• Major design iterations performed by SNOPT
• Include multiple flow solver/adjoint calls

• All meshes reached machine precision for optimality on first optimization circuit
• Multiple circuits performed to converge the objective function, as the design is 

against the bounds for this optimization circuit



Test Case 1- 3 Design Variables First Optimization 
Circuit Fixed Parameterization Fixed Bounds
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Coarse Medium Fine

• Total of 8 flow solver calls by SNOPT for medium and fine mesh
• Total of 9 flow solver calls by SNOPT for coarse mesh
• All flow solver call residuals were converged to 1e-13
• This was a requirement of the design process



Test Case 1:
3 Design Variables First Optimization Circuit Fixed 

Parameterization Fixed Bounds
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Coarse Medium Fine

• All adjoint solver call residuals were converged to 1e-13
• This was a requirement of the design process



Test Case 1:
3 Design Variables First Optimization Circuit Fixed-

Parameterization Fixed-Bounds
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Coarse Medium Fine

Initial Initial

1st 1st

• Shock moves ~ 0.05 chord units
• Drag is reduced by ~ 90 counts



Test Case 1:
3 and 7 Design Variable Final Values Fixed 

Parameterization Fixed Bounds
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3 Design-Variables

7 Design-Variables

• 3 DV case able to reduce 
drag by ~ 180 counts

• Coarse mesh reached 
machine precision on 
optimality, used as 
stopping point for other 
two meshes 

• 7 DV case able to reduce 
drag by ~ 330 counts

• Coarse mesh reached 
machine precision on 
optimality, used as 
stopping point for other 
two meshes 

• Multiple optimization circuits performed, allowing for larger effective 
bounds Mesh Optimization 

Circuits
Flow 
Solver 
Calls

Objective
Function: 
Cd

Optimality Optimization 
Complexity 
Function

Coarse 4 48 0.029248 1.0e-16 0.26453

Medium 4 48 0.029194 4.5e-8 0.52720

Fine 4 78 0.029152 7.7e-10 1.34354

Mesh Optimization 
Circuits

Flow 
Solver 
Calls

Objective
Function: 
Cd

Optimality Optimization 
Complexity 
Function

Coarse 7 221 0.013624 1.0e-16 0.16292

Medium 7 269 0.013606 1.5e-6 0.35861

Fine 7 277 0.013598 1.2e-8 0.72874



Test Case 1:
15 Design Variables Fixed Parameterization 

Fixed Bounds
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Initial 1st 4th

• “Dove-tail” formed, causing 
increases in drag followed by 
reductions throughout the 
optimization circuits

• Only coarse mesh used 
moving forward unless 
denoted otherwise

• 15 DV able to reduce drag ~ 
410 counts



Test Case 1:
31 Design Variables Fixed Parameterization 

Fixed Bounds
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Initial 1st 9th 14th

15th 16th

• “Dove-tail” formed, causing 
increases in drag followed by 
reductions throughout the 
optimization circuits

• 31 DV able to reduce drag ~ 
430 counts



Test Case 1 – Fixed 
Parameterization Max Bounds
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Max Bounds

Fixed Bounds

• Max bounds able to 
achieve approximately 
same values as fixed 
bounds case at a lower 
OCF

• Max bounds required 
much more trial and 
error to get completed 
optimization circuit



Test Case 1: Progressive 
Parameterization

25Fixed Bounds

Max Bounds

• Max bounds able to 
achieve approximately 
same values as fixed 
bounds case at a lower 
OCF for most cases

• Max bounds required 
much more trial and 
error to get completed 
optimization circuit

Design 
Variables

Optimization 
Circuits

Flow 
Solver 
Calls

Objective
Function: 
Cd

Optimality Optimization 
Complexity 
Function

3 1 21 0.029246 1.7e-5 0.08747

7 1 26 0.013646 4.6e-10 0.02119

15 11 364 0.007244 1.7e-5 0.07410

31 7 321 0.003858 5.9e-7 0.01575

Design 
Variables

Optimization 
Circuits

Flow 
Solver 
Calls

Objective
Function: 
Cd

Optimality Optimization 
Complexity 
Function

3 4 48 0.029248 1.0e-16 0.26453

7 4 216 0.013956 1.9e-5 0.12776

15 6 166 0.006396 1.2e-9 0.002881

31 10 400 0.004442 1.6e-5 0.002785



Test Case 1: Progressive vs Fixed 
Parameterization
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Fixed Bounds

Max Bounds

• Max bounds required 
much more trial and 
error to get completed 
optimization circuit

Method Design 
Variables

Optimization 
Circuits

Flow Solver 
Calls

Objective
Function: Cd

Optimality

Fixed 31 18 677 0.004075 5.1e-8

Progressive 31 20 732 0.003858 5.9e-7

Method Design 
Variables

Optimization 
Circuits

Flow Solver 
Calls

Objective
Function: Cd

Optimality

Fixed 31 28 926 0.004146 7.6e-8

Progressive 31 24 830 0.004442 1.6e-5



Test Case 1: 
Adapted Mesh
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Adapted
15,000 nodes
Cd = 471.30

Coarse
50,000 nodes
Cd = 471.20

Fine
800,000 nodes
Cd = 470.84

• Adapted mesh has sharper shock line
• Accurate solution with fewer mesh nodes



Test Case 1:
Adapted Mesh, Max Bounds
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Adapted

Max Bounds, Coarse Mesh

• Able to achieve 
approximately same 
values at each design 
variable step

• Fewer optimization 
circuits required for 
more refined 
parameterizations

• Meshes may increase in 
size above the final mesh 
value during adaption 
process

Design 
Variables

Optimization 
Circuits

Flow 
Solver 
Calls w/ 
AMR

Flow 
Solver 
Calls w/o 
AMR

Mesh Size 
(nodes)

Objective
Function: 
Cd

Optimality

3 3 75 45 30515 0.029178 1.9e-11

7 6 301 241 32072 0.013600 7.6e-9

15 4 278 238 36964 0.007478 1.6e-5

31 4 542 502 49591 0.004264 1.3e-7

Design 
Variables

Optimization 
Circuits

Flow 
Solver 
Calls

Mesh Size 
(nodes)

Objective
Function: 
Cd

Optimality

3 1 21 50000 0.029246 1.7e-5

7 1 72 50000 0.013620 4.3e-7

15 5 573 50000 0.004044 3.4e-6

31 18 677 50000 0.004075 5.1e-8



Test Case 1:
Adapted Mesh, Progressive Parameterization
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Adapted

Fixed-Complexity Coarse mesh

• Able to achieve 
approximately 
same values as 
fixed complexity 
mesh

• 31 DV case not 
completed for 
progressive 
parameterization as 
the mesh grew to 
approximately 
1,000,000 nodes.

Design 
Variables

Optimization 
Circuits

Flow 
Solver 
Calls w/ 
AMR

Flow 
Solver 
Calls w/o 
AMR

Mesh Size 
(nodes)

Objective
Function: 
Cd

Optimality

3 3 75 45 30515 0.029178 1.9e-11

7 2 155 135 30502 0.013944 5.2e-6

15 8 373 293 56998 0.007738 4.1e-8

Design 
Variables

Optimization 
Circuits

Flow 
Solver 
Calls

Mesh Size 
(nodes)

Objective
Function: 
Cd

Optimality

3 1 21 50000 0.029246 1.7e-5

7 1 26 50000 0.013646 4.6e-10

15 11 364 50000 0.007244 1.7e-5

31 7 321 50000 0.003858 5.9e-7



Test Case 1 - Adapt then Design vs 
Design then Adapt
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• Achieved 
approximately same 
solution

• Design then AMR 
achieved this sooner

• Final shapes are the 
same

Method Optimization 
Circuits

Flow 
Solver 
Calls

Mesh Size 
(nodes)

Objective
Function: 
Cd

Optimality

AMR
then 
Design

6 301 32072 0.013600 7.6e-9

Design
then 
AMR

4 172 35198 0.013680 1.7e-5



Test Case 1:
Progressive Mesh, Fixed Parameterization
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3 Design-Variables

7 Design-Variables

• Slight 
improvements 
seen during the 
progressive mesh 
design for the 
fixed 
parameterization

• Could be useful 
for complex 3D 
geometries and for 
fine tuning

• Reduced total flow 
solver calls 
required for Fine 
mesh 
computations

Mesh Optimization 
Circuits

Flow 
Solver 
Calls

Objective
Function: 
Cd

Optimality Optimization
Complexity 
Function

Coarse 1 21 0.029247 1.7e-5 0.08748

Medium 1 22 0.029193 2.6e-8 0.17845

Fine 1(3) 11 (54) 0.029151 2.0e-6 0.25225

Fine-
Fixed

4 78 0.029152 7.7e-10 1.34354

Mesh Optimization 
Circuits

Flow 
Solver 
Calls

Objective
Function: 
Cd

Optimality Optimization
Complexity 
Function

Coarse 1 72 0.013621 4.3e-7 0.03513

Medium 1 52 0.013604 2.6e-6 0.05958

Fine 1(3) 41 (165) 0.013598 3.7e-6 0.10597

Fine-
Fixed

7 277 0.013598 1.2e-8 0.72874



Test Case 1:
Progressive Mesh, Progressive 

Parameterization
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• Larger improvement 
seen over fixed 
parameterization case 

• Can be used on adapted 
meshes with ever 
decreasing discretization 
tolerance

• Able to perform 15 
design variable on Fine 
mesh, as it was too 
expensive before

• Combining the two 
makes it even better

Mesh Optimization 
Circuits

Flow 
Solver 
Calls

Objective
Function: 
Cd

Optimality Optimization
Complexity 
Function

Coarse 1 21 0.029247 1.7e-5 0.08748

Medium 1(2) 41 (62) 0.013635 1.1e-6 0.05314

Medium-
Fixed

7 269 0.013606 1.5e-6 0.35861

Fine 1(3) 33 (95) 0.012148 2.3e-7 0.07588



Test Case 2
• TMA-0712, 12% thick, design Cl 0.7, design Mach 

0.78
• Viscous flow
• Mach 0.78, 0o incidence, lifting airfoil
• Objective: L = Cd

2 = (0.7-Cl)2

• FUN3D Flow solver using:
– Van Leer Flux vector splitting
– Newton Krylov solver with 1000 Krylov Vectors
– Adjoint computed sensitivities 

• SNOPT optimizer (unconstrained penalty function)
– Objective function values
– Optimality
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Overview of Test Case 2
• Fine mesh

– Optimization for 7 design variables
• Fixed bounds 

– Multiple optimization circuits
– Progressive parameterization optimization

• Loosely-coupled AMR and optimization
– Unable to be performed due to isotropic mesh 

requirement
• Progressive mesh complexity optimization

– Unable to be performed as the coarse and medium 
mesh were under resolved and could not provide 
feasible design
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Test Case 2:
Initial Conditions

35

Coarse Medium Fine
Mesh Boundary Decay Airfoil Spacing Node Count Viscous Layers y+ Growth Rate

Coarse 0.5 0.004 45819 40 3 1.2

Medium 0.982 0.002 101520 40 1.5 1.2

Fine 0.99815 0.001 300782 39 1 1.2



Test Case 2:
Drag and Lift Convergence
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• Fine lift value: 0.6816
• Fine drag value: 

0.0134
• Infinite values not 

realistic as the mesh 
family does not 
provide proper 
convergence



Test Case 2

• The coarse and medium meshes were 
under refined and lead to infeasible design 
shapes

• The fine mesh performed well, and was 
able to provide reasonable initial designs
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Test Case 2:
7 Design Variables

• 7 thickness and 7 camber design variables 
were used for this design

• Multiple optimization circuits were used
• Drag reduced by 55 counts
• Lift increased by 0.0178
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Mesh Optimization 
Circuits

Flow Solver 
Calls

Lift Drag Objective
Function

Optimality

Fine 10 1313 0.6994 0.007908 0.0006257 2.2e-6



Test Case 2:
Progressive Parameterization

• 7 design variables, followed with 15 design 
variables

• Minor improvements made to both lift and 
drag, with lift reaching the target goal

39

Design 
Variables

Optimization 
Circuits

Flow Solver 
Calls

Lift Drag Objective
Function

Optimality

7 10 1313 0.6994 0.007908 0.0006257 2.2e-6

15 1 19 0.7000 0.007904 0.0006247 9.1e-5



Test Case 2:
Adaptive Mesh Refinement

• Unable to resolve an adapted mesh using 
isotropic mesh adaption
– Required surface resolution for unit length 

airfoil with a Reynolds Number of 30 million is 
~2,000,000 nodes
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Conclusions
• More design variables lead to more optimal shape
• Number of flow solver calls increases with number of design 

variables
• Number of flow solver calls increases with mesh complexity
• Bound settings can dramatically impact total cost
• Progressive parameterization reduces number of flow solver 

calls and cost of optimization
• Progressive mesh complexity reduces number of flow solver 

calls
• Combination of the two further reduces cost
• AMR with opt reduces cost through mesh complexity 

reduction
– Cost increases due to additional flow solver calls for AMR, and 

user interaction doubled for each optimization circuit
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Operational Lessons Learned
• Fully converge flow and adjoint solutions

– Prevents stalling of optimization problem
• Fully converge mesh movement problem

– Necessary to avoid negative cell volumes
• Tightening bounds

– Bounds can have significant effect on optimization 
progress and results

• Isotropic mesh adaption
• Restart vs freestream start

– Convergence issues observed with freestream 
initializations 

• Bounds on adapted meshes
– Intermediate irregular shapes lead to large mesh sizes
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Future Work

• Progressive AMR error tolerances
• Anisotropic mesh adaption
• Global design searches
• Uncertainty quantification
• Coupling FUN3D design and adaption 

framework
• Three-dimensional
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Questions?
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