Development of a High-Fidelity Aero-Thermo-Elastic Analysis and Design Capability

Soudeh Kamali , Prof. Dimitri J. Mavriplis Committee Members: Dr. William K. Anderson, Dr. Ray S. Fertig III, Dr. Michael K. Stoellinger, Dr. Frederico Furtado

> **University of Wyoming** Final Defense, 27th July 2021

OUTLINE

- Introduction
 - Background
 - Challenges
 - Objectives
 - Outline of Project
- Aero-Thermo-Elastic Coupling Description
- Analysis Results
- Sensitivity Analysis and Optimization
- Sensitivity Analysis and Optimization Results
- Conclusions and Future Works

Why use numerical analysis?

- ✓ Relatively low cost
- ✓ Speed

Why use multi-disciplinary computation?

- ✓ Allows complimentary information
- ✓ Adds to accuracy of results
- X Adds to the complexity

- One of the major applications of aero-thermo-elastic simulations is in Hypersonic vehicles:
 - Leading edges of hypersonic vehicles
 - Heated panels on hypersonic vehicles

- > Accurate aero-thermo-elastic analysis and design requires:
 - ✓ Aerodynamic loads (aerodynamic pressure and viscous forces)
 - ✓ Aero-thermal effects (surface heating rate and inner temperature distributions)
 - ✓ Structural loads (structural deformation and stresses)

- > Two main ways to approach multi-disciplinary simulations:
- Strong coupling
 - ✓ More stable approach

X Cannot use already available and well-tested solvers

Weak coupling

Able to use existing well-developed and tested codes
X Less stable

INTRODUCTION Challenges

- Main challenges in coupled aero-thermo-elastic simulations:
 - X Difference in space scale
 - X Difference in time scale
 - X Dealing with the boundary conditions
 - X Coupling the sensitivities

Non-matching Fluid/Structure interface*

*Farhat et al, Load and Motion Transfer Algorithm for Fluid/Structure Interaction Problems with Non-Matching Discrete Interfaces (1998).

Develop/Validate a **coupled aero-thermo-elastic** analysis and design capability which:

- ✓ Uses weak coupling in order to take advantage of the already available and well tested in-house codes.
- ✓ Uses **high-fidelity** models for each discipline.
- Performs transient analysis in 3D.
- ✓ Performs Tangent and Adjoint sensitivity analysis.

INTRODUCTION Outline of Project

- Analysis
 - \checkmark Validate the **thermal analysis** capability .
 - ✓ Validate the **thermo-elastic analysis** capability.
 - ✓ Develop/Validate aero-thermo-elastic analysis capability.
- Design Optimization
 - ✓ Verify the thermo-elastic adjoint sensitivities.
 - ✓ Demonstrate standalone thermo-elastic optimization.
 - ✓ Develop/Verify aero-thermo-elastic adjoint sensitivities.
 - ✓ Demonstrate aero-thermo-elastic Optimization.

OUTLINE

- Introduction
- Aero-Thermo-Elastic Coupling Description
 - Flow Solver with Mesh Deformation Capability
 - Structural Solver
 - Fluid-Structure Interaction (FSI) Module
- Analysis Results
- Sensitivity Analysis and Optimization
- Sensitivity Analysis and Optimization Results
- Conclusions and Future Works

- Flow Solver: Navier-Stokes Unstructured 3D (NSU3D)
 - ✓ Based on the conservative form of the Navier-Stokes:
- $\frac{\partial u(x,t)}{\partial t} + \nabla . F(u) = 0$

- ✓ 3D unstructured finite-volume RANS solver
- ✓ Vertex-centered
- \checkmark 2nd order accurate in space and time
- ✓ Uses a line-implicit solver with agglomeration multigrid
- $\checkmark\,$ Fluxes are calculated using the Roe Scheme
- $\checkmark\,$ Mesh deformation capability based on the linear elasticity model
- ✓ Numerous simulations and participations: **DPW**, **HiLiftPW**, **AePW**

AERO-THERMO-ELASTIC COUPLING Structural Solver

- Structural Solver: Adjoint-based Structural Optimizer (AStrO)
 - ✓ High-fidelity, open-source, developed in-house
 - ✓ Finite-element modeling of 3D structures
 - ✓ Compatible with Abaqus input and output files
 - ✓ Static and dynamic analysis:

- ✓ Elasticity problem: $\nabla \cdot \sigma \xi \frac{du}{dt} \rho \frac{d^2u}{dt^2} + f = 0 \Rightarrow [K]U + [C]\dot{U} + [M]\ddot{U} = F$
- ✓ Heat transfer problem: $\rho c \frac{\partial T}{\partial t} + \nabla \cdot (k \nabla T) Q = 0 \Rightarrow [K_{therm}]T + [M_{therm}]\dot{T} = F_{therm}$
- ✓ Thermo-elastic problem
- \checkmark Time stepping with Newmark- β expansion

AERO-THERMO-ELASTIC COUPLING Structural Solver

- > Assumptions made for **thermo-elastic** coupling in **AStrO**:
 - ✓ Thermal material properties have no significant dependence on strain.
 - \checkmark The heat generated by deformation is assumed to be negligible.
 - Deformation has a one-way dependence on the temperature distribution.
- The effect of thermal expansion shows up as part of the load in the elasticity equation.

AERO-THERMO-ELASTIC COUPLING Fluid-Structure Interaction (FSI) Module

- > Weak coupling requires :
 - ✓ convergence of the following at the boundary:
 - ✓ Temperature
 - ✓ Heat flux
 - ✓ Aerodynamic loads
 - Displacements
 - FFTB method or Dirichlet-Neumann boundary conditions for stability and convergence.

AERO-THERMO-ELASTIC COUPLING Fluid-Structure Interaction (FSI) Module

- The transfer of data between meshes can be summarized as:
 - $\begin{cases} Q_{CTSD} = [P]Q_{CFD} \\ T_{CFD} = [P]^{T}T_{CTSD} \end{cases} \qquad \begin{cases} F_{CTSD} = [P]F_{CFD} \\ U_{CFD} = [P]^{T}U_{CTSD} \end{cases}$

Search algorithm locates nearest/perpendicular projected point from CFD grid point to structure mesh surface.

Fluid/structure data transfer*

 can handle non-matching fluid and structure meshes with different element types and mesh resolution.

The in-house FSI:

✓ can handle **non-matching** fluid and structure **OML** geometries

*Li et al, 3D common-refinement method for non-matching meshes in partitioned variational fluid-structure analysis (2017)

AERO-THERMO-ELASTIC COUPLING

OUTLINE

- Introduction
- Aero-Thermo-Elastic Coupling Description
- Analysis Results
 - Structural Solver Validation
 - Aero-Thermo-Elastic Analysis Results
- Sensitivity Analysis and Optimization
- Sensitivity Analysis and Optimization Results
- Conclusions and Future Works

OUTLINE

- Introduction
- Aero-Thermo-Elastic Coupling Description
- Analysis Results
 - Structural Solver Validation
 - Thermal Analysis Validation
 - Thermo-Elastic Analysis Validation
 - Aero-Thermo-Elastic Analysis Results
- Sensitivity Analysis and Optimization
- Sensitivity Analysis and Optimization Results
- Conclusions and Future Works

STRUCTURAL SOLVER VALIDATION Thermal Analysis Validation

- Followed cases demonstrated in AIAA 2019-1892 (Verification of a conjugate heat transfer tool with US3D, J.D. Reinert, A. Dwivedi, and G.V. Candler):
 - ✓ Transient 1D heat conduction in a cube.
 - ✓ with Dirichlet boundary conditions and constant thermal properties.
 - with Neumann boundary conditions and constant thermal properties
 - ✓ with Neumann boundary conditions and variable thermal properties.
 - ✓ Transient 2D heat conduction on a quarter cylinder.
 - ✓ Numerical solutions were compared against analytical solutio

OUTLINE

- Introduction
- Aero-Thermo-Elastic Coupling Description
- Analysis Results
 - Structural Solver Validation
 - Thermal Analysis Validation
 - Thermo-Elastic Analysis Validation
 - Aero-Thermo-Elastic Analysis Results
- Sensitivity Analysis and Optimization
- Sensitivity Analysis and Optimization Results
- Conclusions and Future Works

STRUCTURAL SOLVER VALIDATION Thermo-Elastic Analysis Validation

- Thermo-elastic validation:
 - Thermo-elastic study of a heated panel case. Based on the 1988 paper by Thornton et al, titled "Flow, Thermal, and Structural Analysis of Aerodynamically Heated Panels"
 - ✓ Numerical solutions were compared against analytical solutions.

OUTLINE

- Introduction
- Aero-Thermo-Elastic Coupling Description
- Analysis Results
 - Structural Solver Validation
 - Aero-Thermo-Elastic Analysis Results
 - Hypersonic Flow Over a Cylindrical Leading Edge
 - Aerodynamically Heated Panel
- Sensitivity Analysis and Optimization
- Sensitivity Analysis and Optimization Results
- Conclusions and Future Works

Based on the experiments conducted by Allan Wieting in the NASA Langley 8-foot High Temperature Tunnel in 1987*

Free-stream conditions	Value
Free-stream Mach number (Ma_{∞})	6.47 (dimensionless)
Initial wall temperature (T _w)	294.4 K
Free-stream Reynolds number (Re_{∞})	1.312×10 ⁶ 1/m
Free-stream temperature (T_{∞})	241.5 K
Free-stream velocity (U_{∞})	2015.43 m/s
Free-stream pressure (P_{∞})	648.1 Pa

Overview of the wind tunnel experiment*

- Description of the cylinder:
 - Material properties: stainless steel 321 at 400K
 - Dimensions: Length = 0.1143m, Diameter= 0.0762m, Thickness = 0.0127m

*Dechaumphai et al, Fluid-Thermal-structural Study of Aerodynamically Heated Leading Edges (1988).

Summary of the applied numerical boundary conditions

(1) Inlet
(2) Outlet
(3) Fluid/structure Interface
(4) Isothermal (294.4 K)
(5) Insulated

> Description of the grids used for the numerical simulation

Fluid Mesh	Numb	er of nodes	Numbe	r of elements	Type of	elements	Wall spa	acing
Fluid coarse mesh	2,462	,400	4,814,7	740	Prism		10-6	
Fluid fine mesh	19,76	3,866	39,084	,360	Prism		6×10 ⁻⁷	
Structure Mesh		Number of r	nodes	Number of ele	ments	Type of ele	ements	
Structure coarse	mesh	20,706		17,100		Hexahedra	al	
Structure fine me	sh	133,055		120,384		Hexahedra	al	
		-0.15 -0.1 -0.05	° x					

> Validation of the **CFD solver** for high speed flows

- > Validation of the CFD solver for high speed flows
 - Stargpatisonpoint or resistence availues sperimental pressures (Normalized)

- > Validation of the CFD solver for high speed flows
 - Stargpatisopointheetationgdeated watere water (Normalized)

- > Validation of the coupled analysis capability (structural solver time step is 0.1s)
 - Stargpatisonpoint quaranteel eased experimental heat rate (Normalized)

- Validation of the coupled analysis capability (structural solver time step is 0.1s)
 - Evolution of temperature and heat flux with time

Validation of the coupled analysis capability

Temperature(K) solution at t =2 s

Circumferential thermal stress(pa) solutions at t = 2s

OUTLINE

- Introduction
- Aero-Thermo-Elastic Coupling Description
- Analysis Results
 - Structural Solver Validation
 - Aero-Thermo-Elastic Analysis Results
 - Hypersonic Flow Over a Cylindrical Leading Edge
 - Aerodynamically Heated Panel
- Sensitivity Analysis and Optimization
- Sensitivity Analysis and Optimization Results
- Conclusions and Future Works

Overview of the proposed wind tunnel experiment Based on the 1988 paper by Thornton et al, titled "Flow, Thermal, and Structural Analysis of Aerodynamically Heated Panels

Free-stream conditions	Value
Free-stream Mach number (Ma_{∞})	6.57 (dimensionless)
Wall temperature (T _w)	530 K
Free-stream Reynolds number (Re_{∞})	0.37 ×10 ⁶ 1/ft
Free-stream temperature (T_{∞})	530 K
Free-stream velocity (U_{∞})	6612.3 ft/s
Free-stream pressure (P_{∞})	0.0971 psi

*Thornton et al, Coupled Flow, Thermal, and Structural Analysis of Aerodynamically Heated Panels (1988).

> Summary of the applied numerical boundary conditions

(1) Inflow
(2) Outflow
(3) Isothermal (530 R)
(4) Insulated
(5) Fluid/Structure Interface

Panel structural boundary conditions

- Description of the panel:
 - Material properties: stainless steel AM-350
 - Dimensions: Length = 4 in, Width= 0.1 in, Thickness = 0.5 in

> Description of the grids used for the numerical simulation

Mesh	Number of nodes	Number of elements	Type of elements	Wall spacing
Fluid mesh	2,474,940	4,725,000	Prism	6×10 ⁻⁶
Structure mesh	3,216	1,995	Hexahedral	

- Numerical results for the coupled simulation of an Aerodynamically heated panel with convex deformation (structural solver time step 5s)
 - Flow density distribution from t = 0s to t = 30s (6 coupling cycles)

- Numerical results for the coupled simulation of an Aerodynamically heated panel with convex deformation
 - · Paoleltite for from the station of the station of

:	8	Time(s)	Coupled computational solution	Analytical solution	Computational solutions from previous work*
ature (R)	7	10	0.0126	0.0127	0.0133
Tempera	6	20	0.0252	0.0234	0.0239
:	5	30	0.0369	0.0336	0.0327
:	50	0 0.5	1 1.5 2 2.5 3 3.5 4 X (in)	0 5 10 Ti	15 20 25 30 me (s)

*Thornton et al, Coupled Flow, Thermal, and Structural Analysis of Aerodynamically Heated Panels (1988).

OUTLINE

- Introduction
- Aero-Thermo-Elastic Analysis Description
- Analysis Results
- Sensitivity Analysis and Optimization
- Sensitivity Analysis and Optimization Results
- Conclusions and Future Works

SENSITIVITY ANALYSIS & OPTIMIZATION Gradient Based Methods

- Gradient based sensitivity derivative Analysis for optimization:
 - Finite-difference $f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f''(x) + \dots \Rightarrow f'(x) = \frac{f(x+h) f(x)}{h}$
 - Complex-step $f(x+ih) = f(x) + ihf'(x) \frac{h^2}{2}f''(x) + \dots \Rightarrow f'(x) = \frac{Im[f(x+ih)]}{h}$
 - Analytical (Tangent and Adjoint)
 - ✓ High Accuracy
 - Less Computationally expensive

Conceptual depiction of the gradient*

*Anderson, E., Development of an Open-Source Capability for High-Fidelity Thermoelastic Modeling and Adjoint-Based Sensitivity Analysis of Structures, PhD thesis, August 2019.

OUTLINE

- Introduction
- Aero-Thermo-Elastic Analysis Description
- Analysis Results
- Sensitivity Analysis and Optimization
 - Thermo-Elastic Sensitivity Formulation
 - Aero-Thermo-Elastic Sensitivity Implementation
- Sensitivity Analysis and Optimization Results
- Conclusions and Future Works

THERMO-ELASTIC SENSITIVITY FORMULATION Steady-State Tangent Formulation

Objective function: $L = L(D, u_T(D), u_s(D))$ **Sensitivities:** $\frac{dL}{dD} = \frac{\partial L}{\partial D} + \begin{bmatrix} \frac{\partial L}{\partial u_T} & \frac{\partial L}{\partial u_S} \end{bmatrix} \begin{bmatrix} \frac{\partial u_T}{\partial D} \\ \frac{\partial u_S}{\partial u_S} \end{bmatrix}$ **Subject to:** $R_T(D, u_T, u_S) = 0$ and $R_S(D, u_T, u_S) = 0$ **Constraint sensitivity eqn:** $\begin{bmatrix} \frac{\partial R_T}{\partial u_T} & \frac{\partial R_T}{\partial u_S} \\ \frac{\partial R_S}{\partial u_S} & \frac{\partial R_S}{\partial u_S} \end{bmatrix} \begin{bmatrix} \frac{\partial u_T}{\partial D} \\ \frac{\partial u_S}{\partial u_S} \\ \frac{\partial R_S}{\partial u_S} \end{bmatrix} = \begin{bmatrix} -\frac{\partial R_T}{\partial D} \\ -\frac{\partial R_S}{\partial D} \\ -\frac{\partial R_S}{\partial D} \end{bmatrix}$ Final Form: $\frac{dL}{dD} = \frac{\partial L}{\partial D} + \begin{bmatrix} \frac{\partial L}{\partial u_T} & \frac{\partial L}{\partial u_S} \end{bmatrix} \begin{bmatrix} \frac{\partial R_T}{\partial u_T} & 0\\ \frac{\partial R_S}{\partial u_T} & \frac{\partial R_S}{\partial u_T} \end{bmatrix}^{-1} \begin{bmatrix} -\frac{\partial R_T}{\partial D}\\ -\frac{\partial R_S}{\partial D} \end{bmatrix}$

X For multiple D, multiple linear solutions required

THERMO-ELASTIC SENSITIVITY FORMULATION Steady-State Adjoint Formulation

Adjoint sensitivities:
$$\frac{dL}{dD}^{T} = \frac{\partial L}{\partial D}^{T} + \begin{bmatrix} \frac{\partial u_{T}}{\partial D}^{T} & \frac{\partial u_{S}^{T}}{\partial D} \end{bmatrix} \begin{bmatrix} \frac{\partial L}{\partial u_{T}}^{T} \\ \frac{\partial L}{\partial u_{S}}^{T} \end{bmatrix}$$
Disciplinary adjoints:
$$\begin{bmatrix} \Lambda_{T} \\ \Lambda_{S} \end{bmatrix} = \begin{bmatrix} \frac{\partial R_{T}^{T}}{\partial u_{T}} & \frac{\partial R_{S}^{T}}{\partial u_{S}} \end{bmatrix}^{-1} \begin{bmatrix} \frac{\partial L}{\partial u_{T}}^{T} \\ \frac{\partial L}{\partial u_{S}}^{T} \end{bmatrix}$$
Linear Adjoint System:
$$\begin{bmatrix} \frac{\partial R_{T}^{T}}{\partial u_{T}} & \frac{\partial R_{S}^{T}}{\partial u_{S}} \end{bmatrix} \begin{bmatrix} \Lambda_{T} \\ \Lambda_{S} \end{bmatrix} = \begin{bmatrix} \frac{\partial L}{\partial u_{T}}^{T} \\ \frac{\partial R_{S}^{T}}{\partial u_{S}} \end{bmatrix} \begin{bmatrix} \Lambda_{T} \\ \Lambda_{S} \end{bmatrix} = \begin{bmatrix} \frac{\partial L}{\partial u_{T}}^{T} \\ \frac{\partial L}{\partial u_{S}} \end{bmatrix}$$
Final Form:
$$\frac{dL}{dD} = \frac{\partial L}{\partial D} + \begin{bmatrix} \Lambda_{T}^{T} & \Lambda_{S}^{T} \end{bmatrix} \begin{bmatrix} -\frac{\partial R_{T}}{\partial D} \\ -\frac{\partial R_{S}}{\partial D} \end{bmatrix} \checkmark$$
No dependence on D during linear solution
 \checkmark
Effect of D confined to final matrix-vector product

THERMO-ELASTIC SENSITIVITY FORMULATION Transient Tangent Formulation

Temporal domain with two time-steps n and n-1:

$\int \partial R_T$	∂R_T	[∂u _T]		∂R_T
∂u_T	∂u_S	∂D	_	∂D
∂R_S	∂R_S	∂u_S		$-\frac{\partial R_S}{\partial R_S}$
∂u_T	∂u_S	I∂D		∂D

THERMO-ELASTIC SENSITIVITY FORMULATION Transient Adjoint Analysis Formulation

$$\begin{bmatrix} \frac{\partial R}{\partial u} \end{bmatrix}^T = \begin{bmatrix} \ddots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \dots & \left[\frac{\partial R^{n-3}}{\partial u^{n-3}} \right]^T & \left[\frac{\partial R^{n-2}}{\partial u^{n-3}} \right]^T & 0 & 0 \\ \dots & 0 & \left[\frac{\partial R^{n-2}}{\partial u^{n-2}} \right]^T & \left[\frac{\partial R^{n-1}}{\partial u^{n-2}} \right]^T & 0 \\ \dots & 0 & 0 & \left[\frac{\partial R^{n-1}}{\partial u^{n-1}} \right]^T & \left[\frac{\partial R^n}{\partial u^{n-1}} \right]^T \\ \dots & 0 & 0 & 0 & \left[\frac{\partial R^{n-1}}{\partial u^{n-1}} \right]^T \end{bmatrix}$$

Temporal domain with two time-steps n and n-1:

$$\begin{bmatrix} \frac{\partial R_T}{\partial u_T}^T & \frac{\partial R_S}{\partial u_T}^T \\ \frac{\partial R_T}{\partial u_S}^T & \frac{\partial R_S}{\partial u_S}^T \end{bmatrix} \begin{bmatrix} \Lambda_T \\ \Lambda_S \end{bmatrix} = \begin{bmatrix} \frac{\partial L}{\partial u_T}^T \\ \frac{\partial L}{\partial u_S}^T \end{bmatrix}$$

OUTLINE

- Introduction
- Aero-Thermo-Elastic Analysis Description
- Analysis Results
- Sensitivity Analysis and Optimization
 - Thermo-Elastic Sensitivity Formulation
 - Aero-Thermo-Elastic Sensitivity Implementation
- Sensitivity Analysis and Optimization Results
- Conclusions and Future Works

AERO-THERMO-ELASTIC SENSITIVITY IMPLEMENTATION

AERO-THERMO-ELASTIC SENSITIVITY IMPLEMENTATION Tangent Formulation

Objective function: $L = L(D, u_x(D), u_F(D), u_T(D), u_S(D))$

Variable definitions:

- u_x : CFD grid point coordinates
- *u_F*: CFD flow values
- u_T : Structural temperature values
- u_S : Structural displacements
- D : Design variables

$$\frac{dL}{dD} = \frac{\partial L}{\partial D} + \begin{bmatrix} \frac{\partial L}{\partial u_x} & \frac{\partial L}{\partial u_F} & \frac{\partial L}{\partial u_T} & \frac{\partial L}{\partial u_S} \end{bmatrix} \begin{bmatrix} \frac{\partial u_x}{\partial D} \\ \frac{\partial u_F}{\partial D} \\ \frac{\partial u_F}{\partial D} \\ \frac{\partial u_T}{\partial D} \\ \frac{\partial u_S}{\partial D} \end{bmatrix}$$

AERO-THERMO-ELASTIC SENSITIVITY IMPLEMENTATION Tangent Formulation

Constraints (Residual) Equations:

CFD Mesh Deformation Equations:

Flow Equations:

FSI transfer of forces:

FSI transfer of heat fluxes:

Structural displacement equations:

Structural temperature equations:

FSI transfer of displacements:

FSI transfer of temperatures:

 $R_x(u_x(D), x_{surf}(D), D) = 0$ $R_F(u_F(D), T_{surf}(D), u_x(D), D) = 0$ $G_{\mathcal{S}}(F_{\mathcal{B}}(u_{\mathcal{F}}(D), u_{\mathcal{X}}(D))) = 0$ $G_T(H_B(u_F(D), u_r(D))) = 0$ $R_{\rm s}(u_{\rm s}, F_{\rm R}(u_{\rm F}(D), u_{\rm r}(D)), D) = 0$ $R_T(u_T, H_B(u_F(D), u_r(D)), D) = 0$ $G'_{S}(x_{surf}(D), u_{S}(D)) = 0$ $G'_T(T_{surf}(D), u_T(D)) = 0$

AERO-THERMO-ELASTIC SENSITIVITY IMPLEMENTATION Tangent Formulation

Linearized constraints gives tangent sensitivities:

AERO-THERMO-ELASTIC SENSITIVITY IMPLEMENTATION Adjoint Formulation

Transpose gives adjoint equations:

$$\begin{bmatrix} \frac{\partial R_x}{\partial u_x}^T & \frac{\partial R_F}{\partial u_x}^T & -\frac{\partial F_B}{\partial u_x}^T & -\frac{\partial H_B}{\partial u_x}^T & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{\partial R_F}{\partial u_F}^T & -\frac{\partial F_B}{\partial u_F}^T & -\frac{\partial H_B}{\partial u_F}^T & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & I & 0 & \frac{\partial G_S}{\partial F_B}^T & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & I & 0 & \frac{\partial G_T}{\partial H_B}^T & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & I & 0 & \frac{\partial R_S}{\partial G_T}^T & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & I & 0 & \frac{\partial R_S}{\partial G_T}^T & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & I & 0 & \frac{\partial R_T}{\partial G_T}^T & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\partial R_S}{\partial G_T}^T & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\partial R_T}{\partial U_T}^T & 0 & \frac{\partial G' S}{\partial U_S}^T & 0 \\ \frac{\partial R_x}{\partial x_{surf}}^T & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\partial R_T}{\partial T_{surf}}^T & 0 & \frac{\partial G' T}{\partial T_{surf}}^T \end{bmatrix} = \begin{bmatrix} \frac{\partial L}{\partial u_x} \\ A_{u_x} \\ A_{u_F} \\ \frac{\partial L}{\partial u_F} \\ \frac{\partial L}{\partial$$

AERO-THERMO-ELASTIC SENSITIVITY IMPLEMENTATION Adjoint Formulation

AERO-THERMO-ELASTIC SENSITIVITY IMPLEMENTATION

AERO-THERMO-ELASTIC SENSITIVITY IMPLEMENTATION

- Objectives (and constraints) may be formulated based on:
 - ✓ Functional of flow quantities (C_D , C_L , C_m , etc.)
 - ✓ Functional of structural quantities (Modulus E, thickness, density,...)
 - ✓ Functional of thermal quantities (conductivity k, thermal expansion, ...)
 - Combinations of above in weighted penalty formulation
- Design Variable types
 - ✓ Based on material (structural) properties
 - ✓ Based on OML shape parameters
 - ✓ Based on flow parameters (Mach, angle of attack, etc.)

OUTLINE

- Introduction
- Aero-Thermo-Elastic Coupling Description
- Analysis Results
- Sensitivity Analysis and Optimization
- Sensitivity Analysis and Optimization Results
 - Thermo-Elastic Sensitivity Analysis and Optimization Results
 - Aero-Thermo-Elastic Sensitivity Analysis and Optimization Results
- Conclusions and Future Works

THERMO-ELASTIC SENSITIVITY ANALYSIS & OPTIMIZATION RESULTS

- Steady-state thermal optimization for a Multi-Material panel with applied heat flux.
- ✓ Steady-state thermo-elastic optimization for a Rectangular bar with applied force.
- ✓ Steady-state thermo-elastic optimization with large number of design variables.
- Transient thermo-elastic optimization on a Panel with applied heat flux and aerodynamic forces

OUTLINE

- Introduction
- Aero-Thermo-Elastic Coupling Description
- Analysis Results
- Sensitivity Analysis and Optimization
- Sensitivity Analysis Results and Optimization Results
 - Thermo-Elastic Sensitivity Analysis and Optimization Results
 - Aero-Thermo-Elastic Sensitivity Analysis and Optimization Results
- Conclusions and Future Works

AERO-THERMO-ELASTIC SENSITIVITY ANALYSIS & OPTIMIZATION RESULTS Aero-Thermo-Elastic Sensitivity Verification

• Computational set-up:

- (1) Inflow
- (2) Outflow
- (3) Isothermal (530 R)
 - (4) Insulated
 - (5) Fluid/Structure Interface

- Description of the panel:
 - Material properties: stainless steel AM-350
 - Dimensions: Length = 4 in, Width= 0.1 in, Thickness = 0.5 in

Mesh	Number of nodes	Number of elements	Type of elements	Wall spacing
Fluid mesh	2,474,940	4,725,000	Prism	6×10 ⁻⁶
Structure mesh	3,216	1,995	Hexahedral	

AERO-THERMO-ELASTIC SENSITIVITY ANALYSIS & OPTIMIZATION RESULTS Aero-Thermo-Elastic Sensitivity Verification

Objective function: $L = (C_x)^2$

$$k = k_0 + 10^{-4} D_1$$

Design variables: $\begin{cases} \\ Thickness = Thickness_{intial} \times D_2 \end{cases}$

Sensitivity verification: D₁

Time step	Adjoint	Tangent	Finite-Difference
1	-	-6.96927382827 098 ×10 ⁻⁶	-7.3292648685×10 ⁻⁶
	6.96927382827 343 ×10 ⁻⁶		
2	-	-2.0973354748 6444 ×10 ⁻⁵	-2.2907747595×10 ⁻⁵
	2.0973354748 5967 ×10 ⁻⁵		
3	-	-4.1942103020 9051 ×10 ⁻⁵	$-4.6948589964 \times 10^{-5}$

AERO-THERMO-ELASTIC SENSITIVITY ANALYSIS & OPTIMIZATION RESULTS Aero-Thermo-Elastic Optimization

Objective function: $L(t) = (C_x(t_{final}))^2 + \omega_1(k - k_0)^2 + \omega_2(Mass - Mass_0)^2$

$$k = k_0 + 10^{-4} D_1$$

Design variables: $\begin{cases} \kappa = \kappa_0 + 10 \quad \nu_1 \\ Thickness = Thickness_{intial} \times D_2 \end{cases}$

Initial and optimized material properties

(using $\Delta t = 1$ sec)

Material Properties Initial		Optimized	Optimized	
		1 coupled time step	5 coupled time steps	
Thermal Conductivity (k)	0.00012864 BTU/(s.in.R)	0.0002059 BTU/(s.in.R)	0.000214203 BTU/(s.in.R)	
Thickness	1 in	2.504113 in	2.5134456 in	

AERO-THERMO-ELASTIC SENSITIVITY ANALYSIS & OPTIMIZATION RESULTS Aero-Thermo-Elastic Optimization

Convergence of the aero-thermo-elastic optimization process

5 coupled time steps

AERO-THERMO-ELASTIC SENSITIVITY ANALYSIS & OPTIMIZATION RESULTS Aero-Thermo-Elastic Optimization

• Flow density distribution at t = 30s

OUTLINE

- Introduction
- Aero-Thermo-Elastic Coupling Description
- Analysis Results
- Sensitivity Analysis and Optimization
- Sensitivity Analysis and Optimization Results
- Conclusions and Future Works

CONCLUSIONS

- ✓ Validated the structural solver's thermal and thermo-elastic analysis capability.
- Developed/Validated a 3D transient aero-thermo-elastic analysis platform with a weak coupling approach using:
 - ✓ flow solver **NSU3D** with Mesh Deformation Capability
 - thermo-elastic capability from AStrO
 - ✓ FSI module
- ✓ Verified the thermo-elastic adjoint and tangent sensitivities.
- ✓ Demonstrated standalone thermo-elastic optimization.
- ✓ Developed/Verified the aero-thermo-elastic adjoint and tangent sensitivities.
- Demonstrated preliminary aero-thermo-elastic optimization.

CONCLUSIONS Main Contributions

- Researched, developed, and validated the aero-thermo-elastic analysis coupling.
- Formulated, implemented, and tested the coupled aero-thermo-elastic sensitivities.
- Applied the verified sensitivities to preliminary aero-thermo-elastic optimization problems.
- Results from this work has been published in the following:
 - ✓ AIAA 2020-1449 , SciTech 2020, January 2020
 - ✓ AIAA 2020-3138, Aviation 2020, June 2020.
 - ✓ Manuscript accepted and under publication by AIAA Journal, as of June 2021.
 - ✓ Abstract submitted to SciTech 2022, January 2022.

FUTURE WORKS

- Further investigate aero-thermo-elastic panel optimization problems.
 - Combined material/flow design variables
 - Multi-layered panel constructions

- Further development of the coupled aero-thermo-elastic sensitivities.
- Further development of the fluid solver.
- Further development of the structural solver.
- Further development of the FSI module.
- Adaptive coupling time step size.
- Uncertainty quantification and reduced order modeling.

ACKNOWLEDGMENTS

• Dr. Evan Anderson-Sandia National Labs

- Computing time
 - University of Wyoming ARCC
 - NCAR-Wyoming Supercomputer Center NCAR

This work is supported by ONR Grant N00014-17-1-2337

THANK YOU!!!

Soudeh Kamali skamali@uwyo.edu