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  The simulation of unsteady phenomena typically demands large 
computational investments to achieve suitable accuracy 

 

 

 

 

 

  Temporally periodic problems are one of the sub-categories of 
unsteady problems, that have a broad range of applications in the 
industry. 

 

 

 

 

  These include wind-turbine flows, rotorcraft flows, 
turbomachinery flows,  and vortex shedding problems 

 

 

 

 

 

  Traditionally, time-marching methods were employed for 
unsteady flow problems including temporally periodic problems  

 

 

 

  Time-marching methods solve the problem for several periods 
until the initial transient part is resolved, and periodic steady state 
is obtained 
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  In most realistic problems solving the transient part is very time 
consuming, making time-marching methods inevitably expensive 

 

 

 

 

 Frequency-domain methods directly solve for the periodic solution 
and avoid the transient parts 

 

 
  Time-spectral methods (TS) are among the frequency-domain 

methods that avoid resolving  the transient parts and are more 
favorable in purely-periodic problems 

 

 

 

 

 A hybrid backward difference time-spectral (BDFTS) discretization 
is an extension of the time-spectral approach for quasi-periodic 
problems 

 

 

 

 



TS Introduction 
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 Span the characteristic time period with time 
instances 

 

 

 

 

 

 

 Represent the time derivatives in governing 
equations as linear combinations of 
corresponding values in other time instances 

 
 

 

 

 

 

 

 

 All the time instances are coupled. (Solve for all time instances 
simultaneously) 
 
 

 

 

 

 

 

 Because of spectral convergence due to Fourier series, limited         
number of temporal DOF results in accurate solutions 
 
 

 

 

 

 

 

 The time instances are computed in parallel.  Exploit more 
parallelism by parallelizing temporal part, each time instance is 
assigned to an individual processor 
 
 

 

 

 

 

 



BDFTS Introduction 
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 Time-spectral methods are only applicable in the presence of 
fully periodic flows, which represents a severe restriction for 
many aerospace engineering problems 

 

 

 

 

 
 A hybrid backward difference time-spectral (BDFTS) discretization 

is an extension of the time-spectral approach for quasi-periodic 
problems 

 

 

 

 

 Applications in transient turbofan simulation, maneuvering 
rotorcraft calculations, …  

 

 

 

 Quasi-periodic problems are problems that include a slow 
transient in addition to strong periodic behavior 
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Base Solver 
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 Inviscid compressible flow 

 

 

 

 

 

 Arbitrary-Lagrangian-Eulerian (ALE) form of Euler equations 

 
𝜕𝑈

𝜕𝑡
+ ∇. 𝐹 𝑈 = 0 

𝜕

𝜕𝑡
 𝐹 𝑈 − 𝑈𝑥 . 𝑛𝑑𝑠 = 0
𝜕Ω(𝑡)

 

𝜕(𝑈𝑉)

𝜕𝑡
+ 𝑅 𝑈, 𝑥 , 𝑛 = 0 

 

 
 Central difference finite volume cell based in space 

 

 

 

 

 

 Time discretization: BDF1, BDF2, TS, BDFTS 
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Temporal Derivative : BDF 

 First-order backward difference scheme (BDF1) 

 
𝜕𝑈

𝜕𝑡
=

𝑈𝑛+1 − 𝑈𝑛

∆𝑡
 

 

 
𝜕𝑈

𝜕𝑡
=

3𝑈𝑛+1 − 4𝑈𝑛 + 𝑈𝑛−2

2∆𝑡
 

 

 

 

𝑈𝑛+1is the solution t current time-step 

𝑈𝑛 is the solution at the previous time-step 

𝑈𝑛−1 is the solution at the two time-steps ago 

 

 Second-order backward difference scheme (BDF2) 

 

 

 

 

 

 

 

O(∆𝑡) 

𝑂(∆𝑡2) 



First derivative in time:  CFD 

Discrete Euler Equation Becomes: No change in spatial 
discretization 

    Coefficients (dj
n ) derived analytically using convolution of Fourier transform and synthesis. 
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Time Spectral temporal Discretization: 
Collocation method using harmonic basis functions in time 

𝜕(𝑈𝑛)

𝜕𝑡
=  𝑑𝑛

𝑗
𝑈𝑗

𝑁−1

𝑗=0

 

 𝑑𝑛
𝑗
𝑉𝑗𝑈𝑗 + 𝑅 𝑈𝑛, 𝑥 𝑛, 𝑛 = 0

𝑁−1

𝑗=0

 

Temporal Derivative : TS 

 Used in temporal purely periodic problems 
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Concept of polynomial 
subtraction for spectral 
methods(Gottlieb and Orzag 
(1977), Lanczos) 
 

BDFTS TS 

Period 
Period nth Period (n+1)th 

 
 
 Problems  with a slow transient 

in addition to a strong periodic 
behavior in time (quasi-periodic 
problems) 

 

Temporal Derivative : BDFTS 
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BDF1TS derivative: 

BDFTS derivation can be reformulated as: 


















 1N

1j

m

n11j11

j

n

1N

1j

1m

n12j12

j

n

1N

1j

jj

n

n

))U(tφ)(tφd())U(tφ)(tφd(Ud
t

U
n=1,2,…,N 

11φ and 12φ are the linear interpolation functions 






1N

1j

jj

nUd

mU

1mU 

Time spectral derivative  

Ending point of the period (Unknown) 

Beginning point of the period (known) 

Temporal Derivative : BDFTS 
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TS Solvers : Approximate Factorization 

 The non-linear space time system is:     
𝜕𝑉𝑈

𝜕𝑡
+ 𝑅 𝑈𝑛, 𝑥 𝑛, 𝑛  = 0 
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TS Solvers : Approximate Factorization 

 The non-linear space time system is:     
𝜕𝑉𝑈

𝜕𝑡
+ 𝑅 𝑈𝑛, 𝑥 𝑛, 𝑛  = 0 

 The residual is obtained from:                
𝜕𝑉𝑈

𝜕𝑡
+ 𝑅 𝑈𝑛, 𝑥 𝑛, 𝑛  = Res 

Obtained from any formulation 
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TS Solvers : Approximate Factorization 

 The non-linear space time system is:     
𝜕𝑉𝑈

𝜕𝑡
+ 𝑅 𝑈𝑛, 𝑥 𝑛, 𝑛  = 0 

 The residual is obtained from:             
𝜕𝑉𝑈

𝜕𝑡
+ 𝑅 𝑈𝑛, 𝑥 𝑛, 𝑛  = Res 

Obtained from TS or BDFTS formulations 

 The entire non-linear space-
time system of equations is 
linearized by Newton-
Raphson method  

 

[𝐴]∆𝑈 = −𝑅𝑒𝑠 

[A] is the complete time-spectral Jacobian matrix  

Res is the total residual of time-spectral system 
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TS Solvers : Approximate Factorization 

 Approximates [A] as:   𝐴 ≈ 𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑃𝑎𝑟𝑡 ([𝑆𝑝𝑎𝑡𝑖𝑎𝑙 𝑃𝑎𝑟𝑡]) 

 Not exact and include an error which is ∆τ𝐽[𝐷] 

 Separates spatial and temporal parts 

J is the Jacobian of the spatial part of the system  
[D] is the TS or BDFTS derivative matrix 

 Solves for ∆𝑈 in two steps: 

 solve the spatial part to find intermediate value, ∆∆𝑈 
using direct or iterative methods e.g. block Gauss-Seidel 

 Using ∆∆𝑈, the temporal matrix is inverted to find  ∆𝑈 

 

 



Improvement in TS solver 
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 Factorization error depends on the pseudo-time step 

 Using AF as the solver suffers from requiring a small 
pseudo-time step or CFL number  



Improvement in TS solver 
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 Factorization error depends on the pseudo-time step 

Using AF as a preconditioner in the context of the Newton-
Krylov method  

 Using AF as the solver suffers from requiring a small 
pseudo-time step or CFL number  
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Newton-Raphson Method 

 The non-linear space time system is:     
𝜕𝑉𝑈

𝜕𝑡
+ 𝑅 𝑈𝑛, 𝑥 𝑛, 𝑛  = 0 

 The residual is obtained from:             
𝜕𝑉𝑈

𝜕𝑡
+ 𝑅 𝑈𝑛, 𝑥 𝑛, 𝑛  = Res 

Obtained from TS or BDFTS formulations 

 The entire non-linear space-
time system of equations is 
linearized by Newton-
Raphson method  

 

[𝐴]∆𝑈 = −𝑅𝑒𝑠 

[A] is the complete time-spectral Jacobian matrix  

Res is the total residual of time-spectral system 



21 

Newton-Raphson Method 

 The non-linear space time system is:     
𝜕𝑉𝑈

𝜕𝑡
+ 𝑅 𝑈𝑛, 𝑥 𝑛, 𝑛  = 0 

 The residual is obtained from:             
𝜕𝑉𝑈

𝜕𝑡
+ 𝑅 𝑈𝑛, 𝑥 𝑛, 𝑛  = Res 

Obtained from TS or BDFTS formulations 

 The entire non-linear space-
time system of equations is 
linearized by Newton-
Raphson method  

 

[𝐴]∆𝑈 = −𝑅𝑒𝑠 

[A] is the complete time-spectral Jacobian matrix  

Res is the total residual of time-spectral system 

The linear system over all time and 
space at each step of Newton 

solution is solved  to a specified 
linear tolerance using a Krylov 

method (GMRES) 



TS Solvers : GMRES 

 

 

 Flexible GMRES algorithm that allows an iterative method as a 
preconditioner has been described by Saad: 
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 Flexible GMRES algorithm that allows an iterative method as a 
preconditioner has been described by Saad: 

23 

  AF solver is used as a preconditioner in line 4 of the algorithm 

AF as a preconditioner 

TS Solvers : GMRES/AF 
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Fourier Inverse Transform Fourier Transform 

How many operations are  involved? 
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 Traditionally, TS formulation was based on Discrete Fourier Transform 

Drawbacks of TS 

𝜕𝑈𝑛

𝜕𝑡
=

2π

𝑇
 𝑖𝑘𝑈 𝑘𝑒

𝑖𝑘𝑛∆𝑡
2π
𝑇

𝑘=
𝑁
2
−1

𝑘=
−𝑁
2

=  𝑑𝑛
𝑗
𝑈𝑗

𝑁−1

𝑗=0

 

𝑈 𝑘 =
1

𝑁
 𝑈𝑛𝑒−𝑖𝑘𝑛∆𝑡

2π
𝑇

𝑁−1

𝑛=0

 𝑈𝑛 =  𝑈 𝑘𝑒
𝑖𝑘𝑛∆𝑡

2π
𝑇

𝑘=
𝑁
2

𝑘=−
𝑁
2

 



Drawbacks of TS 

Based on Discrete Fourier Transform 
 

Rewriting the summation results in dense matrix  
 







































































 1N

1

0

N)(N

1N

1N

1

1N

0

1N

1N

1

1

1

0

1

1N

0

1

0

0

0

1N

2

1

U

...

U

U

d...dd

............

d...dd

d...dd

U

...

U

U







Wall clock time scales linearly with number of time instances 
(running in parallel) which is not desirable. 
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][ TSD

𝜕𝑈𝑛

𝜕𝑡
=

2π

𝑇
 𝑖𝑘𝑈 𝑘𝑒

𝑖𝑘𝑛∆𝑡
2π
𝑇

𝑘=
𝑁
2
−1

𝑘=
−𝑁
2

=  𝑑𝑛
𝑗
𝑈𝑗

𝑁−1

𝑗=0

 

Total number of 
operations: 𝑂(𝑁2) 
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Novelty 

 In this work, time-spectral method is implemented 
based on the parallel fast Fourier transform (FFT) 

28 

 The parallel FFT-based AF and GMRES/AF are 
implemented 

We tried to overcome this challenge:   



Fast Fourier Transform (FFT) 

29 

Assuming the number of samples:                𝑁 = 2𝐿 
 

Considering Discrete Fourier Transform Formulation: 
 

𝑈 𝑘 =
1

𝑁
 𝑈𝑛𝑒−𝑖𝑘𝑛∆𝑡

2π
𝑇

𝑁−1

𝑛=0

 

Splitting the summation in two parts: 
 

𝑈 𝑘 =
1

𝑁
( 𝑈2𝑛𝑒−𝑖𝑘 2𝑛 ∆𝑡

2π
𝑇

𝑁
2
−1

𝑛=0

+  𝑈2𝑛+1𝑒−𝑖𝑘 2𝑛+1 ∆𝑡
2π
𝑇  

𝑁
2
−1

𝑛=0

) 

 

𝑈 𝑘 =
1

𝑁
( 𝑈2𝑛𝑒

−𝑖𝑘𝑛
2π
𝑁

2 

𝑁
2
−1

𝑛=0

+ 𝑒−𝑖𝑘
2π
𝑁  𝑈2𝑛+1𝑒

−𝑖𝑘𝑛∆𝑡
2π
𝑁

2 

𝑁
2
−1

𝑛=0

) =
1

𝑁
𝑒𝑘 +𝑤𝑘𝑜𝑘  

 
DFT of even sequence {𝑈2𝑛} DFT of odd sequence {𝑈2𝑛+1} 



Fast Fourier Transform (FFT) 
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Recursively split each part to even /odd groups until each group has 
only one member. 

𝑈 𝑘 =
1

𝑁
 𝑈𝑛𝑒−𝑖𝑘𝑛∆𝑡

2π
𝑇

𝑁−1

𝑛=0

 

𝑈 𝑘 =
1

𝑁
( 𝑈2𝑛𝑒

−𝑖𝑘𝑛
2π
𝑁

2 

𝑁
2
−1

𝑛=0

+ 𝑒−𝑖𝑘
2π
𝑁  𝑈2𝑛+1𝑒

−𝑖𝑘𝑛∆𝑡
2π
𝑁

2 )

𝑁
2
−1

𝑛=0

 

 

𝑈 𝑘 =
1

𝑁
2 
( 𝑈2𝑛𝑒

−𝑖𝑘𝑛
2π
𝑁

4 

𝑁
4
−1

𝑛=0

+ 𝑒
−𝑖𝑘

2π
𝑁

2  𝑈2𝑛+1𝑒
−𝑖𝑘𝑛∆𝑡

2π
𝑁

4 )

𝑁
4
−1

𝑛=0

 

 

𝑈 𝑘 =
1

𝑁
2 
( 𝑈2𝑛𝑒

−𝑖𝑘𝑛
2π
𝑁

4 

𝑁
4
−1

𝑛=0

+ 𝑒
−𝑖𝑘

2π
𝑁

2  𝑈2𝑛+1𝑒
−𝑖𝑘𝑛∆𝑡

2π
𝑁

4 )

𝑁
4
−1

𝑛=0

 

 

Number of divisions : 𝑳 = 𝒍𝒐𝒈𝟐
𝑵 



Parallel FFT Communication Count 

For each 𝑈 𝑘 in each level 𝑒𝑘 and 𝑜𝑘 are needed; 

each member in each level requires the data of another member to 
calculate its share 

  In each level 𝑵 communication occurs. 

31 

Total number of  
communication  

𝑈 𝑘 =
1

𝑁
(𝑒𝑘 +𝑊𝑘𝑜𝑘) 



Reordering 
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 Splitting into odd/ even groups changes the order of samples 
 
 Danielson-Lanczos lemma is used to find odd/even reordering pattern 
of samples  
 
The new ordering is obtained by bit-reversal of the original sample. 

Recursive subdivision of N=8 sample set and corresponding bit-reversal ordering 



Communication Pattern of FFT 

33 

 Communication pattern for all levels for 8 number of samples  

 The levels in which further processors should communicate are 
more expensive 

 



TS Derivative based on FFT 

34 

 Calculate FFT of samples (𝑂(𝑙𝑜𝑔𝑁) communication )   

 Multiply 𝑈 𝑘 into corresponding 𝑖𝑘 (No communication) 

 Calculate the inverse of 𝑖𝑘𝑈 𝑘(𝑂(𝑙𝑜𝑔𝑁) communication ) 



TS Derivative based on FFT 
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 Calculate FFT of samples (𝑂(𝑙𝑜𝑔𝑁) communication )   

 Multiply 𝑈 𝑘 into corresponding 𝑖𝑘 (No communication) 

 Calculate the inverse of 𝑖𝑘𝑈 𝑘(𝑂(𝑙𝑜𝑔𝑁) communication ) 

The number of communication in FFT-
based TS is 𝑶(𝒍𝒐𝒈𝑵) 



No Reordering Required for FFT-TS 

Pattern of communication due to 
reordering for 8 number of samples in 
parallel FFT routine. 

 

36 

 Standard parallel FFT requires final 
reordering of data 

• Entire spatial grid from each 
core. 
   
 

 
 



No Reordering Required for FFT-TS 

Pattern of communication due to 
reordering for 8 number of samples in 
parallel FFT routine. 
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 Standard parallel FFT requires final 
reordering of data 

• Entire spatial grid from each 
core. 
   

Time spectral implementation 
always requires the application of a 
forward FFT followed by an Inverse 
FFT 
 

 
 

 



No Reordering Required for FFT-TS 

Pattern of communication due to 
reordering for 8 number of samples in 
parallel FFT routine. 

 

New addressing of cores for 8 number of 
samples  to avoid extra communication in 
parallel TS routine 

38 

 Standard parallel FFT requires final 
reordering of data 

• Entire spatial grid from each 
core. 
   

Time spectral implementation 
always requires the application of a 
forward FFT followed by an Inverse 
FFT 
 
 There is no need to reorder data 

• All that is required is k in the 
IFFT and the address of each core 
for the communication pattern at 
each level 

 
 

 

𝜕𝑈𝑛

𝜕𝑡
=

2π

𝑇
 𝑖𝑘𝑈 𝑘𝑒

𝑖𝑘𝑛∆𝑡
2π
𝑇

𝑘=
𝑁
2
−1

𝑘=
−𝑁
2

 



Extension of FFT Application 

 Time-spectral method is implemented based on base-3 
FFT  

39 

 The number of operations reduces from 𝑂(𝑁2) to 
𝑂(2𝑁𝑙𝑜𝑔3

𝑁) 



Extension of FFT Application 

 Implementation of FFT-based second-order time-
spectral derivative 

40 

 The number of operations reduces from 𝑂(𝑁2) to 
𝑂(𝑁𝑙𝑜𝑔𝑁) 

 In aero-structural problems such as flutter problems, … 

𝜕2𝑈𝑛

𝜕𝑡2
= −(

2𝜋

𝑇
)2 𝑘2𝑈 𝑘𝑒

𝑖𝑘𝑛∆𝑡
2𝜋
𝑇

𝑁
2
−1

−
𝑁
2
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 The non-linear space time system is:     
𝜕𝑉𝑈

𝜕𝑡
+ 𝑅 𝑈𝑛, 𝑥 𝑛, 𝑛  = 0 

 The residual is obtained from:             [𝐷𝑃𝑃]𝑉𝑈 + 𝑅 𝑈𝑛, 𝑥 𝑛, 𝑛  = Res 

 The entire non-linear space-
time system of equations is 
linearized by Newton-
Raphson method  

 

[𝐴]∆𝑈 = −𝑅𝑒𝑠 

[A] is the complete time-spectral Jacobian matrix  

Res is the total residual of time-spectral system 

𝐴 = [
𝑉

∆𝜏
+ 𝐽 + 𝑉 𝐷𝑃𝑃 ] 

V is the cell volume 

∆𝜏 is the AF pseudo time-step 

[𝐷𝑃𝑃] is the spectral matrix 

𝐽 is the Jacobian of spatial part 

FFT-AF in Purely Periodic Problems 



FFT-AF in Purely Periodic Problems 

 Find intermediate value ∆∆𝑈 by solving the spatial part, using any 
direct or iterative solver 

42 

 Solve temporal part 

 Approximates [A] as:       𝐴 ≈ ( 𝐼 + ∆𝜏 𝐷𝑃𝑃 )(
𝑉

∆𝜏
𝐼 + 𝐽 ) 

 Take FFT of ∆∆𝑈 to find ∆∆𝑈 𝑘 

 Multiply ∆∆𝑈 𝑘 by 
1

1+𝑖𝑤𝑘∆𝜏
 to find ∆𝑈 𝑘 

 Take IFFT of ∆𝑈 𝑘 to find ∆𝑈 

Temporal Part Spatial Part 
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 The non-linear space time system is:     
𝜕𝑉𝑈

𝜕𝑡
+ 𝑅 𝑈𝑛, 𝑥 𝑛, 𝑛  = 0 

 The residual is obtained from:             [𝐷𝑞𝑝]𝑉𝑈 + 𝑅 𝑈𝑛, 𝑥 𝑛, 𝑛  = Res 

 The entire non-linear space-
time system of equations is 
linearized by Newton-
Raphson method  

 

[𝐴]∆𝑈 = −𝑅𝑒𝑠 = − 𝐷𝑞𝑝 𝑉𝑈 − 𝑅 𝑈𝑛, 𝑥 𝑛, 𝑛   

[A] is the complete time-spectral Jacobian matrix  

Res is the total residual of time-spectral system 
𝐴 = [

𝑉

∆𝜏
+ 𝐽 + 𝑉 𝐷𝑞𝑝

∗ ] 

V is the cell volume 

∆𝜏 is the AF pseudo time-step 

[𝐷𝑞𝑝] is the quasi-periodic matrix 

𝐽 is the Jacobian of spatial part 

FFT-AF in Quasi-Periodic Problems 

𝐷𝑞𝑝 𝑉𝑈 = 𝐷𝑃𝑃 𝑉𝑈 + 𝑀𝑎𝑡𝑟1 𝑉𝑈 + 𝑐𝑜𝑛𝑠𝑡. 

[𝐷𝑞𝑝
∗ ] = 𝐷𝑃𝑃 + [𝑀𝑎𝑡𝑟1] 



FFT-AF in Quasi-Periodic Problems 

 Find intermediate value ∆∆𝑈 by solving the spatial part, using any 
direct or iterative solver 
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 Approximates [A] as:       𝐴 ≈ ( 𝐼 + ∆𝜏[𝐷𝑞𝑝
∗ ])(

𝑉

∆𝜏
𝐼 + 𝐽 ) 

Temporal Part Spatial Part 

𝐷𝑞𝑝
∗ = 𝐷𝑝𝑝 + [𝑀𝑎𝑡𝑟1] 

 Using the intermediate value, ∆∆𝑈 the temporal matrix is inverted 
to find ∆𝑈  

∆𝑈=[ 𝐼 + ∆𝜏 𝐷𝑞𝑝
∗ ]−1∆∆𝑈 



FFT-AF in Quasi-Periodic Problems 

 Find intermediate value ∆∆𝑈 by solving the spatial part, using any 
direct or iterative solver 
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 Approximates [A] as:       𝐴 ≈ ( 𝐼 + ∆𝜏[𝐷𝑞𝑝
∗ ])(

𝑉

∆𝜏
𝐼 + 𝐽 ) 

Temporal Part Spatial Part 

𝐷𝑞𝑝
∗ = 𝐷𝑝𝑝 + [𝑀𝑎𝑡𝑟1] 

 Using the intermediate value, ∆∆𝑈 the temporal matrix is inverted 
to find ∆𝑈  

∆𝑈=[ 𝐼 + ∆𝜏 𝐷𝑞𝑝
∗ ]−1∆∆𝑈 

Using FFT? 
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 The temporal equation:   

UUMatDIUDI rppqp   ])[][(])[( 1

 Calculation of the temporal part of AF can be done much easier in frequency domain 

FFT-AF in Quasi-Periodic Problems 



FFT in Approximate Factorization Scheme 
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Scalar 

 The temporal equation:   

UUMatDIUDI rppqp   ])[][(])[( 1

 Calculation of the temporal part of AF can be done much easier in frequency domain 

  Easy to find the inverse of           in the FD  

][ 

PPD

][ 

PPD

][ 

PPD

 The inverse of the temporal matrix is calculated using the Sherman Morrison 
formulation 
Two times inversion of the            is required in this process. 

 
 

][ 

PPD

][][ 1

T

r vuMat




 Spectral matrix is diagonal in the FD 

          is modified by a rank-1 matrix  



FFT in Approximate Factorization Scheme 
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 Find the intermediate value,           by solving the spatial part 

 Solve the temporal part: 

I. Find FFT of           to find  

II. Find         by taking the inverse of the temporal matrix using Sherman-
Morrison formulation 

III. Transfer back the result to time domain using IFFT to obtain  

 

 

 

U kÛ

kÛ

U

U



49 

Newton-Raphson Method 

 The non-linear space time system is:     
𝜕𝑉𝑈

𝜕𝑡
+ 𝑅 𝑈𝑛, 𝑥 𝑛, 𝑛  = 0 

 The residual is obtained from:             
𝜕𝑉𝑈

𝜕𝑡
+ 𝑅 𝑈𝑛, 𝑥 𝑛, 𝑛  = Res 

Obtained from TS or BDFTS formulations 

 The entire non-linear space-
time system of equations is 
linearized by Newton-
Raphson method  

 

[𝐴]∆𝑈 = −𝑅𝑒𝑠 

[A] is the complete time-spectral Jacobian matrix  

Res is the total residual of time-spectral system 

The linear system over all time and 
space at each step of Newton 

solution is solved  to a specified 
linear tolerance using a Krylov 

method (GMRES) 



 

 

 Flexible GMRES algorithm that allows an iterative method as a 
preconditioner has been described by Saad: 
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  AF solver is used as a preconditioner in line 4 of the algorithm 

FFT-AF as a preconditioner 

FFT-based GMRES/AF 



More on GMRES/AF 
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  Two pseudo-time terms are used in GMRES: 

• The constant pseudo-time term in the preconditioner: 

[J]][I]
Δτ

V
]][[DΔτ[[I][A]

AF

TSAF 

• The growing pseudo-time term in  the space-time Jacobian of the GMRES: 

]]V[DJ
Δτ

V
[[A] TS

Newton



  The pseudo-time term in the FGMRES grows rapidly so that an exact 
Newton method can be recovered.  

  Here we employed an inexact Newton approach for efficiency 
reasons.  

• Linear tolerance of 0.1 
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 Introduction 

 Governing Equations 

 Challenges 

 Novelty 

 Results 

 Summary and Conclusions 

 Future Work 
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 Case 1: Purely Periodic Pitching Airfoil with Single Frequency 
Prescribed Motion  

Test Cases 



Case 1: Purely Periodic Pitching Airfoil with Single 
Frequency Prescribed Motion  
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  Naca-0012 Airfoil 

  15573 triangular elements 

  Free stream Mach = 0.755 

  Prescribed pithing motion: 

𝛼𝑡 = 𝛼0 + 𝛼𝐴𝑆𝑖𝑛(𝜔𝑡) 

𝛼0 = 0.016° 𝛼𝐴 = 2.51° 

 𝜔 is specified via reduced frequency 

𝑘𝑐 = 0.0814 − 0.1628 



 Case 1-1 : Testing the performance of FFT based AF for Case 1 
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 Case 1: Purely Periodic Pitching Airfoil with Single Frequency 
Prescribed Motion  

Test Cases 



Case1-1 : AF Residual Validation 

 DFT and FFT based AF solver 
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𝑁 = 256 𝑁 = 243 



Case 1-1 : AF Performance comparison 

 DFT- and FFT- based AF solvers 

 Even number of samples up to 2048, odd number of samples up to 2187  
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Even Odd 



Case 1-1: Optimization for Real Valued Samples 

 Wall clock time versus number of time instances for original complex FFT 
and real-data split FFT implementation 
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 Case 1-1 : Testing the performance of FFT based AF for Case 1 
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 Case 1: Purely Periodic Pitching Airfoil with Single Frequency 
Prescribed Motion  

Test Cases 

 Case 1-2 : Testing the performance of FFT based GMRES/AF for 
Case 1 
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Case 1-2: FFT-GMRES/AF solver performance 

 Comparison of the non-linear residual versus iterations for the AF solver and versus 
Krylov vectors for the GMRES/AF solver with 8 and 1024 number of time instances. 

N = 8 N = 1024 
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Case 1-2: Study of Linear Tolerance 

 Residual versus Krylov vectors for different linear tolerances for 256 
number of time instances. 

N = 256 
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Case 1-2: Study of Linear Tolerance 

 Non-linear convergence, CFL history, and number of Krylov vectors in 
each iteration for linear tolerance of 0.5 (left plot), 0.1 (middle plot), 0.01 
(right plot). 

Linear-tol = 0.5 Linear-tol = 0.1 Linear-tol = 0.01 
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Case 1-2: Study of Linear Tolerance 

 Wall-clock time versus number of time instances for different linear 
tolerances . 
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Case 1-2: Performance of FFT-based AF and GMRES/AF 

 Wall-clock time versus number of time instances for FFT based GMRES/AF 
and FFT based AF solver for up to 2048 number of time instances 
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Case 1-2: Performance of DFT and FFT based GMRES/AF 

 Wall-clock time for DFT and FFT based GMRES/AF solvers for up to 2048 
number of time instances. 



66 

Case1-2: Solver Characteristic 

 Wall-clock time versus number of time instances for FFT based 
GMRES/AF and FFT based AF solver using different reduced frequencies  
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Case1-2: Mesh Resolution Study 

  Convergence study of GMRES/AF solver using 64 number of time instances 
and linear tolerance of 0.1, with: 20 block-Jacobi sweeps in the 
preconditioner(Left) solving Jacobi to machine zero in the preconditioner(Right) 

20 block-Jacobi sweeps Solving Jacobi to machine zero 
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Wall Clock Time due to Communication and Computation 

 Breakdown of wall-clock time for computation and communication of the solver 
running on NCAR Wyoming Yellowstone supercomputer using up to 2048 processors  



Wall Clock Time due to Communication and Computation 

 Breakdown of wall-clock time for computation and communication within parallel FFT 
routine running on NCAR- Wyoming Yellowstone supercomputer using up to 4096 
processors  

 Computation displays expected O(logN) weak scaling 

 The wall clock grows faster than expected due to pattern of communication each level 
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Wall Clock Time for First and Last Level 

 Comparison of communication time for first and last level of parallel FFT 
routine using up to 4096 processors 

 Difference in wall clock time due to non local communication. (Verified by 
NWSC- Yellowstone system staff) 
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 Case 1-1 : Testing the performance of FFT based AF for Case 1 
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 Case 1: Purely Periodic Pitching Airfoil with Single Frequency 
Prescribed Motion  

Test Cases 

 Case 1-2 : Testing the performance of FFT based GMRES/AF for 
Case 1 

 Case 2: Purely Periodic Pitching Airfoil with Gaussian Bump  
Motion  
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  Naca-0012 Airfoil 

  15573 triangular elements 

  Free stream Mach = 0.755 

  Prescribed pithing motion: 

𝛼𝑡 = 
1

20𝜋
𝑒−

(𝑡−10)2

2  

 𝜔 is specified via reduced frequency 

𝑘𝑐 = 0.208 

Case 2: Purely Periodic Pitching Airfoil with Gaussian Bump  
Motion  



 Case 1-1 : Testing the performance of FFT based AF for Case 1 
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 Case 1: Purely Periodic Pitching Airfoil with Single Frequency 
Prescribed Motion  

Test Cases 

 Case 1-2 : Testing the performance of FFT based GMRES/AF for 
Case 1 

 Case 2: Purely Periodic Pitching Airfoil with Gaussian Bump  
Motion  

 Case 2-1 : Comparison of the performance of FFT based 
GMRES/AF and BDF2 for Case 2 
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Case2-1: Gaussian Bump Pitching Motion 

  Time history of Gaussian bump prescribed pitching motion and (Left) and  
frequency content of prescribed motion signal (Right) 
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Case2-1: TS Solution 

  Computed lift coefficient history using TS solver with different number of 
time instances (Left) and details of differences between TS solutions for N = 32, 
64 and 256 (Right) 
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Case2-1: FFT- GMRES/AF Convergence 

  Convergence histories for TS solver as measured by residual versus 
cumulative number of Krylov vectors, using different number of time-instances 
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Case2-1: BDF2 Error Study 

  Temporal error of BDF2 solution for the first and fifth periods using 
different number of time-steps 
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Case2-1: BDF2 Solution 

  Computed lift coefficient time histories using the BDF2 scheme over last of 
5 periods for different numbers of time steps (Left) and detail of time histories 
near peak CL value (Right) 
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Case2-1: Comparison of BDF2 and TS Error 

  Temporal error of TS and BDF2 solutions as a function of the number of 
time-instances or time steps  
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Case2-1: Comparison of Run Time of BDF2 and TS 

 Run time for solving the Gaussian bump problem using BDF2 solver for 5 
periods, and TS solver for 8 to 256 time-steps per period or time-instances 



 Case 1-1 : Testing the performance of FFT based AF for Case 1 
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 Case 1: Purely Periodic Pitching Airfoil with Single Frequency 
Prescribed Motion  

Test Cases 

 Case 1-2 : Testing the performance of FFT based GMRES/AF for 
Case 1 

 Case 2: Purely Periodic Pitching Airfoil with Gaussian Bump  
Motion  

 Case 2-1 : Comparison of the performance of FFT based 
GMRES/AF and BDF2 for Case 2 

 Case 3: Quasi-Periodic Pitching Airfoil with Single Frequency 
Prescribed Motion  



Case 3: Quasi-Periodic Pitching Airfoil with Single 
Frequency Prescribed Motion  
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  Naca-0012 Airfoil 

  15573 triangular elements 

  Free stream Mach = 0.755 

  Prescribed pithing motion: 

𝛼𝑡 = 𝛼0 + 𝛼 (𝑡) +𝛼𝐴 𝑆𝑖𝑛(𝜔𝑡) 

𝛼0 = 0.016° 
𝛼𝐴 = 2.51° 

𝛼 𝑡 =  
0

𝛼𝑚
1

2
(1 − cos 𝜔𝑚 𝑡 − 𝑡1 )  𝑡 < 𝑡1 

𝑡 ≥ 𝑡1 

𝜔1 = 0.1628 
𝜔𝑚 = 0.1𝜔1 

Periodic Content 

Slow Transient 
Quasi- Periodic 

Problem 



 Case 1-1 : Testing the performance of FFT based AF  
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 Case 1: Purely Periodic Pitching Airfoil with Single Frequency 
Prescribed Motion  

Test Cases 

 Case 1-2 : Testing the performance of FFT based GMRES/AF  

 Case 2: Purely Periodic Pitching Airfoil with Gaussian Bump  
Motion  
 Case 2-1 : Comparison of the performance of FFT based 

GMRES/AF and BDF2  

 Case 3: Quasi-Periodic Pitching Airfoil with Single Frequency 
Prescribed Motion  
 Case 3-1 : Testing the performance of FFT based AF  
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Case 3-1: FFT-AF Residual Validation  

 Residual versus iterations for DFT and FFT based AF solver, using 16 time-instances 
per period for 5 periods 



Case 3-1: Performance of DFT- and FFT- based AF 

 Comparison of wall clock time versus number of time instances for 
DFT and FFT based AF solution of the problem. 

 Even Number of Samples up to  512 time-instances/processors 
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Case 3-1: Comparison of Convergence Rate of AF 

86 

 Comparison of convergence rate of the quasi-periodic AF scheme over 
five periods for different number of time instances per period 



 Case 1-1 : Testing the performance of FFT based AF  
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 Case 1: Purely Periodic Pitching Airfoil with Single Frequency 
Prescribed Motion  

Test Cases 

 Case 1-2 : Testing the performance of FFT based GMRES/AF  

 Case 2: Purely Periodic Pitching Airfoil with Gaussian Bump  
Motion  
 Case 2-1 : Comparison of the performance of FFT based 

GMRES/AF and BDF2  

 Case 3: Quasi-Periodic Pitching Airfoil with Single Frequency 
Prescribed Motion  
 Case 3-1 : Testing the performance of FFT based AF  

 Case 3-2 : Testing the performance of FFT based GMRES/AF  
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Case 3-2: FFT-GMRES/AF Residual Validation 

 Residual versus iterations for DFT and FFT based GMRES/AF solvers using 
16 time-instances per period for 5 periods. 
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Case 3-2: Performance of DFT- and FFT-based GMRES/AF 

 Wall-clock time for DFT- and FFT- based GMRES/AF solvers for up to 512 
number of time instances. 
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Case 3-2: Study of Linear Tolerance 

 Non-linear residual versus number of iterations for linear tolerance of 
0.1, 0.01, 0.001   

 Tighter linear tolerance results in greater wall lock time 
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Case 3-2: Study of Linear Tolerance 

 Wall-clock time versus number of time instances for different linear 
tolerances  
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Case 3-2: Performance of FFT- based AF and GMRES/AF 

 Wall-clock time versus number of time instances for FFT- based GMRES/AF 
and FFT- based AF solver for up to 512 number of time instances 



Case 3-2: Comparison of Convergence Rate of GMRES/AF 
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 Comparison of convergence rate of the quasi-periodic GMRES/AF 
scheme over five periods for different number of time instances per 
period 
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Case 3-2: Performance of BDF1TS and BDF2TS 

 Wall-clock time for FFT- based BDF1TS and BDF2TS solvers for up to 512 
number of time instances. 
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Case 3-2: Accuracy of BDF1TS and BDF2TS 

 Lift coefficient error versus log of time instances using BDF1TS and 
BDF2TS solvers 
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 Introduction 

 Governing Equations 

 Challenges 

 Novelty 

 Results 

 Summary and Conclusions 

 Future Work 
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Summary and Conclusions (1/4) 

 
 The new implementation is based on the FFT and scales as 𝑁𝑙𝑜𝑔𝑁 and results in 

significant savings compared to previous implementations in terms of wall-clock 
time which was based on the DFT and scales as 𝑂(𝑁2)  

 

 

 

 A new parallel time-spectral algorithm is developed for periodic and quasi-periodic 
problems 

 
 An FFT-based AF algorithm is developed and used as the direct solver to solve 

purely periodic problems 

 
 

 FFT-based AF is significantly more efficient than the DFT-based AF solver in terms 
of wall-clock time 
• 𝑁𝑙𝑜𝑔𝑁 computation and communication versus 𝑂(𝑁2) 
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Summary and Conclusions (2/4) 

 

• The GMRES/AF scheme is shown to be consistently and significantly more efficient than 
the AF scheme alone 

 

 

 The FFT-based AF scheme reformulated as a preconditioner for GMRES 

 
 The overall FFT-based GMRES/AF solver performance can be more than an order of 

magnitude more efficient than the previous DFT-based implementations 

 
 Both the AF scheme used directly as a solver and the GMRES/AF linear solver are 

relatively insensitive to the number of time-instances and to the reduced frequency 
of the problem 

• 𝑁𝑙𝑜𝑔𝑁 computation and communication versus 𝑂(𝑁2) 

• 2 to 3 times speed up in GMRS/AF compared to AF 
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Summary and Conclusions (3/4) 

 

 The performance of the FFT-based time-spectral solvers is compared to the BDF2   

 The performance of the FFT-based TS solvers is studied in problems with prescribed 
motion including a wide range of frequency spectrum 

 

 By improvements made in time-spectral solvers done in this work,  these solvers 
can outperform the time-accurate solvers in problems with high frequency content 
as well as problems with few harmonic contents 
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Summary and Conclusions (4/4) 

 

 The application of FFT-based time spectral method is extended to quasi-periodic 
problems, using BDFTS formulations  

 The BDFTS equations correspond to rank-1 update of the fully-periodic time-
spectral equations and can be solved effectively by leveraging the FFT-based 
periodic AF solver using the Sherman-Morrison formulation 

 Using parallel FFT- based AF as a preconditioner for GMRES results in 2 to 3 
times more efficiency compared to AF alone as the solver. 

 Although BDF2TS requires longer wall-clock time for convergence, it provides 
better accuracy for cases with larger number of time instance, compared to 
BDF1TS scheme 

 FFT-based BDFTS formulations are dramatically more efficient than the DFT-
based BDFTS approach 

 • 𝑁𝑙𝑜𝑔𝑁 computation and communication versus 𝑂(𝑁2) in periodic component of the solver 
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 Introduction 

 Governing Equations 

 Challenges 

 Novelty 

 Results 

 Summary and Conclusions 

 Future Work 

 

 

 

 

 



Future Work  
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 Three dimensional parallel in space and time problems  

 Extension to other flow regimes  

 • The performance of the new approach was tested for 2D problems 
• The goal was to study the temporal efficiency of the solvers in all the test cases 

the spatial component was solved in serial 
• The 2D test cases with solution of the spatial part on one core are; representative 

of the size of a spatial portion in a parallel 3D run 

• By combining the temporal parallelism afforded by this approach with spatial 
parallelism, the solution of periodic and quasi-periodic problems of moderate 
spatial size can be effectively scaled to hundreds of thousands of cores 

• The solution of the Euler equations are presented in all the test cases 

• For turbulent flow problems, the spatial part becomes harder to solve, and 
requires more sophisticated spatial solvers 

• Other elaborate spatial solvers such as multigrid, … can make AF a stronger 
preconditioner for GMRES 



Future Work  
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 Studying the viability of BDFTS 

 • Unlike the TS method, BDFTS methods need to resolve the transient part. 
Majority of the CPU resources could be spent resolving the transient part of the 
solution  

• In most cases the problem needs the same number of periods as required in time-
accurate methods to resolve the slow transient content 

• In the BDFTS method each period must be solved faster than time-accurate 
methods, in order to outperform them 

• Comparison of the performance of BDF1TS and BDF2TS in 3D problems 
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