An Order NlogN Parallel Time Spectral Solver For Periodic and Quasi-Periodic Problems

Donya Ramezanian PhD Advisor: Dr. Dimitri Mavriplis Department of Mechanical Engineering University of Wyoming 12th July 2019

UNIVERSITY OF WYOMING

Outline

- Introduction
- Governing Equations
- Challenges
- > Novelty
- ➢ Results
- Summary and Conclusions
- Future Work

- Governing Equations
- > Challenges
- > Novelty
- Results
- Summary and Conclusions
- Future Work

- The simulation of unsteady phenomena typically demands large computational investments to achieve suitable accuracy
- Temporally periodic problems are one of the sub-categories of unsteady problems, that have a broad range of applications in the industry.
- These include wind-turbine flows, rotorcraft flows, turbomachinery flows, and vortex shedding problems
- Traditionally, time-marching methods were employed for unsteady flow problems including temporally periodic problems
- Time-marching methods solve the problem for several periods until the initial transient part is resolved, and periodic steady state
 is obtained

IVERSITY OF WYOMING

- In most realistic problems solving the transient part is very time consuming, making time-marching methods inevitably expensive
- Frequency-domain methods directly solve for the periodic solution and avoid the transient parts
- Time-spectral methods (TS) are among the frequency-domain methods that avoid resolving the transient parts and are more favorable in purely-periodic problems
- A hybrid backward difference time-spectral (BDFTS) discretization is an extension of the time-spectral approach for quasi-periodic problems

TS Introduction

- Span the characteristic time period with time instances
- Represent the time derivatives in governing equations as linear combinations of corresponding values in other time instances

IVERSITY OF WYOMING

- All the time instances are coupled. (Solve for all time instances simultaneously)
- Because of spectral convergence due to Fourier series, limited number of temporal DOF results in accurate solutions
- The time instances are computed in parallel. Exploit more parallelism by parallelizing temporal part, each time instance is assigned to an individual processor

BDFTS Introduction

- Time-spectral methods are only applicable in the presence of fully periodic flows, which represents a severe restriction for many aerospace engineering problems
- Quasi-periodic problems are problems that include a slow transient in addition to strong periodic behavior
- Applications in transient turbofan simulation, maneuvering rotorcraft calculations, ...
- A hybrid backward difference time-spectral (BDFTS) discretization is an extension of the time-spectral approach for quasi-periodic problems

IVERSITY OF WYOMING

- Governing Equations
- > Challenges
- > Novelty
- Results
- Summary and Conclusions
- Future Work

Base Solver

- Inviscid compressible flow
- Arbitrary-Lagrangian-Eulerian (ALE) form of Euler equations

$$\frac{\partial U}{\partial t} + \nabla F(U) = 0$$
$$\frac{\partial}{\partial t} \int_{\partial \Omega(t)} (F(U) - U\dot{x}) \cdot \vec{n} ds = 0$$
$$\frac{\partial}{\partial t} \frac{\partial (UV)}{\partial t} + R(U, \dot{x}, \vec{n}) = 0$$

- Central difference finite volume cell based in space
- Time discretization: BDF1, BDF2, TS, BDFTS

Temporal Derivative : BDF

First-order backward difference scheme (BDF1)

$$\frac{\partial U}{\partial t} = \frac{U^{n+1} - U^n}{\Delta t} \qquad 0(\Delta t)$$

Second-order backward difference scheme (BDF2)

$$\frac{\partial U}{\partial t} = \frac{3U^{n+1} - 4U^n + U^{n-2}}{2\Delta t} \quad O(\Delta t^2)$$

 U^{n+1} is the solution t current time-step U^n is the solution at the previous time-step U^{n-1} is the solution at the two time-steps ago

10

Temporal Derivative : TS

Used in temporal purely periodic problems

Time Spectral temporal Discretization: Collocation method using harmonic basis functions in time

Coefficients (d_j^n) derived analytically using convolution of Fourier transform and synthesis.

Temporal Derivative : BDFTS

 Problems with a slow transient in addition to a strong periodic behavior in time (quasi-periodic problems)

periodic Mean

Concept of polynomial subtraction for spectral methods(Gottlieb and Orzag (1977), Lanczos)

Temporal Derivative : BDFTS

BDF1TS derivative:

$$\frac{\partial U^{n}}{\partial t} = \sum_{j=1}^{N-1} d_{n}^{j} U^{j} - (\sum_{j=1}^{N-1} d_{n}^{j} \phi_{12}(t_{j}) - \phi_{12}'(t_{n})) U^{m+1} - (\sum_{j=1}^{N-1} d_{n}^{j} \phi_{11}(t_{j}) - \phi_{11}'(t_{n})) U^{m}$$
 n=1,2,...,N

 $\phi_{11} \, \text{ and } \, \phi_{12} \,$ are the linear interpolation functions

 $\sum_{j=l}^{N-l} d_n^{\ j} U^j \quad \text{Time spectral derivative}$

- U^{m+1} Ending point of the period (Unknown)
- U^m Beginning point of the period (known)

BDFTS derivation can be reformulated as:

$$\begin{bmatrix} \mathbf{D}_{qp} \end{bmatrix} \vec{\mathbf{U}} = \begin{bmatrix} \mathbf{D}_{pp} \end{bmatrix} \vec{\mathbf{U}} + \begin{bmatrix} \mathsf{Mat}_{r1} \end{bmatrix} \vec{\mathbf{U}} + \mathbf{const.}$$

Spectral Matrix Rank-1 Matrix

13

> The non-linear space time system is: $\frac{\partial VU}{\partial t} + R(U^n, \dot{x}^n, \vec{n}) = 0$

- The non-linear space time system is:
- The residual is obtained from:

$$\frac{\partial VU}{\partial t} + R(U^n, \dot{x}^n, \vec{n}) = 0$$
$$\frac{\partial VU}{\partial t} + R(U^n, \dot{x}^n, \vec{n}) = \text{Res}$$

UNIVERSITY OF WYOMING

- The non-linear space time system is:
- The residual is obtained from:

The entire non-linear spacetime system of equations is linearized by Newton-Raphson method

[A] is the complete time-spectral Jacobian matrix Res is the total residual of time-spectral system

$$\frac{\partial VU}{\partial t} + R(U^n, \dot{x}^n, \vec{n}) = 0$$

$$\frac{VU}{\partial t} + R(U^n, \dot{x}^n, \vec{n}) = \text{Res}$$

Obtained from TS or BDFTS formulations

$$[A]\Delta U = -Res$$

∂t

- > Approximates [A] as: $[A] \approx ([Temporal Part])([Spatial Part])$
- Separates spatial and temporal parts
- > Not exact and include an error which is $\Delta \tau J[D]$

J is the Jacobian of the spatial part of the system [D] is the TS or BDFTS derivative matrix

- Solves for ΔU in two steps:
 - ✓ solve the spatial part to find intermediate value, $\Delta\Delta U$ using direct or iterative methods e.g. block Gauss-Seidel
 - ✓ Using $\Delta\Delta U$, the temporal matrix is inverted to find ΔU

IVERSITY OF WYOMING

Improvement in TS solver

- Factorization error depends on the pseudo-time step
- Using AF as the solver suffers from requiring a small pseudo-time step or CFL number

Improvement in TS solver

Factorization error depends on the pseudo-time step

Using AF as the solver suffers from requiring a small pseudo-time step or CFL number

Using AF as a preconditioner in the context of the Newton-Krylov method

Newton-Raphson Method

- The non-linear space time system is:
- The residual is obtained from:

The entire non-linear spacetime system of equations is linearized by Newton-Raphson method

20

[A] is the complete time-spectral Jacobian matrix Res is the total residual of time-spectral system

$$\frac{\partial VU}{\partial t} + R(U^n, \dot{x}^n, \vec{n}) = 0$$

$$\frac{\partial VU}{\partial t} + R(U^n, \dot{x}^n, \vec{n}) = \text{Res}$$

Obtained from TS or BDFTS formulations

$$[A]\Delta U = -Res$$

Newton-Raphson Method

- The non-linear space time system is:
- The residual is obtained from:

The entire non-linear spacetime system of equations is linearized by Newton-Raphson method

[A] is the complete time-spectral Jacobian matrix Res is the total residual of time-spectral system

$$\frac{\partial VU}{\partial t} + R(U^n, \dot{x}^n, \vec{n}) = 0$$

$$\frac{\partial VU}{\partial t}$$
 + $R(U^n, \dot{x}^n, \vec{n}) = \text{Res}$

Obtained from TS or BDFTS formulations

$$[A]\Delta U = -Res$$

The linear system over all time and space at each step of Newton solution is solved to a specified linear tolerance using a Krylov method (GMRES)

Flexible GMRES algorithm that allows an iterative method as a preconditioner has been described by Saad:

1: Given Ax = b2: Compute $\mathbf{r}_0 = \mathbf{b} - \mathbf{A}\mathbf{x}_0$, $\beta = \|\mathbf{r}_0\|_2$, and $\mathbf{v}_1 = \mathbf{r}_0/\beta$ 3: **for** j=1,...,n **do** Compute $\mathbf{z}_i := \mathbf{P}^{-1} \mathbf{v}_i$ 4: 5: Compute $\mathbf{w} := \mathbf{A}\mathbf{z}_i$ 6: **for** i=1,...,j **do** 7: $h_{i,i} := (\mathbf{w}, \mathbf{v}_i)$ 8: $\mathbf{w} := \mathbf{w} - h_{i, i} \mathbf{v}_{i}$ end for 9: Compute $h_{i+1,i} = \|\mathbf{w}\|_2$ and $\mathbf{v}_{i+1} = \mathbf{w}/h_{i+1,i}$ 10: Define $\mathbf{Z}_m := [\mathbf{z}_1, \dots, \mathbf{z}_m], \, \bar{\mathbf{H}}_m = \{h_{i,i}\}_{1 \le i \le j+1: 1 \le i \le m}$ 11: 12: end for 13: Compute $\mathbf{y}_m = argmin_v \|\boldsymbol{\beta}\mathbf{e}_1 - \mathbf{\underline{H}}_m \mathbf{y}\|_2$ and $\mathbf{x}_m = \mathbf{x}_0 + \mathbf{\underline{Z}}_m \mathbf{y}_m$ 14: If satisfied Stop, else set $\mathbf{x}_0 \leftarrow \mathbf{x}_m$ and GoTo 1.

UNIVERSITY OF WYOMING

22

TS Solvers : GMRES/AF

Flexible GMRES algorithm that allows an iterative method as a preconditioner has been described by Saad:

AF solver is used as a preconditioner in line 4 of the algorithm

1: Given
$$\underline{\mathbf{A}}\mathbf{x} = \mathbf{b}$$

2: Compute $\mathbf{r}_0 = \mathbf{b} - \underline{\mathbf{A}}\mathbf{x}_0$, $\beta = \|\mathbf{r}_0\|_2$, and $\mathbf{v}_1 = \mathbf{r}_0/\beta$
3: for j=1,...,n do
4: Compute $\mathbf{z}_j := \underline{\mathbf{P}}^{-1}\mathbf{v}_j$ AF as a preconditioner
5: Compute $\mathbf{w} := \underline{\mathbf{A}}\mathbf{z}_j$
6: for i=1,...,j do
7: $h_{i,j} := (\mathbf{w}, \mathbf{v}_i)$
8: $\mathbf{w} := \mathbf{w} - h_{i,j}\mathbf{v}_j$
9: end for
10: Compute $h_{j+1,j} = \|\mathbf{w}\|_2$ and $\mathbf{v}_{j+1} = \mathbf{w}/h_{j+1,j}$
11: Define $\underline{\mathbf{Z}}_m := [\mathbf{z}_1, \dots, \mathbf{z}_m]$, $\underline{\mathbf{H}}_m = \{h_{i,j}\}_{1 \le i \le j+1; 1 \le j \le m}$
12: end for
13: Compute $\mathbf{y}_m = argmin_y \|\beta \mathbf{e}_1 - \underline{\mathbf{H}}_m \mathbf{y}\|_2$ and $\mathbf{x}_m = \mathbf{x}_0 + \underline{\mathbf{Z}}_m \mathbf{y}_m$
14: If satisfied Stop, else set $\mathbf{x}_0 \leftarrow \mathbf{x}_m$ and GoTo 1.

- Introduction
- Governing Equations

Challenges

- > Novelty
- ➢ Results
- Summary and Conclusions
- Future Work

Drawbacks of TS

Traditionally, TS formulation was based on Discrete Fourier Transform

How many operations are involved?

UNIVERSITY OF WYOMING

Drawbacks of TS

Based on Discrete Fourier Transform

$$\frac{\partial U^n}{\partial t} = \frac{2\pi}{T} \sum_{k=\frac{-N}{2}}^{k=\frac{N}{2}-1} ik \widehat{U}_k e^{ikn\Delta t \frac{2\pi}{T}} = \sum_{j=0}^{N-1} d_n^j U^j$$

Rewriting the summation results in dense matrix $[D_{TS}]$

$$\begin{bmatrix} \dot{\mathbf{U}}_{1} \\ \dot{\mathbf{U}}_{2} \\ \dots \\ \dot{\mathbf{U}}_{N-1} \end{bmatrix} = \begin{bmatrix} \mathbf{d}_{0}^{0} & \mathbf{d}_{0}^{1} & \dots & \mathbf{d}_{0}^{N-1} \\ \mathbf{d}_{1}^{0} & \mathbf{d}_{1}^{1} & \dots & \mathbf{d}_{-1}^{N-1} \\ \dots & \dots & \dots & \dots \\ \mathbf{d}_{N-1}^{0} & \mathbf{d}_{N-1}^{-1} & \dots & \mathbf{d}_{N-1}^{N-1} \end{bmatrix}_{(N \times N)} \begin{bmatrix} \mathbf{U}_{0} \\ \mathbf{U}_{1} \\ \dots \\ \mathbf{U}_{N-1} \end{bmatrix}$$

Total number of operations: $O(N^2)$

Wall clock time scales linearly with number of time instances (running in parallel) which is <u>not desirable</u>.

- Introduction
- Governing Equations
- > Challenges
- > Novelty
- Results
- Summary and Conclusions
- Future Work

Novelty

We tried to overcome this challenge:

- In this work, time-spectral method is implemented based on the parallel fast Fourier transform (FFT)
- The parallel FFT-based AF and GMRES/AF are implemented

Fast Fourier Transform (FFT)

Assuming the number of samples: $N = 2^L$

Considering Discrete Fourier Transform Formulation:

$$\widehat{U}_k = \frac{1}{N} \sum_{n=0}^{N-1} U^n e^{-ikn\Delta t \frac{2\pi}{T}}$$

Splitting the summation in two parts:

$$\hat{U}_{k} = \frac{1}{N} \left(\sum_{n=0}^{\frac{N}{2}-1} U^{2n} e^{-ik(2n)\Delta t \frac{2\pi}{T}} + \sum_{n=0}^{\frac{N}{2}-1} U^{2n+1} e^{-ik(2n+1)\Delta t \frac{2\pi}{T}} \right)$$

$$\hat{U}_{k} = \frac{1}{N} \left(\sum_{n=0}^{\frac{N}{2}-1} U^{2n} e^{-ikn \frac{2\pi}{N/2}} + e^{-ik \frac{2\pi}{N}} \sum_{n=0}^{\frac{N}{2}-1} U^{2n+1} e^{-ikn\Delta t \frac{2\pi}{N/2}} \right) = \frac{1}{N} \left(e_{k} + w^{k} o_{k} \right)$$

$$(U^{2n+1}) = \frac{1}{N} \left(e_{k} + w^{k} o_{k} \right)$$

DFT of even sequence $\{U^{2n}\}$

DFT of odd sequence $\{U^{2n+1}\}$

UNIVERSITY OF WYOMING

Fast Fourier Transform (FFT)

Recursively split each part to even /odd groups until each group has N^{-1}

UNIVERSITY OF WYOMING

Number of divisions : $L = log_2^N$

30

Parallel FFT Communication Count

For each \widehat{U}_k in each level e_k and o_k are needed;

each member in each level requires the data of another member to calculate its share

$$\widehat{U}_k = \frac{1}{N} (e_k + W^k o_k)$$

In each level N communication occurs.

1	
	Total number of
	communication
	$O(N \log_2 N)$
	$O(N\log_2 N)$

N	N ²	Nlog ₂ N	N^2
			Nlog ₂ N
512	2 ¹⁸	2 ⁹ * 9	56.888
1024	2 ²⁰	2 ¹⁰ * 10	102.4
2048	2 ²²	$2^{11} * 11$	186.181

Reordering

Splitting into odd/ even groups changes the order of samples

- Danielson-Lanczos lemma is used to find odd/even reordering pattern of samples
- > The new ordering is obtained by bit-reversal of the original sample.

Recursive subdivision of N=8 sample set and corresponding bit-reversal ordering

Communication Pattern of FFT

- Communication pattern for all levels for 8 number of samples
- The levels in which further processors should communicate are more expensive

TS Derivative based on FFT

- > Calculate FFT of samples (O(logN) communication)
- > Multiply \widehat{U}_k into corresponding *ik* (No communication)
- > Calculate the inverse of $ik\widehat{U}_k(O(logN)$ communication)

TS Derivative based on FFT

- Calculate FFT of samples (O(logN) communication)
- > Multiply \widehat{U}_k into corresponding *ik* (No communication)
- > Calculate the inverse of $ik\widehat{U}_k(O(logN)$ communication)

The number of communication in FFTbased TS is **O**(**logN**)

UNIVERSITY OF WYOMING

No Reordering Required for FFT-TS

- Standard parallel FFT requires final reordering of data
 - Entire spatial grid from each core.

No Reordering Required for FFT-TS

Standard parallel FFT requires final reordering of data

• Entire spatial grid from each core.

➤Time spectral implementation always requires the application of a forward FFT followed by an Inverse FFT

37

No Reordering Required for FFT-TS

Standard parallel FFT requires final reordering of data

• Entire spatial grid from each core.

➤Time spectral implementation always requires the application of a forward FFT followed by an Inverse FFT

- There is no need to reorder data
 - All that is required is k in the IFFT and the address of each core for the communication pattern at each level

New addressing of cores for 8 number of samples to avoid extra communication in parallel TS routine

$$\frac{\partial U^n}{\partial t} = \frac{2\pi}{T} \sum_{k=\frac{-N}{2}}^{k=\frac{N}{2}-1} ik \widehat{U}_k e^{ikn\Delta t \frac{2\pi}{T}}$$

Extension of FFT Application

- Time-spectral method is implemented based on base-3 FFT
- The number of operations reduces from $O(N^2)$ to $O(2Nlog_3^N)$

Extension of FFT Application

- Implementation of FFT-based second-order timespectral derivative
- The number of operations reduces from O(N²) to O(NlogN)
- In aero-structural problems such as flutter problems, ...

$$\frac{\partial^2 U^n}{\partial t^2} = -\left(\frac{2\pi}{T}\right)^2 \sum_{-\frac{N}{2}}^{\frac{N}{2}-1} k^2 \widehat{U}_k e^{ikn\Delta t \frac{2\pi}{T}}$$

FFT-AF in Purely Periodic Problems

- The non-linear space time system is:
- The residual is obtained from:
- The entire non-linear spacetime system of equations is linearized by Newton-Raphson method

[A] is the complete time-spectral Jacobian matrix Res is the total residual of time-spectral system V is the cell volume $\Delta \tau$ is the AF pseudo time-step J is the Jacobian of spatial part $[D_{PP}]$ is the spectral matrix $\frac{\partial VU}{\partial t} + R(U^n, \dot{x}^n, \vec{n}) = 0$

 $[D_{PP}]VU + R(U^n, \dot{x}^n, \vec{n}) = \text{Res}$

$$[A]\Delta U = -Res$$
$$[A] = \left[\frac{V}{\Delta \tau} + J + V[D_{PP}]\right]$$

FFT-AF in Purely Periodic Problems

> Approximates [A] as: $[A] \approx ([I] + \Delta \tau [D_{PP}]) (\frac{V}{\Lambda \tau} [I] + [J])$

Temporal Part

Spatial Part

 \blacktriangleright Find intermediate value $\Delta\Delta U$ by solving the spatial part, using any direct or iterative solver

 $\succ \text{ Solve temporal part } \begin{cases} \succ \text{ Take FFT of } \Delta \Delta U \text{ to find } \Delta \Delta \widehat{U}_k \\ \succ \text{ Multiply } \Delta \Delta \widehat{U}_k \text{ by } \frac{1}{1+iwk\Delta \tau} \text{ to find } \Delta \widehat{U}_k \end{cases}$

➤ Take IFFT of $\Delta \widehat{U}_k$ to find ΔU

- The non-linear space time system is:
- The residual is obtained from:
- $\begin{bmatrix} D_{qp} \end{bmatrix} VU = [D_{PP}] VU + [Mat_{r1}] VU + const.$ The entire non-linear spacetime system of equations is linearized by Newton-Raphson method $\begin{bmatrix} A \end{bmatrix} \Delta U = -Res = -\begin{bmatrix} D_{qp} \end{bmatrix} VU - R(U^n, \dot{x}^n, \vec{n})$

[A] is the complete time-spectral Jacobian matrix Res is the total residual of time-spectral system V is the cell volume $\Delta \tau$ is the AF pseudo time-step J is the Jacobian of spatial part

 $[D_{qp}]$ is the quasi-periodic matrix

 $[A] = [\frac{V}{\Delta \tau} + J + V[D_{qp}^*]]$ $[D_{qp}^*] = [D_{PP}] + [Mat_{r1}]$

 $\frac{\partial VU}{\partial t} + R(U^n, \dot{x}^n, \vec{n}) = 0$

 $[D_{qp}]VU + R(U^n, \dot{x}^n, \vec{n}) = \text{Res}$

> Approximates [A] as: $[A] \approx ([I] + \Delta \tau [D_{qp}^*]) (\frac{V}{\Delta \tau} [I] + [J])$

[D^{*}_{qp}] = [D_{pp}] + [Mat_{r1}]
 ➤ Find intermediate value ΔΔU by solving the spatial part, using any direct or iterative solver

Solution \flat Using the intermediate value, $\Delta\Delta U$ the temporal matrix is inverted to find ΔU

$$\Delta U = [[I] + \Delta \tau [D_{qp}^*]]^{-1} \Delta \Delta U$$

Temporal Part

Spatial Part

> Approximates [A] as: $[A] \approx ([I] + \Delta \tau [D_{qp}^*]) (\frac{V}{\Delta \tau} [I] + [J])$

> Find intermediate value $\Delta\Delta U$ by solving the spatial part, using any direct or iterative solver

Solution Using the intermediate value, $\Delta\Delta U$ the temporal matrix is inverted to find ΔU

$$\Delta U = [[I] + \Delta \tau [D_{qp}^*]]^{-1} \Delta \Delta U$$

 $\begin{bmatrix} \text{Temporal Part} \\ [D_{an}^*] = [D_{nn}] + [Mat_{r1}] \end{bmatrix}$

Using FFT?

Spatial Part

Calculation of the temporal part of AF can be done much easier in frequency domain
 The temporal equation:

 $(I + \Delta \tau [D_{qp}^*]) \Delta U = (I + \Delta \tau [D_{pp}] + \Delta \tau [Mat_{r1}]) \Delta U = \Delta \Delta U$

FFT in Approximate Factorization Scheme

Calculation of the temporal part of AF can be done much easier in frequency domain
 The temporal equation:

$$(I + \Delta \tau [D_{qp}^*]) \Delta U = (I + \Delta \tau [D_{pp}] + \Delta \tau [Mat_{r1}]) \Delta U = \Delta \Delta U$$
$$[D_{pp}^*] \qquad [Mat_{r1}] = [\vec{u}\vec{v}^T]$$

- > Easy to find the inverse of $[D_{PP}^*]$ in the FD
 - Spectral matrix is diagonal in the FD
- $\succ [D_{PP}^*]$ is modified by a rank-1 matrix
- The inverse of the temporal matrix is calculated using the Sherman Morrison formulation
- Two times inversion of the $[D_{PP}^*]$ is required in this process.

$$([D_{PP}^*] + \vec{u}\vec{v}^T)^{-1} = [D_{PP}^*]^{-1} - \frac{[D_{PP}^*]^{-1}\vec{u}\vec{v}^T[D_{PP}^*]^{-1}}{1 + \vec{v}^T[D_{PP}^*]^{-1}\vec{u}}$$

FFT in Approximate Factorization Scheme

- > Find the intermediate value, $\Delta\Delta U$ by solving the spatial part
- Solve the temporal part:
 - I. Find FFT of $\Delta \Delta U$ to find $\Delta \Delta \hat{U}_k$
 - II. Find $\Delta \hat{U}_k$ by taking the inverse of the temporal matrix using Sherman-Morrison formulation
 - III. Transfer back the result to time domain using IFFT to obtain ΔU

Newton-Raphson Method

- The non-linear space time system is:
- The residual is obtained from:

The entire non-linear spacetime system of equations is linearized by Newton-Raphson method

[A] is the complete time-spectral Jacobian matrix Res is the total residual of time-spectral system

$$\frac{\partial VU}{\partial t} + R(U^n, \dot{x}^n, \vec{n}) = 0$$

$$\frac{\partial VU}{\partial t}$$
 + $R(U^n, \dot{x}^n, \vec{n}) = \text{Res}$

Obtained from TS or BDFTS formulations

$$[A]\Delta U = -Res$$

The linear system over all time and space at each step of Newton solution is solved to a specified linear tolerance using a Krylov method (GMRES)

FFT-based GMRES/AF

Flexible GMRES algorithm that allows an iterative method as a preconditioner has been described by Saad:

AF solver is used as a preconditioner in line 4 of the algorithm

1: Given
$$\underline{\mathbf{A}}\mathbf{x} = \mathbf{b}$$

2: Compute $\mathbf{r}_0 = \mathbf{b} - \underline{\mathbf{A}}\mathbf{x}_0$, $\beta = \|\mathbf{r}_0\|_2$, and $\mathbf{v}_1 = \mathbf{r}_0/\beta$
3: for j=1,...,n do
4: Compute $\mathbf{z}_j := \underline{\mathbf{P}}^{-1}\mathbf{v}_j$ FFT-AF as a preconditioner
5: Compute $\mathbf{w} := \underline{\mathbf{A}}\mathbf{z}_j$
6: for i=1,...,j do
7: $h_{i,j} := (\mathbf{w}, \mathbf{v}_i)$
8: $\mathbf{w} := \mathbf{w} - h_{i,j}\mathbf{v}_j$
9: end for
10: Compute $h_{j+1,j} = \|\mathbf{w}\|_2$ and $\mathbf{v}_{j+1} = \mathbf{w}/h_{j+1,j}$
11: Define $\underline{\mathbf{Z}}_m := [\mathbf{z}_1, \dots, \mathbf{z}_m]$, $\underline{\mathbf{H}}_m = \{h_{i,j}\}_{1 \le i \le j+1; 1 \le j \le m}$
12: end for
13: Compute $\mathbf{y}_m = argmin_y \|\beta \mathbf{e}_1 - \underline{\mathbf{H}}_m \mathbf{y}\|_2$ and $\mathbf{x}_m = \mathbf{x}_0 + \underline{\mathbf{Z}}_m \mathbf{y}_m$
14: If satisfied Stop, else set $\mathbf{x}_0 \leftarrow \mathbf{x}_m$ and GoTo 1.

NIVERSITY OF WYOMING

50

More on GMRES/AF

Two pseudo-time terms are used in GMRES:

• The constant pseudo-time term in the preconditioner:

$$[A] \approx [[I] + \Delta \tau_{AF} [D_{TS}]] [\frac{V}{\Delta \tau_{AF}} [I] + [J]]$$

• The growing pseudo-time term in the space-time Jacobian of the GMRES:

$$[A] = \left[\frac{V}{\Delta \tau_{\text{Newton}}} + J + V[D_{\text{TS}}]\right]$$

The pseudo-time term in the FGMRES grows rapidly so that an exact Newton method can be recovered.

Here we employed an inexact Newton approach for efficiency reasons.

• Linear tolerance of 0.1

51

- Introduction
- Governing Equations
- > Challenges
- > Novelty

➢ Results

Summary and Conclusions

Future Work

Test Cases

Case 1: Purely Periodic Pitching Airfoil with Single Frequency Prescribed Motion

Case 1: Purely Periodic Pitching Airfoil with Single Frequency Prescribed Motion

- Naca-0012 Airfoil
- 15573 triangular elements
- Free stream Mach = 0.755
- Prescribed pithing motion:

 $\alpha_t = \alpha_0 + \alpha_A Sin(\omega t)$ $\alpha_0 = 0.016^{\circ} \quad \alpha_A = 2.51^{\circ}$

 $\succ \omega$ is specified via reduced frequency

 $k_c = 0.0814 - 0.1628$

Test Cases

- Case 1: Purely Periodic Pitching Airfoil with Single Frequency Prescribed Motion
 - > Case 1-1 : Testing the performance of FFT based AF for Case 1

Case1-1 : AF Residual Validation

DFT and FFT based AF solver

Case 1-1 : AF Performance comparison

DFT- and FFT- based AF solvers

57

Even number of samples up to 2048, odd number of samples up to 2187

Case 1-1: Optimization for Real Valued Samples

Wall clock time versus number of time instances for original complex FFT and real-data split FFT implementation

Test Cases

- Case 1: Purely Periodic Pitching Airfoil with Single Frequency Prescribed Motion
 - Case 1-1 : Testing the performance of FFT based AF for Case 1
 - Case 1-2 : Testing the performance of FFT based GMRES/AF for Case 1

Case 1-2: FFT-GMRES/AF solver performance

Comparison of the non-linear residual versus iterations for the AF solver and versus Krylov vectors for the GMRES/AF solver with 8 and 1024 number of time instances.

60

Case 1-2: Study of Linear Tolerance

N = 256

Residual versus Krylov vectors for different linear tolerances for 256 number of time instances.

Case 1-2: Study of Linear Tolerance

➢ Non-linear convergence, CFL history, and number of Krylov vectors in each iteration for linear tolerance of 0.5 (left plot), 0.1 (middle plot), 0.01 (right plot).

Case 1-2: Study of Linear Tolerance

Wall-clock time versus number of time instances for different linear tolerances.

Case 1-2: Performance of FFT-based AF and GMRES/AF

Wall-clock time versus number of time instances for FFT based GMRES/AF and FFT based AF solver for up to 2048 number of time instances

64

Case 1-2: Performance of DFT and FFT based GMRES/AF

➤ Wall-clock time for DFT and FFT based GMRES/AF solvers for up to 2048 number of time instances.

Case1-2: Solver Characteristic

Wall-clock time versus number of time instances for FFT based GMRES/AF and FFT based AF solver using different reduced frequencies

Case1-2: Mesh Resolution Study

Convergence study of GMRES/AF solver using 64 number of time instances and linear tolerance of 0.1, with: 20 block-Jacobi sweeps in the preconditioner(Left) solving Jacobi to machine zero in the preconditioner(Right)

Wall Clock Time due to Communication and Computation

Breakdown of wall-clock time for computation and communication of the solver running on NCAR Wyoming Yellowstone supercomputer using up to 2048 processors

68

Wall Clock Time due to Communication and Computation

- Breakdown of wall-clock time for computation and communication within parallel FFT routine running on NCAR- Wyoming Yellowstone supercomputer using up to 4096 processors
- Computation displays expected O(logN) weak scaling
- > The wall clock grows faster than expected due to pattern of communication each level

Wall Clock Time for First and Last Level

- Comparison of communication time for first and last level of parallel FFT routine using up to 4096 processors
- Difference in wall clock time due to non local communication. (Verified by NWSC- Yellowstone system staff)

Test Cases

- Case 1: Purely Periodic Pitching Airfoil with Single Frequency Prescribed Motion
 - Case 1-1 : Testing the performance of FFT based AF for Case 1
 - Case 1-2 : Testing the performance of FFT based GMRES/AF for Case 1
- Case 2: Purely Periodic Pitching Airfoil with Gaussian Bump Motion

Case 2: Purely Periodic Pitching Airfoil with Gaussian Bump Motion

- Naca-0012 Airfoil
- 15573 triangular elements
- Free stream Mach = 0.755
- Prescribed pithing motion:

$$\alpha_t = \frac{1}{\sqrt{20\pi}} e^{-\frac{(t-10)^2}{2}}$$

 $\succ \omega$ is specified via reduced frequency

72

Test Cases

- Case 1: Purely Periodic Pitching Airfoil with Single Frequency Prescribed Motion
 - Case 1-1 : Testing the performance of FFT based AF for Case 1
 - Case 1-2 : Testing the performance of FFT based GMRES/AF for Case 1
- Case 2: Purely Periodic Pitching Airfoil with Gaussian Bump Motion
 - Case 2-1 : Comparison of the performance of FFT based GMRES/AF and BDF2 for Case 2

Case2-1: Gaussian Bump Pitching Motion

Time history of Gaussian bump prescribed pitching motion and (Left) and frequency content of prescribed motion signal (Right)

Case2-1: TS Solution

Computed lift coefficient history using TS solver with different number of time instances (Left) and details of differences between TS solutions for N = 32, 64 and 256 (Right)

75

UNIVERSITY OF WYOMING

Case2-1: FFT- GMRES/AF Convergence

Convergence histories for TS solver as measured by residual versus cumulative number of Krylov vectors, using different number of time-instances

Case2-1: BDF2 Error Study

Temporal error of BDF2 solution for the first and fifth periods using different number of time-steps

Case2-1: BDF2 Solution

Computed lift coefficient time histories using the BDF2 scheme over last of 5 periods for different numbers of time steps (Left) and detail of time histories near peak CL value (Right)

NIVERSITY OF W YOMING

Case2-1: Comparison of BDF2 and TS Error

Temporal error of TS and BDF2 solutions as a function of the number of time-instances or time steps

Case2-1: Comparison of Run Time of BDF2 and TS

N	wall-clock time of BDF2 for 5 periods	wall-clock time of TS	Core hours for TS
8	2155.04	275.84	2206.72
16	3985.31	533.49	8535.84
32	7866.85	757.30	24233.6
64	14932.49	906.58	58021.1
128	28164.49	978.86	125286.4
256	52678.29	1129.60	289177.6

Run time for solving the Gaussian bump problem using BDF2 solver for 5 periods, and TS solver for 8 to 256 time-steps per period or time-instances

UNIVERSITY OF WYOMING

Test Cases

- Case 1: Purely Periodic Pitching Airfoil with Single Frequency Prescribed Motion
 - Case 1-1 : Testing the performance of FFT based AF for Case 1
 - Case 1-2 : Testing the performance of FFT based GMRES/AF for Case 1
- Case 2: Purely Periodic Pitching Airfoil with Gaussian Bump Motion
 - Case 2-1 : Comparison of the performance of FFT based GMRES/AF and BDF2 for Case 2
- Case 3: Quasi-Periodic Pitching Airfoil with Single Frequency Prescribed Motion

NIVERSITY OF WYOMING

Case 3: Quasi-Periodic Pitching Airfoil with Single Frequency Prescribed Motion

Naca-0012 Airfoil

82

 $\bar{\alpha}(t)$

- > 15573 triangular elements
- Free stream Mach = 0.755
- Prescribed pithing motion:

$$\alpha_t = \alpha_0 + \bar{\alpha}(t) + \alpha_A Sin(\omega t)$$

$$= \begin{cases} 0 & t < \\ \alpha_m \frac{1}{2} (1 - \cos(\omega_m (t - t_1))) & t \ge \end{cases}$$

NIVERSITY OF WYOMING

Test Cases

- Case 1: Purely Periodic Pitching Airfoil with Single Frequency Prescribed Motion
 - Case 1-1 : Testing the performance of FFT based AF
 - Case 1-2 : Testing the performance of FFT based GMRES/AF
- Case 2: Purely Periodic Pitching Airfoil with Gaussian Bump Motion
 - Case 2-1 : Comparison of the performance of FFT based GMRES/AF and BDF2
- Case 3: Quasi-Periodic Pitching Airfoil with Single Frequency Prescribed Motion
 - Case 3-1 : Testing the performance of FFT based AF

Case 3-1: FFT-AF Residual Validation

Residual versus iterations for DFT and FFT based AF solver, using 16 time-instances per period for 5 periods

Case 3-1: Performance of DFT- and FFT- based AF

- Comparison of wall clock time versus number of time instances for DFT and FFT based AF solution of the problem.
- Even Number of Samples up to 512 time-instances/processors

UNIVERSITY OF WYOMING

Case 3-1: Comparison of Convergence Rate of AF

Number of Time Instances	Number of Iterations
8	80791
16	82868
32	81256
64	80012
128	81998
256	87322
512	92164

Comparison of convergence rate of the quasi-periodic AF scheme over five periods for different number of time instances per period

UNIVERSITY OF WYOMING

Test Cases

- Case 1: Purely Periodic Pitching Airfoil with Single Frequency Prescribed Motion
 - Case 1-1 : Testing the performance of FFT based AF
 - Case 1-2 : Testing the performance of FFT based GMRES/AF
- Case 2: Purely Periodic Pitching Airfoil with Gaussian Bump Motion
 - Case 2-1 : Comparison of the performance of FFT based GMRES/AF and BDF2
- Case 3: Quasi-Periodic Pitching Airfoil with Single Frequency Prescribed Motion
 - Case 3-1 : Testing the performance of FFT based AF
 - Case 3-2 : Testing the performance of FFT based GMRES/AF

IVERSITY OF WYOMING

Case 3-2: FFT-GMRES/AF Residual Validation

Residual versus iterations for DFT and FFT based GMRES/AF solvers using 16 time-instances per period for 5 periods.

Case 3-2: Performance of DFT- and FFT-based GMRES/AF

➤ Wall-clock time for DFT- and FFT- based GMRES/AF solvers for up to 512 number of time instances.

NIVERSITY OF WYOMING

Case 3-2: Study of Linear Tolerance

Non-linear residual versus number of iterations for linear tolerance of 0.1, 0.01, 0.001

Tighter linear tolerance results in greater wall lock time

Case 3-2: Study of Linear Tolerance

Wall-clock time versus number of time instances for different linear tolerances

Case 3-2: Performance of FFT- based AF and GMRES/AF

➢ Wall-clock time versus number of time instances for FFT- based GMRES/AF and FFT- based AF solver for up to 512 number of time instances

Case 3-2: Comparison of Convergence Rate of GMRES/AF

Number of Time Instances	Number of Iterations
8	1278
16	304
32	333
64	371
128	387
256	415
512	439

Comparison of convergence rate of the quasi-periodic GMRES/AF scheme over five periods for different number of time instances per period

Case 3-2: Performance of BDF1TS and BDF2TS

➤ Wall-clock time for FFT- based BDF1TS and BDF2TS solvers for up to 512 number of time instances.

Case 3-2: Accuracy of BDF1TS and BDF2TS

Lift coefficient error versus log of time instances using BDF1TS and BDF2TS solvers

- > Introduction
- Governing Equations
- > Challenges
- > Novelty
- Results
- Summary and Conclusions
- Future Work

Summary and Conclusions (1/4)

- A new parallel time-spectral algorithm is developed for periodic and quasi-periodic problems
- > The new implementation is based on the FFT and scales as NlogN and results in significant savings compared to previous implementations in terms of wall-clock time which was based on the DFT and scales as $O(N^2)$
- An FFT-based AF algorithm is developed and used as the direct solver to solve purely periodic problems
- FFT-based AF is significantly more efficient than the DFT-based AF solver in terms of wall-clock time

NIVERSITY OF WYOMING

• NlogN computation and communication versus $O(N^2)$

Summary and Conclusions (2/4)

- The FFT-based AF scheme reformulated as a preconditioner for GMRES
 - The GMRES/AF scheme is shown to be consistently and significantly more efficient than the AF scheme alone
 - 2 to 3 times speed up in GMRS/AF compared to AF
- The overall FFT-based GMRES/AF solver performance can be more than an order of magnitude more efficient than the previous DFT-based implementations
 - NlogN computation and communication versus $O(N^2)$
- Both the AF scheme used directly as a solver and the GMRES/AF linear solver are relatively insensitive to the number of time-instances and to the reduced frequency of the problem

Summary and Conclusions (3/4)

- The performance of the FFT-based TS solvers is studied in problems with prescribed motion including a wide range of frequency spectrum
- > The performance of the FFT-based time-spectral solvers is compared to the BDF2
- By improvements made in time-spectral solvers done in this work, these solvers can outperform the time-accurate solvers in problems with high frequency content as well as problems with few harmonic contents

Summary and Conclusions (4/4)

- The application of FFT-based time spectral method is extended to quasi-periodic problems, using BDFTS formulations
- FFT-based BDFTS formulations are dramatically more efficient than the DFTbased BDFTS approach
 - NlogN computation and communication versus $O(N^2)$ in periodic component of the solver
- The BDFTS equations correspond to rank-1 update of the fully-periodic timespectral equations and can be solved effectively by leveraging the FFT-based periodic AF solver using the Sherman-Morrison formulation
- Using parallel FFT- based AF as a preconditioner for GMRES results in 2 to 3 times more efficiency compared to AF alone as the solver.
- Although BDF2TS requires longer wall-clock time for convergence, it provides better accuracy for cases with larger number of time instance, compared to BDF1TS scheme

- Introduction
- Governing Equations
- > Challenges
- > Novelty
- Results
- Summary and Conclusions
- Future Work

Future Work

> Three dimensional parallel in space and time problems

- The performance of the new approach was tested for 2D problems
- The goal was to study the temporal efficiency of the solvers in all the test cases the spatial component was solved in serial
- The 2D test cases with solution of the spatial part on one core are; representative of the size of a spatial portion in a parallel 3D run
- By combining the temporal parallelism afforded by this approach with spatial parallelism, the solution of periodic and quasi-periodic problems of moderate spatial size can be effectively scaled to hundreds of thousands of cores

> Extension to other flow regimes

- The solution of the Euler equations are presented in all the test cases
- For turbulent flow problems, the spatial part becomes harder to solve, and requires more sophisticated spatial solvers
- Other elaborate spatial solvers such as multigrid, ... can make AF a stronger preconditioner for GMRES

Future Work

Studying the viability of BDFTS

- Unlike the TS method, BDFTS methods need to resolve the transient part. Majority of the CPU resources could be spent resolving the transient part of the solution
- In most cases the problem needs the same number of periods as required in timeaccurate methods to resolve the slow transient content

IVERSITY OF WYOMING

- In the BDFTS method each period must be solved faster than time-accurate methods, in order to outperform them
- Comparison of the performance of BDF1TS and BDF2TS in 3D problems

Acknowledgements

> Committee:

Dr. Dimitri Mavriplis (advisor) Dr. Jayanarayanan Sitaraman Dr. Joshua Leffell Dr. Jonathan W. Naughton Dr. Michael Stoellinger Dr. Fred Furtado Family and Friends

Lab mates

Acknowledgements

This research was sponsored by

- NASA's Transformational Tools and Technologies (TTT) Project of the Transformative Aeronautics Concepts Program under the Aeronautics Research Mission Directorate
- the Alfred Gessow Rotorcraft Center of Excellence through a subcontract with the University of Maryland

Computer resources were

NCAR-Wyoming Supercomputer Center(NWSC) and by the University of Wyoming Advanced Research Computing Center(ARCC).

Thank You

