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Introduction

» The simulation of unsteady phenomena typically demands large
computational investments to achieve suitable accuracy

» Temporally periodic problems are one of the sub-categories of

unsteady problems, that have a broad range of applications in the
industry.

» These include wind-turbine flows, rotorcraft flows,
turbomachinery flows, and vortex shedding problems

» Traditionally, time-marching methods were employed for
unsteady flow problems including temporally periodic problems

» Time-marching methods solve the problem for several periods

until the initial transient part is resolved, and periodic steady state
~_is obtained
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Introduction

» In most realistic problems solving the transient part is very time
consuming, making time-marching methods inevitably expensive

» Frequency-domain methods directly solve for the periodic solution
and avoid the transient parts

» Time-spectral methods (TS) are among the frequency-domain
methods that avoid resolving the transient parts and are more
favorable in purely-periodic problems

» A hybrid backward difference time-spectral (BDFTS) discretization
is an extension of the time-spectral approach for quasi-periodic
problems
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TS Introduction

>

>

Span the characteristic time period with time Period
instances

Represent the time derivatives in governing
equations as linear combinations of
corresponding values in other time instances

All the time instances are coupled. (Solve for all t|me mstances
simultaneously)

Because of spectral convergence due to Fourier series, limited
number of temporal DOF results in accurate solutions

The time instances are computed in parallel. Exploit more
parallelism by parallelizing temporal part, each time instance is
assigned to an individual processor
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BDFTS Introduction

» Time-spectral methods are only applicable in the presence of
fully periodic flows, which represents a severe restriction for
many aerospace engineering problems

» Quasi-periodic problems are problems that include a slow
transient in addition to strong periodic behavior

» Applications in transient turbofan simulation, maneuvering
rotorcraft calculations, ...

» A hybrid backward difference time-spectral (BDFTS) discretization
is an extension of the time-spectral approach for quasi-periodic
problems
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Base Solver

» Inviscid compressible flow
» Arbitrary-Lagrangian-Eulerian (ALE) form of Euler equations

aU+VF(U)—O
ot ' B

d

— (F(U) —Ux).nds =0

0t Jaan
A(UV)

dt

» Central difference finite volume cell based in space

+R(U,%7) =0

» Time discretization: BDF1, BDF2, TS, BDFTS
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Temporal Derivative : BDF

» First-order backward difference scheme (BDF1)

oU Un+1 _ Un
ot At

» Second-order backward difference scheme (BDF2)

0(AD)

oU  3U™1 — 4y 4+ Un?

0 (At?
ot 2At (8t%)

U™*1is the solution t current time-step

U™ is the solution at the previous time-step
U™ 1 is the solution at the two time-steps ago
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Temporal Derivative : TS

» Used in temporal purely periodic problems

Time Spectral temporal Discretization:
Collocation method using harmonic basis functions in time

First derivative in time: CFD
6(Un) N—1
N 7 Jrri
ot z dnU
j=0

Discrete Euler Equation Becomes: No change in spatial
discretization

e Coefficients (d" ) derived analytically using convolution of Fourier transform and synthesis.
B = : L
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Temporal Derivative : BDFTS

> Problems with a slow transient U(t) = ﬁ(t) +0(0)

in addition to a strong periodic /”‘ T s
behavior in time (quasi-periodic periodic Mean
problems)
COncept of p0|yn0mia| Period Period nth Period (n+1)th

>

. <——>
subtraction for spectral . :

methods(Gottlieb and Orzag
(1977), Lanczos)

TS  BDFTS
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Temporal Derivative : BDFTS

BDF1TS derivative:

oum N N =N
ot =Zdﬂ]UJ _(Zd#(Pu(tj)_(PiZ(tn))UnH _(ng\(Pll(tj)_(Pil(tn))Um n=12,..,N
=1 =) =1

¢1; and @;, are the linear interpolation functions
N-1

ZdnjUj Time spectral derivative
1

ymt Ending point of the period (Unknown)
um Beginning point of the period (known)

BDFTS derivation can be reformulated as:
[D,, U =[D op JU +[Mat , JU + cofist.

Spectral Matrix Rank-1 Matrix

L S
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TS Solvers : Approximate Factorization

. . . avU i o
» The non-linear space time system is: — T R(U™ x™"n)=0
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TS Solvers : Approximate Factorization

. . . VU o
» The non-linear space time system is: — T R(U™ x™",n)=0

» The residual is obtained from: + R(U™, x™,n) = Res

Obtained from any formulation
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TS Solvers : Approximate Factorization

. . . VU n =
» The non-linear space time system is: — T R(U™ x™",n)=0

» The residual is obtained from: % R(U™, x™,n) = Res

Obtained from TS or BDFTS formulations
» The entire non-linear space-
time system of equations is [A]JAU = —Res
linearized by Newton-
Raphson method

[A] is the complete time-spectral Jacobian matrix
Res is the total residual of time-spectral system

= - L L
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TS Solvers : Approximate Factorization

> Approximates [A] as: [A] = ([Temporal Part])([Spatial Part])

» Separates spatial and temporal parts

» Not exact and include an error which is Atj/[D]

Jis the Jacobian of the spatial part of the system
[D] is the TS or BDFTS derivative matrix

» Solves for AU in two steps:

v’ solve the spatial part to find intermediate value, AAU
using direct or iterative methods e.g. block Gauss-Seidel

v' Using AAU, the temporal matrix is inverted to find AU

/ > e - L L
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Improvement in TS solver

» Factorization error depends on the pseudo-time step

» Using AF as the solver suffers from requiring a small
pseudo-time step or CFL number
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Improvement in TS solver

» Factorization error depends on the pseudo-time step

» Using AF as the solver suffers from requiring a small
pseudo-time step or CFL number

Using AF as a preconditioner in the context of the Newton-
Krylov method
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Newton-Raphson Method

. . . VU n =
» The non-linear space time system is: — T R(U™ x™",n)=0

» The residual is obtained from: % R(U™, x™,n) = Res

Obtained from TS or BDFTS formulations
» The entire non-linear space-
time system of equations is [A]JAU = —Res
linearized by Newton-
Raphson method

[A] is the complete time-spectral Jacobian matrix
Res is the total residual of time-spectral system

= - L L
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Newton-Raphson Method

. . . VU o
» The non-linear space time system is: — T R(U™ x™",n)=0

» The residual is obtained from: % R(U™, x™,n) = Res

Obtained from TS or BDFTS formulations
» The entire non-linear space-
time system of equations is [A]JAU = —Res
linearized by Newton-
Raphson method

The linear system over all time and
space at each step of Newton
solution is solved to a specified
linear tolerance using a Krylov
method (GMRES)

[A] is the complete time-spectral Jacobian matrix
Res is the total residual of time-spectral system

L
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TS Solvers : GMRES

» Flexible GMRES algorithm that allows an iterative method as a
preconditioner has been described by Saad:

1: Given Ax=Db

2: Compute ryp = b — Axy, B = HI‘Q

2, and vy =ro/B

3: for j=1,...,ndo

4 Computez; :=Plv;

5:  Compute w := Az;

6: fori=Il,...,jdo

7 hiyj = (W,Vl‘)

8: Wi=W-—h;v;

9:  end for

10: Compute hj_HJj: ||W||2 an_d Vit :W//’lj_HJ

11: Define Zm = [Zl,. .. ,Zm}, Hm = {hi,j}lgigﬂ—l;lgjgm
12: end for

13: Compute y,, = argmmy”BeI - HmyHZ and X, = X0 + Z,,¥m
14: If satisfied Stop, else set xp +— x,, and GoTo 1.

= : L
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TS Solvers : GMRES/AF

» Flexible GMRES algorithm that allows an iterative method as a
preconditioner has been described by Saad:

» AF solver is used as a preconditioner in line 4 of the algorithm

1: GivenAx=Db
2: Compute ro = b — Ax, p = ||rp
3: for j=1.....n da

2, and V) = I‘()/B

) P .
4: (Compute z; :=P"'v AF as a preconditioner
5:  Compute w = Az;
6: fori=Il,...,jdo
7. hi,j = (W,Vi)
8: W =W—h; V;
9:  end for
10: Compute hj+],j: ||W||2 anfl Vit :W/hj+'17j
11: Define Zm = [Zl, cen ,Zm}, Hm = {hi,j}1§i§j+l;1§j§m
12: end for

13: Compute y,, = argmi”yHBel - Hmy”2 and X, = Xg + Z,,,¥m
14: If satisfied Stop, else set xy < x,,;, and GoTo 1.

= B L L
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Drawbacks of TS

» Traditionally, TS formulation was based on Discrete Fourier Transform

N
Coun om N <
T[ i A2 .
ot T N .
_—N Jj=
k‘z
k=g , e ,
. TC TC
77 IknAt— A —lknAt—
o= 3, BN 3 e
N ¥ N
k=—7 n=0
Fourier Inverse Transform Fourier Transform

How many operations are involved?
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Drawbacks of TS

Based on Discrete Fourier Transform

au™ _ 21 o~ iknAt2T
at T _
k=ﬂ J=0

Rewriting the summation results in dense matrix [Dy]

O, | [d d5 . d%] [V

U, |_| di . dY] Y Total number of
operations: O(N?)

Uy [dyd dyd - ANt L Yn1

Wall clock time scales linearly with number of time instances
(running in parallel) which is not desirable.
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Novelty

We tried to overcome this challenge:

» In this work, time-spectral method is implemented
based on the parallel fast Fourier transform (FFT)

» The parallel FFT-based AF and GMRES/AF are
implemented

3 T
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Fast Fourier Transform (FFT)

Assuming the number of samples: N = 2L

Considering Discrete Fourier Transform Formulation:

N4
2T A , 2T
T + U2n+1e—lk(2n+1)AtT)

DFT of odd sequence {U?"*1}

B
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Fast Fourier Transform (FFT)

Recursively split each part to even /odd groups until each group has

only one member. =7 I
Uk = — Ule T
N
n=

. / \
-1  om L 7!
N

i z-1 71 . om o2m g 1 ; 21
R 1 % —iknZ® ikt % —iknAtET . 1 on —lknW —lkﬁ — —Lknﬂtﬁ
U.=—() U¥Me late " Untie /4) Uy=5—() U e 4+e 2 U e 4)
‘ N/Z 1;) ,;) /2 n=0 nz:;)
Number of divisions: L = log?}
- : L
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Parallel FFT Communication Count

For each Uy, in each level e, and o}, are needed;

each member in each level requires the data of another member to
calculate its share

1 )
Uy =N(9k+W Ok)

In each level N communication occurs.

N N? Nlog, N N2
Total number of Nlog, N
communication 512 218 2% %9 56.888
20 10
O(Nlog, N 1024 2 210410 | 1024
( 82 V) 2048 222 211 %11 | 186.181
== : e e
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Reordering

» Splitting into odd/ even groups changes the order of samples

» Danielson-Lanczos lemma is used to find odd/even reordering pattern
of samples

»The new ordering is obtained by bit-reversal of the original sample.

000 001 010 011 100 101 110 111
1 2 3 4 5 6 7
o ™~
0 2 4 6 1 3 5
*’:E,””””’ ~‘=\\\\\\El\\‘ ’,jiz”"””’

0

<

Bit-Reversed Reordering

O S— O
B2 o—
N — N
D e N
Ul s N

1
N 7 1
000 100 o010 110 001

Recursive subdivision of N=8 sample set and corresponding bit-reversal ordering
L
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Communication Pattern of FFT

D

N IS T s
NN SIS "
RN AR == I
NZANNIED==4 .
DA N I

N /
» Communication pattern for all levels for 8 number of samples

» The levels in which further processors should communicate are
more expensive

3 S
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TS Derivative based on FFT

» Calculate FFT of samples (O (logN) communication )

> Multiply Uy, into corresponding ik (No communication)

> Calculate the inverse of ikU, (0 (logN) communication )
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TS Derivative based on FFT

» Calculate FFT of samples (O (logN) communication )

» Multiply Uk into corresponding ik (No communication)

> Calculate the inverse of ikU, (0 (logN) communication )

The number of communication in FFT-
based TS is O(logN)

& : L

N T W UNIVERSITY or WYOMING



No Reordering Required for FFT-TS

P, P, P, P; P, Ps P, P,
» Standard parallel FFT requires final

reordering of data
* Entire spatial grid from each P, P, P, P. P, Ps P, P,

core. Pattern of communication due to
reordering for 8 number of samples in
parallel FFT routine.

36 Q&UN[VERSITVOF\WVOMING




No Reordering Required for FFT-TS

P, P, P, P3 P, Ps Pg P
» Standard parallel FFT requires final
reordering of data
* Entire spatial grid from each P, P, P, P. P, Ps P, P,

core. Pattern of communication due to
reordering for 8 number of samples in
parallel FFT routine.

» Time spectral implementation
always requires the application of a
forward FFT followed by an Inverse
FFT

37 Q&UN[VERSITVOF\WVOMING




No Reordering Required for FFT-TS

» Standard parallel FFT requires final
reordering of data
* Entire spatial grid from each
core.

» Time spectral implementation
always requires the application of a
forward FFT followed by an Inverse
FFT

» There is no need to reorder data
* All that is required is k in the
IFFT and the address of each core
for the communication pattern at
— each level

Pob P, P, P3 P, Ps Ps P;

P, P, P, P; P, P P, P,
Pattern of communication due to
reordering for 8 number of samples in
parallel FFT routine.

Py

20T T TVNN

new pRrew pnew pnew pnew pnew pnew P new
4 2 6 1 5 3

New addressing of cores for 8 number of
samples to avoid extra communication in
parallel TS routine

N
k—j—l

ou™ 21 -
at T (ke
N

k=

iknAtz?n

2
o e—
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Extension of FFT Application

» Time-spectral method is implemented based on base-3
FFT

> The number of operations reduces from O(N?) to
0(2Nlog)

IR
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Extension of FFT Application

» Implementation of FFT-based second-order time-
spectral derivative

> The number of operations reduces from O(N?) to
O(NlogN)

» |n aero-structural problems such as flutter problems, ...

92un 21 o ienaplT
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FFT-AF in Purely Periodic Problems

» The non-linear space time system is: a;/_tu + R(U™ x™,n) =0
> The residual is obtained from: [Dpp]VU + R(U™, x™, 1) = Res

» The entire non-linear space- [A]AU = —Res
time system of equations is
linearized by Newton-

[A] = 4 +J 4+ V[Dppl
Raphson method =1 J ppl]

AT

[A] is the complete time-spectral Jacobian matrix

Res is the total residual of time-spectral system
Vis the cell volume

At is the AF pseudo time-step

J is the Jacobian of spatial part

_ [Dpp] is the spectral matrix

i > £ - T
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FFT-AF in Purely Periodic Problems

> Approximates [A] as:  [A] = ({I] + At[Dpp] @

Temporal Part Spatial Part

» Find intermediate value AAU by solving the spatial part, using any
direct or iterative solver

4 .
» Take FFT of AAU to find AAU,

. ~ 1 , .
> Solve temporal part < » Multiply AAUy by ———to find AU

> Take IFFT of AU, to find AU

\.

= B L L
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FFT-AF in Quasi-Periodic Problems

. . . VU n =
» The non-linear space time system is: — T R(U™ x™",n)=0

» The residual is obtained from: [Dgp]lVU + R(U™, x™, 1) = Res

[Dgp]VU = [Dpp]VU + [Mat,,]VU + const.
» The entire non-linear space-

time system of equations is
linearized by Newton-

Raphson method [A]JAU = —Res = _[qu]VU — R(U™ 1™ n)

. . . . 174

Res st ot resuntof amespecra om0 = [+ VIDG ]
pectral system

V is the cell volume [Dgp] = [Dppl + [Mat,]

At is the AF pseudo time-step

J is the Jacobian of spatial part

____ [Dgpl is the quasi-periodic matrix

t > - ——
43
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FFT-AF in Quasi-Periodic Problems

> Approximates [A]as:  [A] = ([I] + At[Dg, @

Temporal Part Spatial Part
[Dap] = [Dpp] + [Mat;4]

» Find intermediate value AAU by solving the spatial part, using any
direct or iterative solver

» Using the intermediate value, AAU the temporal matrix is inverted

to find AU
AU=[[I] + At|D;,|1"*AAU

L
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FFT-AF in Quasi-Periodic Problems

> Approximates [A]as:  [A] = ([I] + At[Dg, @

Temporal Part Spatial Part
[Dap] = [Dpp] + [Mat;4]

» Find intermediate value AAU by solving the spatial part, using any
direct or iterative solver

» Using the intermediate value, AAU the temporal matrix is inverted

to find AU
AU=[[I] + At|D;,|1"*AAU

Using FFT?

L
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FFT-AF in Quasi-Periodic Problems

» Calculation of the temporal part of AF can be done much easier in frequency domain
» The temporal equation:

(I +A7[D,1)AU = (I +A7[D, ]+Az[Mat, ])AU = AAU

N s W UNIVERSITY or WYOMING



FFT in Approximate Factorization Scheme

» Calculation of the temporal part of AF can be done much easier in frequency domain
» The temporal equation:

(I +A7[D, AU = (I + A7[D, 1+ Az[Mat, ])AU = AAU

[Dee] [Mat,,]=[0v"]
» Easy to find the inverse of [Dgp] in the FD
» Spectral matrix is diagonal in the FD
» [D;.]is modified by a rank-1 matrix

» The inverse of the temporal matrix is calculated using the Sherman Morrison
formulation

»Two times inversion of the [D;,] is required in this process.

(I3 ]+07")* = [D;p ]~ [Peel UV el

a5
Q[E@\) Scalar

S—
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FFT in Approximate Factorization Scheme

» Find the intermediate value, AAU by solving the spatial part
» Solve the temporal part:

. Find FFT of AAU to find AAU,

. FindAU . by taking the inverse of the temporal matrix using Sherman-
Morrison formulation

lll.  Transfer back the result to time domain using IFFT to obtain AU

£ - L L
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Newton-Raphson Method

. . . VU o
» The non-linear space time system is: — T R(U™ x™",n)=0

» The residual is obtained from: % R(U™, x™,n) = Res

Obtained from TS or BDFTS formulations
» The entire non-linear space-
time system of equations is [A]JAU = —Res
linearized by Newton-
Raphson method

The linear system over all time and
space at each step of Newton
solution is solved to a specified
linear tolerance using a Krylov
method (GMRES)

[A] is the complete time-spectral Jacobian matrix
Res is the total residual of time-spectral system

L
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FFT-based GMRES/AF

» Flexible GMRES algorithm that allows an iterative method as a
preconditioner has been described by Saad:

» AF solver is used as a preconditioner in line 4 of the algorithm

1: GivenAx=Db
2: Compute ro = b — Ax, p = ||rp
3: for j=1.....n da

2, and V) = I‘()/B

. =PIy i
4: CComputez;:=P" v FFT-AF as a preconditioner
5:  Compute w = Az;
6: fori=Il,...,jdo
T hi,j = (W,Vi)
8: W =W—h; V;
9:  end for
10: Compute hj+],j: ||W||2 anfl Vit :W/hj+'17j
11: Define Zm = [Zl, ces ,Zm}, Hm = {hi,j}1§i§j+l;1§j§m
12: end for

13: Compute y,, = argmi”yHBel - Hmy”2 and X, = Xg + Z,,,¥m
14: If satisfied Stop, else set xy < x,,;, and GoTo 1.

= B L L
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More on GMRES/AF

» Two pseudo-time terms are used in GMRES:
*  The constant pseudo-time term in the preconditioner:

V
[AL= [+ T30 [1+1]

*  The growing pseudo-time term in the space-time Jacobian of the GMRES:

[A]=[+J+V[DTS]]

» The pseudo-time term in the FGMRES grows rapidly so that an exact
Newton method can be recovered.

» Here we employed an inexact Newton approach for efficiency
reasons.
* Linear tolerance of 0.1

B
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Test Cases

» Case 1: Purely Periodic Pitching Airfoil with Single Frequency
Prescribed Motion
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Case 1: Purely Periodic Pitching Airfoil with Single
Frequency Prescribed Motion

SISO/

'eé i

PNREORIEEES 5
K /"'7_‘/' ‘,
Va) 49 %%’%}%}.’5 :'%«e Ay
DA ?‘g“’i}g X

» Naca-0012 Airfoil

K
K

%

» 15573 triangular elements
» Free stream Mach = 0.755

e e
69 g £ et A

» Prescribed pithing motion:
ar = ag + aSin(wt)
ap, = 0.016" a4 = 2.51°
» w is specified via reduced frequency

k. =0.0814 - 0.1628

— . - ST ——
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Test Cases

» Case 1: Purely Periodic Pitching Airfoil with Single Frequency
Prescribed Motion

» Case 1-1: Testing the performance of FFT based AF for Case 1

N - W UNIVERSITY or WYOMING



Casel-1: AF Residual Validation

> DFT and FFT based AF solver

10°F 10° |
DFT
100k ——=—— DFT 10 FeT
= FFT =
1]
=
3 el
D10°k S10°F
é o
5 S
ErocL E 0ok
5 ]
3 z
Fo ) o
310—7 L 3 10'7 -
10 e 10°
E e Eo Ly
0 5000 10000
. 0 5000 10000
Number of Iterations Number of terations
- S ; L i
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Case 1-1 : AF Performance comparison

10° | 10° F

n ?
E E
[= -

-
E 8
o o
= 104 —_ 104
(] - ©
2 £
g 8

10° PRI R RNE NSRS ST 10°
500 1000 1500 2000

| RN I SR N TR N NS S T NN NN
500 1000 1500 2000
Number of Time Instances Number of Time Instances
Even Odd

> DFT- and FFT- based AF solvers
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Case 1-1: Optimization for Real Valued Samples

3500 ——— Without Optimization

——— With Optimization

[
[=3
o
o

[\%)
o
o
o

n
o
(=]
o

1500 F

1000

Wall Clock Time(seconds)

500 |-

|
2000
Number of Time Instances

L 1
3000

2000

1 [T RS N
0% 7000

» Wall clock time versus number of time instances for original complex FFT
and real-data split FFT implementation

58 %UN[VERSITVOFWVOMING




Test Cases

» Case 1: Purely Periodic Pitching Airfoil with Single Frequency
Prescribed Motion

» Case 1-1: Testing the performance of FFT based AF for Case 1
> Case 1-2 : Testing the performance of FFT based GMRES/AF for
Casel
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Case 1-2: FFT-GMRES/AF solver performance

4 10*
10°R AF AF
GMRES/AF GMRES/AF
10° 10°
- ©
3 3
%10'6 — w10°
o (]
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i
10k 10
i .|
10° 10°F
F NIRRT SRS ST RS RS |
T L 1000 2000 3000 4000 5000
1000 Iterafgjgslkeyfg?rOVeclo?OOD 5000 Iterations/Keylov Vector
N=8 N =1024

» Comparison of the non-linear residual versus iterations for the AF solver and versus
Krylov vectors for the GMRES/AF solver with 8 and 1024 number of time instances.
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Case 1-2: Study of Linear Tolerance

10 ———— Lin-tol = 0.01
8 ~————— Lin-tol =0.1
———— Lin-tol =0.5
10°
—10°F
1]
3
=]
107k
o
10°
10°
1049_“‘|.“| IR RS |
500 1000 1500 2000
Cumulative Number of Krylov Vectors

N =256

» Residual versus Krylov vectors for different linear tolerances for 256
number of time instances.
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Case 1-2: Study of Linear Tolerance

o

Residual
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» Non-linear convergence, CFL history, and number of Krylov vectors in
each iteration for linear tolerance of 0.5 (left plot), 0.1 (middle plot), 0.01

(right plot).
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Case 1-2: Study of Linear Tolerance
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> Wall-clock time versus number of time instances for different linear
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Case 1-2: Performance of FFT-based AF and GMRES/AF

2500

| —=— FFT-AF
. A FFT-GMRES/AF
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Wall Clock Time(seconds)
o
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LT 07 10°
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» Wall-clock time versus number of time instances for FFT based GMRES/AF
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Case 1-2: Performance of DFT and FFT based GMRES/AF

——@— DFT-GMRES
. —y—— FFT-GMRES
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Log(Wall Clock Time)
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[ | | N [ |
1000 2000 3000 4000
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» Wall-clock time for DFT and FFT based GMRES/AF solvers for up to 2048
number of time instances.
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Casel-2: Solver Characteristic
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> Wall-clock time versus number of time instances for FFT based
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Casel-2: Mesh Resolution Study

——#— Fine
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Residual
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Residual
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20 block-Jacobi sweeps Solving Jacobi to machine zero

» Convergence study of GMRES/AF solver using 64 number of time instances
and linear tolerance of 0.1, with: 20 block-Jacobi sweeps in the

preconditioner(Left) solving Jacobi to machine zero in the precondltloner(nght)
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Wall Clock Time due to Communication and Computation

1000
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(seconds)
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10°

» Breakdown of wall-clock time for computation and communication of the solver
running on NCAR Wyoming Yellowstone supercomputer using up to 2048 processors
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Wall Clock Time due to Communication and Computation

al —=— Total Time
——#—— Communication
—&—— Computation

Wall Clock time(seconds)

0 TR | I L |

107 10
Log(Number of Time Instances)

» Breakdown of wall-clock time for computation and communication within parallel FFT
routine running on NCAR- Wyoming Yellowstone supercomputer using up to 4096
processors

» Computation displays expected O(logN) weak scaling

The wall clock grows faster than expected due to pattern of communication each level
X < s e A
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Wall Clock Time for First and Last Level

§ | f— :
04F U, ~— U
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10 10°
Log(Number of Time Instances)

» Comparison of communication time for first and last level of parallel FFT
routine using up to 4096 processors

» Difference in wall clock time due to non local communication. (Verified by
NWSC- Yellowstone system staff)
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70 %UN[VERS]TVOFWVOMING



Test Cases

» Case 1: Purely Periodic Pitching Airfoil with Single Frequency
Prescribed Motion

» Case 1-1: Testing the performance of FFT based AF for Case 1
> Case 1-2 : Testing the performance of FFT based GMRES/AF for
Case 1l
» Case 2: Purely Periodic Pitching Airfoil with Gaussian Bump
Motion

e - L L
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Case 2: Purely Periodic Pitching Airfoil with Gaussian Bump
Motion |

» Naca-0012 Airfoil
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Test Cases

» Case 1: Purely Periodic Pitching Airfoil with Single Frequency
Prescribed Motion

» Case 1-1: Testing the performance of FFT based AF for Case 1
> Case 1-2 : Testing the performance of FFT based GMRES/AF for
Casel
» Case 2: Purely Periodic Pitching Airfoil with Gaussian Bump
Motion
» Case 2-1: Comparison of the performance of FFT based
GMRES/AF and BDF2 for Case 2

e > = R
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Case2-1: Gaussian Bump Pitching Motion

012 0015
01}
T - 0.01}
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Time

» Time history of Gaussian bump prescribed pitching motion and (Left) and
frequency content of prescribed motion signal (Right)
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Case2-1: TS Solution

i 011769
— & N=32
0.1 — = N=64
| —p—— N=256
0.117685 =
0.05
— 011768 |
o o
W ==
I 0.117675 |
-0.05 011767 |-
i R R | a1 [ 1 T
9.1395 9.14 9.1405 9141 91415

Time

» Computed lift coefficient history using TS solver with different number of
time instances (Left) and details of differences between TS solutions for N = 32,
64 and 256 (Right)
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Case2-1: FFT- GMRES/AF Convergence

Residual

oo b ! L
0 500 1000 1500 2000 2500
Number of Krylov Vectors

TN B
3000 3

» Convergence histories for TS solver as measured by residual versus
cumulative number of Krylov vectors, using different number of time-instances
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Case2-1: BDF2 Error Study

107

——&—— Fifth Period
———— First Period
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Log(Number of Time Steps per Period)

» Temporal error of BDF2 solution for the first and fifth periods using
different number of time-steps
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Case2-1: BDF2 Solution
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» Computed lift coefficient time histories using the BDF2 scheme over last of
5 periods for different numbers of time steps (Left) and detail of time histories
r peak CL value (Right)
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Case2-1: Comparison of BDF2 and TS Error

=i0% L ———— Time Spectral
2 —&— BDF2
w
10°
107 |
10°
10° Gl

700 50 200250
Log(Number of Time Instancesi Time Steps)

» Temporal error of TS and BDF2 solutions as a function of the number of
time-instances or time steps
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Case2-1: Comparison of Run Time of BDF2 and TS

N  wall-clock time of BDF2 for 5 periods wall-clock time of TS Core hours for TS
8 2155.04 275.84 2206.72
16 3985.31 533.49 8535.84
32 7866.85 757.30 24233.6
64 14932.49 906.58 58021.1
128 28164.49 978.86 125286.4
256 52678.29 1129.60 289177.6

» Run time for solving the Gaussian bump problem using BDF2 solver for 5
periods, and TS solver for 8 to 256 time-steps per period or time-instances

80 %UN[VERSITVOFWVOMING



Test Cases

» Case 1: Purely Periodic Pitching Airfoil with Single Frequency
Prescribed Motion

» Case 1-1: Testing the performance of FFT based AF for Case 1
> Case 1-2 : Testing the performance of FFT based GMRES/AF for
Casel
» Case 2: Purely Periodic Pitching Airfoil with Gaussian Bump
Motion
» Case 2-1: Comparison of the performance of FFT based
GMRES/AF and BDF2 for Case 2
» Case 3: Quasi-Periodic Pitching Airfoil with Single Frequency
Prescribed Motion

3 T
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Case 3: Quasi-Periodic Pitching Airfoil with Single
Frequency Prescribed Motion

SIAAII -
» Naca-0012 Airfoil LR R

V|
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\ AR ARSI
e e i, ovavaV e (N
7 ‘ o ”?ﬁ- mﬁ%A' ‘ AV )
ek : DALGRX
. 5
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» 15573 triangular elements
» Free stream Mach = 0.755

» Prescribed pithing motion:

ar = ag + a(t) +ay Sin(wt)

0
a(t) = {

@5 (1 = cos(wn(t — t;)))

a, = 251° w;, = 0.1628 Periodic Content Quasi- Periodic
ap = 0.016 Wy, = 0.1w;  slow Transient Problem
5~ a = S T ——
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Test Cases

» Case 1: Purely Periodic Pitching Airfoil with Single Frequency
Prescribed Motion

» Case 1-1: Testing the performance of FFT based AF
> Case 1-2 : Testing the performance of FFT based GMRES/AF

» Case 2: Purely Periodic Pitching Airfoil with Gaussian Bump

Motion
» Case 2-1: Comparison of the performance of FFT based
GMRES/AF and BDF2

» Case 3: Quasi-Periodic Pitching Airfoil with Single Frequency
Prescribed Motion
» Case 3-1: Testing the performance of FFT based AF
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Case 3-1: FFT-AF Residual Validation

10°

Residual
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» Residual versus iterations for DFT and FFT based AF solver, using 16 time-instances
per period for 5 periods
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Case 3-1: Performance of DFT- and FFT- based AF

300000 F
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ock Tim
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» Comparison of wall clock time versus number of time instances for
DFT and FFT based AF solution of the problem.

» Even Number of Samples up to 512 time-instances/processors
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Case 3-1: Comparison of Convergence Rate of AF

Number of Time Instances Number of Iterations

8 80791

16 82868

32 81256

64 80012
128 81998
256 87322
512 02164

» Comparison of convergence rate of the quasi-periodic AF scheme over
five periods for different number of time instances per period

e - L L
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Test Cases

» Case 1: Purely Periodic Pitching Airfoil with Single Frequency
Prescribed Motion

» Case 1-1: Testing the performance of FFT based AF
> Case 1-2 : Testing the performance of FFT based GMRES/AF

» Case 2: Purely Periodic Pitching Airfoil with Gaussian Bump

Motion
» Case 2-1: Comparison of the performance of FFT based
GMRES/AF and BDF2

» Case 3: Quasi-Periodic Pitching Airfoil with Single Frequency
Prescribed Motion
» Case 3-1: Testing the performance of FFT based AF
> Case 3-2 : Testing the performance of FFT based GMRES/AF
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Case 3-2: FFT-GMRES/AF Residual Validation

DFT
FFT

Resigual

N IEREN VR R
100 150
Iterations

T R Ll
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» Residual versus iterations for DFT and FFT based GMRES/AF solvers using
16 time-instances per period for 5 periods.
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Case 3-2: Performance of DFT- and FFT-based GMRES/AF

300000
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150000 |
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Log(Wall Clock Time)

a0
Number of Time Instances
» Wall-clock time for DFT- and FFT- based GMRES/AF solvers for up to 512
number of time instances.
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Case 3-2: Study of Linear Tolerance

LT =01
LT = 0.01
LT = 0.001

Residual

Lt B350 5
T

1‘1\
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Number of Iterations

» Non-linear residual versus number of iterations for linear tolerance of
0.1, 0.01, 0.001

» Tighter linear tolerance results in greater wall lock time
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Case 3-2: Study of Linear Tolerance
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> Wall-clock time versus number of time instances for different linear
tolerances
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Case 3-2: Performance of FFT- based AF and GMRES/AF

55000 3
50000
45000
40000 — ®m— AF
35000 —#—— GMRES/AF
g 30000
¥ 25000
3
o i
© 20000
] i
E i
o 15000
o i
|
10000

R IR N R SRR | I R |
100 200 . 300 400 500
Number of Time Instances

» Wall-clock time versus number of time instances for FFT- based GMRES/AF
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Case 3-2: Comparison of Convergence Rate of GMRES/AF

Number of Time Instances Number of Iterations
8 1278
16 304
32 333
64 371
128 387
256 415
512 439

» Comparison of convergence rate of the quasi-periodic GMRES/AF
scheme over five periods for different number of time instances per

period
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Case 3-2: Performance of BDF1TS and BDF2TS
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» Wall-clock time for FFT- based BDF1TS and BDF2TS solvers for up to 512

P

number of time instances.
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Case 3-2: Accuracy of BDF1TS and BDF2TS

Log(Error)
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» Lift coefficient error versus log of time instances using BDF1TS and
BDF2TS solvers
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» Introduction

» Governing Equations

» Challenges

» Novelty

» Results

» Summary and Conclusions
» Future Work
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Summary and Conclusions (1/4)

» A new parallel time-spectral algorithm is developed for periodic and quasi-periodic
problems

» The new implementation is based on the FFT and scales as NlogN and results in
significant savings compared to previous implementations in terms of wall-clock
time which was based on the DFT and scales as O(N?)

» An FFT-based AF algorithm is developed and used as the direct solver to solve
purely periodic problems

» FFT-based AF is significantly more efficient than the DFT-based AF solver in terms

of wall-clock time
*  NlogN computation and communication versus O (N?)

97

ﬁUNIVERSITV of WYOMING




Summary and Conclusions (2/4)

» The FFT-based AF scheme reformulated as a preconditioner for GMRES

* The GMRES/AF scheme is shown to be consistently and significantly more efficient than
the AF scheme alone

* 2to 3times speed up in GMRS/AF compared to AF

» The overall FFT-based GMRES/AF solver performance can be more than an order of
magnitude more efficient than the previous DFT-based implementations

* NlogN computation and communication versus O (N?)

» Both the AF scheme used directly as a solver and the GMRES/AF linear solver are
relatively insensitive to the number of time-instances and to the reduced frequency
of the problem
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Summary and Conclusions (3/4)

» The performance of the FFT-based TS solvers is studied in problems with prescribed
motion including a wide range of frequency spectrum

» The performance of the FFT-based time-spectral solvers is compared to the BDF2

» By improvements made in time-spectral solvers done in this work, these solvers
can outperform the time-accurate solvers in problems with high frequency content
as well as problems with few harmonic contents
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Summary and Conclusions (4/4)

» The application of FFT-based time spectral method is extended to quasi-periodic
problems, using BDFTS formulations

» FFT-based BDFTS formulations are dramatically more efficient than the DFT-
based BDFTS approach

« NlogN computation and communication versus O(N?) in periodic component of the solver
» The BDFTS equations correspond to rank-1 update of the fully-periodic time-

spectral equations and can be solved effectively by leveraging the FFT-based
periodic AF solver using the Sherman-Morrison formulation

» Using parallel FFT- based AF as a preconditioner for GMRES results in 2 to 3
times more efficiency compared to AF alone as the solver.

» Although BDF2TS requires longer wall-clock time for convergence, it provides
better accuracy for cases with larger number of time instance, compared to
BDF1TS scheme
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» Introduction

» Governing Equations

» Challenges

> Novelty

» Results

» Summary and Conclusions
» Future Work
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Future Work

» Three dimensional parallel in space and time problems

* The performance of the new approach was tested for 2D problems

* The goal was to study the temporal efficiency of the solvers in all the test cases
the spatial component was solved in serial

* The 2D test cases with solution of the spatial part on one core are; representative
of the size of a spatial portion in a parallel 3D run

* By combining the temporal parallelism afforded by this approach with spatial
parallelism, the solution of periodic and quasi-periodic problems of moderate
spatial size can be effectively scaled to hundreds of thousands of cores

» Extension to other flow regimes

* The solution of the Euler equations are presented in all the test cases

*  For turbulent flow problems, the spatial part becomes harder to solve, and
requires more sophisticated spatial solvers

* Other elaborate spatial solvers such as multigrid, ... can make AF a stronger
preconditioner for GMRES

-3 LN
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Future Work

» Studying the viability of BDFTS

* Unlike the TS method, BDFTS methods need to resolve the transient part.
Majority of the CPU resources could be spent resolving the transient part of the
solution

* In most cases the problem needs the same number of periods as required in time-
accurate methods to resolve the slow transient content

* Inthe BDFTS method each period must be solved faster than time-accurate
methods, in order to outperform them

* Comparison of the performance of BDF1TS and BDF2TS in 3D problems
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