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  The simulation of unsteady phenomena typically demands large 
computational investments to achieve suitable accuracy 

 

 

 

 

 

  Temporally periodic problems are one of the sub-categories of 
unsteady problems, that have a broad range of applications in the 
industry. 

 

 

 

 

  These include wind-turbine flows, rotorcraft flows, 
turbomachinery flows,  and vortex shedding problems 

 

 

 

 

 

  Traditionally, time-marching methods were employed for 
unsteady flow problems including temporally periodic problems  

 

 

 

  Time-marching methods solve the problem for several periods 
until the initial transient part is resolved, and periodic steady state 
is obtained 
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  In most realistic problems solving the transient part is very time 
consuming, making time-marching methods inevitably expensive 

 

 

 

 

 Frequency-domain methods directly solve for the periodic solution 
and avoid the transient parts 

 

 
  Time-spectral methods (TS) are among the frequency-domain 

methods that avoid resolving  the transient parts and are more 
favorable in purely-periodic problems 

 

 

 

 

 A hybrid backward difference time-spectral (BDFTS) discretization 
is an extension of the time-spectral approach for quasi-periodic 
problems 

 

 

 

 



TS Introduction 
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 Span the characteristic time period with time 
instances 

 

 

 

 

 

 

 Represent the time derivatives in governing 
equations as linear combinations of 
corresponding values in other time instances 

 
 

 

 

 

 

 

 

 All the time instances are coupled. (Solve for all time instances 
simultaneously) 
 
 

 

 

 

 

 

 Because of spectral convergence due to Fourier series, limited         
number of temporal DOF results in accurate solutions 
 
 

 

 

 

 

 

 The time instances are computed in parallel.  Exploit more 
parallelism by parallelizing temporal part, each time instance is 
assigned to an individual processor 
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 Time-spectral methods are only applicable in the presence of 
fully periodic flows, which represents a severe restriction for 
many aerospace engineering problems 

 

 

 

 

 
 A hybrid backward difference time-spectral (BDFTS) discretization 

is an extension of the time-spectral approach for quasi-periodic 
problems 

 

 

 

 

 Applications in transient turbofan simulation, maneuvering 
rotorcraft calculations, …  

 

 

 

 Quasi-periodic problems are problems that include a slow 
transient in addition to strong periodic behavior 
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 Inviscid compressible flow 

 

 

 

 

 

 Arbitrary-Lagrangian-Eulerian (ALE) form of Euler equations 

 
𝜕𝑈

𝜕𝑡
+ ∇. 𝐹 𝑈 = 0 

𝜕

𝜕𝑡
 𝐹 𝑈 − 𝑈𝑥 . 𝑛𝑑𝑠 = 0
𝜕Ω(𝑡)

 

𝜕(𝑈𝑉)

𝜕𝑡
+ 𝑅 𝑈, 𝑥 , 𝑛 = 0 

 

 
 Central difference finite volume cell based in space 

 

 

 

 

 

 Time discretization: BDF1, BDF2, TS, BDFTS 
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Temporal Derivative : BDF 

 First-order backward difference scheme (BDF1) 

 
𝜕𝑈

𝜕𝑡
=

𝑈𝑛+1 − 𝑈𝑛

∆𝑡
 

 

 
𝜕𝑈

𝜕𝑡
=

3𝑈𝑛+1 − 4𝑈𝑛 + 𝑈𝑛−2

2∆𝑡
 

 

 

 

𝑈𝑛+1is the solution t current time-step 

𝑈𝑛 is the solution at the previous time-step 

𝑈𝑛−1 is the solution at the two time-steps ago 

 

 Second-order backward difference scheme (BDF2) 

 

 

 

 

 

 

 

O(∆𝑡) 

𝑂(∆𝑡2) 



First derivative in time:  CFD 

Discrete Euler Equation Becomes: No change in spatial 
discretization 

    Coefficients (dj
n ) derived analytically using convolution of Fourier transform and synthesis. 
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Time Spectral temporal Discretization: 
Collocation method using harmonic basis functions in time 

𝜕(𝑈𝑛)

𝜕𝑡
=  𝑑𝑛

𝑗
𝑈𝑗

𝑁−1

𝑗=0

 

 𝑑𝑛
𝑗
𝑉𝑗𝑈𝑗 + 𝑅 𝑈𝑛, 𝑥 𝑛, 𝑛 = 0

𝑁−1

𝑗=0

 

Temporal Derivative : TS 

 Used in temporal purely periodic problems 
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Concept of polynomial 
subtraction for spectral 
methods(Gottlieb and Orzag 
(1977), Lanczos) 
 

BDFTS TS 

Period 
Period nth Period (n+1)th 

 
 
 Problems  with a slow transient 

in addition to a strong periodic 
behavior in time (quasi-periodic 
problems) 

 

Temporal Derivative : BDFTS 
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BDF1TS derivative: 

BDFTS derivation can be reformulated as: 


















 1N
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11φ and 12φ are the linear interpolation functions 






1N

1j

jj

nUd

mU

1mU 

Time spectral derivative  

Ending point of the period (Unknown) 

Beginning point of the period (known) 

Temporal Derivative : BDFTS 
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TS Solvers : Approximate Factorization 

 The non-linear space time system is:     
𝜕𝑉𝑈

𝜕𝑡
+ 𝑅 𝑈𝑛, 𝑥 𝑛, 𝑛  = 0 
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TS Solvers : Approximate Factorization 

 The non-linear space time system is:     
𝜕𝑉𝑈

𝜕𝑡
+ 𝑅 𝑈𝑛, 𝑥 𝑛, 𝑛  = 0 

 The residual is obtained from:                
𝜕𝑉𝑈

𝜕𝑡
+ 𝑅 𝑈𝑛, 𝑥 𝑛, 𝑛  = Res 

Obtained from any formulation 



16 

TS Solvers : Approximate Factorization 

 The non-linear space time system is:     
𝜕𝑉𝑈

𝜕𝑡
+ 𝑅 𝑈𝑛, 𝑥 𝑛, 𝑛  = 0 

 The residual is obtained from:             
𝜕𝑉𝑈

𝜕𝑡
+ 𝑅 𝑈𝑛, 𝑥 𝑛, 𝑛  = Res 

Obtained from TS or BDFTS formulations 

 The entire non-linear space-
time system of equations is 
linearized by Newton-
Raphson method  

 

[𝐴]∆𝑈 = −𝑅𝑒𝑠 

[A] is the complete time-spectral Jacobian matrix  

Res is the total residual of time-spectral system 



17 

TS Solvers : Approximate Factorization 

 Approximates [A] as:   𝐴 ≈ 𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑃𝑎𝑟𝑡 ([𝑆𝑝𝑎𝑡𝑖𝑎𝑙 𝑃𝑎𝑟𝑡]) 

 Not exact and include an error which is ∆τ𝐽[𝐷] 

 Separates spatial and temporal parts 

J is the Jacobian of the spatial part of the system  
[D] is the TS or BDFTS derivative matrix 

 Solves for ∆𝑈 in two steps: 

 solve the spatial part to find intermediate value, ∆∆𝑈 
using direct or iterative methods e.g. block Gauss-Seidel 

 Using ∆∆𝑈, the temporal matrix is inverted to find  ∆𝑈 

 

 



Improvement in TS solver 
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 Factorization error depends on the pseudo-time step 

 Using AF as the solver suffers from requiring a small 
pseudo-time step or CFL number  



Improvement in TS solver 
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 Factorization error depends on the pseudo-time step 

Using AF as a preconditioner in the context of the Newton-
Krylov method  

 Using AF as the solver suffers from requiring a small 
pseudo-time step or CFL number  
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Newton-Raphson Method 

 The non-linear space time system is:     
𝜕𝑉𝑈

𝜕𝑡
+ 𝑅 𝑈𝑛, 𝑥 𝑛, 𝑛  = 0 

 The residual is obtained from:             
𝜕𝑉𝑈

𝜕𝑡
+ 𝑅 𝑈𝑛, 𝑥 𝑛, 𝑛  = Res 

Obtained from TS or BDFTS formulations 

 The entire non-linear space-
time system of equations is 
linearized by Newton-
Raphson method  

 

[𝐴]∆𝑈 = −𝑅𝑒𝑠 

[A] is the complete time-spectral Jacobian matrix  

Res is the total residual of time-spectral system 
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Newton-Raphson Method 

 The non-linear space time system is:     
𝜕𝑉𝑈

𝜕𝑡
+ 𝑅 𝑈𝑛, 𝑥 𝑛, 𝑛  = 0 

 The residual is obtained from:             
𝜕𝑉𝑈

𝜕𝑡
+ 𝑅 𝑈𝑛, 𝑥 𝑛, 𝑛  = Res 

Obtained from TS or BDFTS formulations 

 The entire non-linear space-
time system of equations is 
linearized by Newton-
Raphson method  

 

[𝐴]∆𝑈 = −𝑅𝑒𝑠 

[A] is the complete time-spectral Jacobian matrix  

Res is the total residual of time-spectral system 

The linear system over all time and 
space at each step of Newton 

solution is solved  to a specified 
linear tolerance using a Krylov 

method (GMRES) 



TS Solvers : GMRES 

 

 

 Flexible GMRES algorithm that allows an iterative method as a 
preconditioner has been described by Saad: 
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 Flexible GMRES algorithm that allows an iterative method as a 
preconditioner has been described by Saad: 

23 

  AF solver is used as a preconditioner in line 4 of the algorithm 

AF as a preconditioner 

TS Solvers : GMRES/AF 
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Fourier Inverse Transform Fourier Transform 

How many operations are  involved? 
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 Traditionally, TS formulation was based on Discrete Fourier Transform 

Drawbacks of TS 

𝜕𝑈𝑛

𝜕𝑡
=

2π

𝑇
 𝑖𝑘𝑈 𝑘𝑒

𝑖𝑘𝑛∆𝑡
2π
𝑇

𝑘=
𝑁
2
−1

𝑘=
−𝑁
2

=  𝑑𝑛
𝑗
𝑈𝑗

𝑁−1

𝑗=0

 

𝑈 𝑘 =
1

𝑁
 𝑈𝑛𝑒−𝑖𝑘𝑛∆𝑡

2π
𝑇

𝑁−1

𝑛=0

 𝑈𝑛 =  𝑈 𝑘𝑒
𝑖𝑘𝑛∆𝑡

2π
𝑇

𝑘=
𝑁
2

𝑘=−
𝑁
2

 



Drawbacks of TS 

Based on Discrete Fourier Transform 
 

Rewriting the summation results in dense matrix  
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Wall clock time scales linearly with number of time instances 
(running in parallel) which is not desirable. 
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][ TSD

𝜕𝑈𝑛

𝜕𝑡
=

2π

𝑇
 𝑖𝑘𝑈 𝑘𝑒

𝑖𝑘𝑛∆𝑡
2π
𝑇

𝑘=
𝑁
2
−1

𝑘=
−𝑁
2

=  𝑑𝑛
𝑗
𝑈𝑗

𝑁−1

𝑗=0

 

Total number of 
operations: 𝑂(𝑁2) 
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Novelty 

 In this work, time-spectral method is implemented 
based on the parallel fast Fourier transform (FFT) 

28 

 The parallel FFT-based AF and GMRES/AF are 
implemented 

We tried to overcome this challenge:   



Fast Fourier Transform (FFT) 

29 

Assuming the number of samples:                𝑁 = 2𝐿 
 

Considering Discrete Fourier Transform Formulation: 
 

𝑈 𝑘 =
1

𝑁
 𝑈𝑛𝑒−𝑖𝑘𝑛∆𝑡

2π
𝑇

𝑁−1

𝑛=0

 

Splitting the summation in two parts: 
 

𝑈 𝑘 =
1

𝑁
( 𝑈2𝑛𝑒−𝑖𝑘 2𝑛 ∆𝑡

2π
𝑇

𝑁
2
−1

𝑛=0

+  𝑈2𝑛+1𝑒−𝑖𝑘 2𝑛+1 ∆𝑡
2π
𝑇  

𝑁
2
−1

𝑛=0

) 

 

𝑈 𝑘 =
1

𝑁
( 𝑈2𝑛𝑒

−𝑖𝑘𝑛
2π
𝑁

2 

𝑁
2
−1

𝑛=0

+ 𝑒−𝑖𝑘
2π
𝑁  𝑈2𝑛+1𝑒

−𝑖𝑘𝑛∆𝑡
2π
𝑁

2 

𝑁
2
−1

𝑛=0

) =
1

𝑁
𝑒𝑘 +𝑤𝑘𝑜𝑘  

 
DFT of even sequence {𝑈2𝑛} DFT of odd sequence {𝑈2𝑛+1} 



Fast Fourier Transform (FFT) 
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Recursively split each part to even /odd groups until each group has 
only one member. 

𝑈 𝑘 =
1

𝑁
 𝑈𝑛𝑒−𝑖𝑘𝑛∆𝑡

2π
𝑇

𝑁−1

𝑛=0

 

𝑈 𝑘 =
1

𝑁
( 𝑈2𝑛𝑒

−𝑖𝑘𝑛
2π
𝑁

2 

𝑁
2
−1

𝑛=0

+ 𝑒−𝑖𝑘
2π
𝑁  𝑈2𝑛+1𝑒

−𝑖𝑘𝑛∆𝑡
2π
𝑁

2 )

𝑁
2
−1

𝑛=0

 

 

𝑈 𝑘 =
1

𝑁
2 
( 𝑈2𝑛𝑒

−𝑖𝑘𝑛
2π
𝑁

4 

𝑁
4
−1

𝑛=0

+ 𝑒
−𝑖𝑘

2π
𝑁

2  𝑈2𝑛+1𝑒
−𝑖𝑘𝑛∆𝑡

2π
𝑁

4 )

𝑁
4
−1

𝑛=0

 

 

𝑈 𝑘 =
1

𝑁
2 
( 𝑈2𝑛𝑒

−𝑖𝑘𝑛
2π
𝑁

4 

𝑁
4
−1

𝑛=0

+ 𝑒
−𝑖𝑘

2π
𝑁

2  𝑈2𝑛+1𝑒
−𝑖𝑘𝑛∆𝑡

2π
𝑁

4 )

𝑁
4
−1

𝑛=0

 

 

Number of divisions : 𝑳 = 𝒍𝒐𝒈𝟐
𝑵 



Parallel FFT Communication Count 

For each 𝑈 𝑘 in each level 𝑒𝑘 and 𝑜𝑘 are needed; 

each member in each level requires the data of another member to 
calculate its share 

  In each level 𝑵 communication occurs. 
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Total number of  
communication  

𝑈 𝑘 =
1

𝑁
(𝑒𝑘 +𝑊𝑘𝑜𝑘) 



Reordering 
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 Splitting into odd/ even groups changes the order of samples 
 
 Danielson-Lanczos lemma is used to find odd/even reordering pattern 
of samples  
 
The new ordering is obtained by bit-reversal of the original sample. 

Recursive subdivision of N=8 sample set and corresponding bit-reversal ordering 



Communication Pattern of FFT 

33 

 Communication pattern for all levels for 8 number of samples  

 The levels in which further processors should communicate are 
more expensive 

 



TS Derivative based on FFT 

34 

 Calculate FFT of samples (𝑂(𝑙𝑜𝑔𝑁) communication )   

 Multiply 𝑈 𝑘 into corresponding 𝑖𝑘 (No communication) 

 Calculate the inverse of 𝑖𝑘𝑈 𝑘(𝑂(𝑙𝑜𝑔𝑁) communication ) 



TS Derivative based on FFT 
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 Calculate FFT of samples (𝑂(𝑙𝑜𝑔𝑁) communication )   

 Multiply 𝑈 𝑘 into corresponding 𝑖𝑘 (No communication) 

 Calculate the inverse of 𝑖𝑘𝑈 𝑘(𝑂(𝑙𝑜𝑔𝑁) communication ) 

The number of communication in FFT-
based TS is 𝑶(𝒍𝒐𝒈𝑵) 



No Reordering Required for FFT-TS 

Pattern of communication due to 
reordering for 8 number of samples in 
parallel FFT routine. 
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 Standard parallel FFT requires final 
reordering of data 

• Entire spatial grid from each 
core. 
   
 

 
 



No Reordering Required for FFT-TS 

Pattern of communication due to 
reordering for 8 number of samples in 
parallel FFT routine. 
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 Standard parallel FFT requires final 
reordering of data 

• Entire spatial grid from each 
core. 
   

Time spectral implementation 
always requires the application of a 
forward FFT followed by an Inverse 
FFT 
 

 
 

 



No Reordering Required for FFT-TS 

Pattern of communication due to 
reordering for 8 number of samples in 
parallel FFT routine. 

 

New addressing of cores for 8 number of 
samples  to avoid extra communication in 
parallel TS routine 
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 Standard parallel FFT requires final 
reordering of data 

• Entire spatial grid from each 
core. 
   

Time spectral implementation 
always requires the application of a 
forward FFT followed by an Inverse 
FFT 
 
 There is no need to reorder data 

• All that is required is k in the 
IFFT and the address of each core 
for the communication pattern at 
each level 

 
 

 

𝜕𝑈𝑛

𝜕𝑡
=

2π

𝑇
 𝑖𝑘𝑈 𝑘𝑒

𝑖𝑘𝑛∆𝑡
2π
𝑇

𝑘=
𝑁
2
−1

𝑘=
−𝑁
2

 



Extension of FFT Application 

 Time-spectral method is implemented based on base-3 
FFT  

39 

 The number of operations reduces from 𝑂(𝑁2) to 
𝑂(2𝑁𝑙𝑜𝑔3

𝑁) 



Extension of FFT Application 

 Implementation of FFT-based second-order time-
spectral derivative 

40 

 The number of operations reduces from 𝑂(𝑁2) to 
𝑂(𝑁𝑙𝑜𝑔𝑁) 

 In aero-structural problems such as flutter problems, … 

𝜕2𝑈𝑛

𝜕𝑡2
= −(

2𝜋

𝑇
)2 𝑘2𝑈 𝑘𝑒

𝑖𝑘𝑛∆𝑡
2𝜋
𝑇

𝑁
2
−1

−
𝑁
2
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 The non-linear space time system is:     
𝜕𝑉𝑈

𝜕𝑡
+ 𝑅 𝑈𝑛, 𝑥 𝑛, 𝑛  = 0 

 The residual is obtained from:             [𝐷𝑃𝑃]𝑉𝑈 + 𝑅 𝑈𝑛, 𝑥 𝑛, 𝑛  = Res 

 The entire non-linear space-
time system of equations is 
linearized by Newton-
Raphson method  

 

[𝐴]∆𝑈 = −𝑅𝑒𝑠 

[A] is the complete time-spectral Jacobian matrix  

Res is the total residual of time-spectral system 

𝐴 = [
𝑉

∆𝜏
+ 𝐽 + 𝑉 𝐷𝑃𝑃 ] 

V is the cell volume 

∆𝜏 is the AF pseudo time-step 

[𝐷𝑃𝑃] is the spectral matrix 

𝐽 is the Jacobian of spatial part 

FFT-AF in Purely Periodic Problems 



FFT-AF in Purely Periodic Problems 

 Find intermediate value ∆∆𝑈 by solving the spatial part, using any 
direct or iterative solver 

42 

 Solve temporal part 

 Approximates [A] as:       𝐴 ≈ ( 𝐼 + ∆𝜏 𝐷𝑃𝑃 )(
𝑉

∆𝜏
𝐼 + 𝐽 ) 

 Take FFT of ∆∆𝑈 to find ∆∆𝑈 𝑘 

 Multiply ∆∆𝑈 𝑘 by 
1

1+𝑖𝑤𝑘∆𝜏
 to find ∆𝑈 𝑘 

 Take IFFT of ∆𝑈 𝑘 to find ∆𝑈 

Temporal Part Spatial Part 
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 The non-linear space time system is:     
𝜕𝑉𝑈

𝜕𝑡
+ 𝑅 𝑈𝑛, 𝑥 𝑛, 𝑛  = 0 

 The residual is obtained from:             [𝐷𝑞𝑝]𝑉𝑈 + 𝑅 𝑈𝑛, 𝑥 𝑛, 𝑛  = Res 

 The entire non-linear space-
time system of equations is 
linearized by Newton-
Raphson method  

 

[𝐴]∆𝑈 = −𝑅𝑒𝑠 = − 𝐷𝑞𝑝 𝑉𝑈 − 𝑅 𝑈𝑛, 𝑥 𝑛, 𝑛   

[A] is the complete time-spectral Jacobian matrix  

Res is the total residual of time-spectral system 
𝐴 = [

𝑉

∆𝜏
+ 𝐽 + 𝑉 𝐷𝑞𝑝

∗ ] 

V is the cell volume 

∆𝜏 is the AF pseudo time-step 

[𝐷𝑞𝑝] is the quasi-periodic matrix 

𝐽 is the Jacobian of spatial part 

FFT-AF in Quasi-Periodic Problems 

𝐷𝑞𝑝 𝑉𝑈 = 𝐷𝑃𝑃 𝑉𝑈 + 𝑀𝑎𝑡𝑟1 𝑉𝑈 + 𝑐𝑜𝑛𝑠𝑡. 

[𝐷𝑞𝑝
∗ ] = 𝐷𝑃𝑃 + [𝑀𝑎𝑡𝑟1] 



FFT-AF in Quasi-Periodic Problems 

 Find intermediate value ∆∆𝑈 by solving the spatial part, using any 
direct or iterative solver 

44 

 Approximates [A] as:       𝐴 ≈ ( 𝐼 + ∆𝜏[𝐷𝑞𝑝
∗ ])(

𝑉

∆𝜏
𝐼 + 𝐽 ) 

Temporal Part Spatial Part 

𝐷𝑞𝑝
∗ = 𝐷𝑝𝑝 + [𝑀𝑎𝑡𝑟1] 

 Using the intermediate value, ∆∆𝑈 the temporal matrix is inverted 
to find ∆𝑈  

∆𝑈=[ 𝐼 + ∆𝜏 𝐷𝑞𝑝
∗ ]−1∆∆𝑈 



FFT-AF in Quasi-Periodic Problems 

 Find intermediate value ∆∆𝑈 by solving the spatial part, using any 
direct or iterative solver 
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 Approximates [A] as:       𝐴 ≈ ( 𝐼 + ∆𝜏[𝐷𝑞𝑝
∗ ])(

𝑉

∆𝜏
𝐼 + 𝐽 ) 

Temporal Part Spatial Part 

𝐷𝑞𝑝
∗ = 𝐷𝑝𝑝 + [𝑀𝑎𝑡𝑟1] 

 Using the intermediate value, ∆∆𝑈 the temporal matrix is inverted 
to find ∆𝑈  

∆𝑈=[ 𝐼 + ∆𝜏 𝐷𝑞𝑝
∗ ]−1∆∆𝑈 

Using FFT? 
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 The temporal equation:   

UUMatDIUDI rppqp   ])[][(])[( 1

 Calculation of the temporal part of AF can be done much easier in frequency domain 

FFT-AF in Quasi-Periodic Problems 



FFT in Approximate Factorization Scheme 
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Scalar 

 The temporal equation:   

UUMatDIUDI rppqp   ])[][(])[( 1

 Calculation of the temporal part of AF can be done much easier in frequency domain 

  Easy to find the inverse of           in the FD  

][ 

PPD

][ 

PPD

][ 

PPD

 The inverse of the temporal matrix is calculated using the Sherman Morrison 
formulation 
Two times inversion of the            is required in this process. 

 
 

][ 

PPD

][][ 1

T

r vuMat




 Spectral matrix is diagonal in the FD 

          is modified by a rank-1 matrix  



FFT in Approximate Factorization Scheme 
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 Find the intermediate value,           by solving the spatial part 

 Solve the temporal part: 

I. Find FFT of           to find  

II. Find         by taking the inverse of the temporal matrix using Sherman-
Morrison formulation 

III. Transfer back the result to time domain using IFFT to obtain  

 

 

 

U kÛ

kÛ

U

U
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Newton-Raphson Method 

 The non-linear space time system is:     
𝜕𝑉𝑈

𝜕𝑡
+ 𝑅 𝑈𝑛, 𝑥 𝑛, 𝑛  = 0 

 The residual is obtained from:             
𝜕𝑉𝑈

𝜕𝑡
+ 𝑅 𝑈𝑛, 𝑥 𝑛, 𝑛  = Res 

Obtained from TS or BDFTS formulations 

 The entire non-linear space-
time system of equations is 
linearized by Newton-
Raphson method  

 

[𝐴]∆𝑈 = −𝑅𝑒𝑠 

[A] is the complete time-spectral Jacobian matrix  

Res is the total residual of time-spectral system 

The linear system over all time and 
space at each step of Newton 

solution is solved  to a specified 
linear tolerance using a Krylov 

method (GMRES) 



 

 

 Flexible GMRES algorithm that allows an iterative method as a 
preconditioner has been described by Saad: 
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  AF solver is used as a preconditioner in line 4 of the algorithm 

FFT-AF as a preconditioner 

FFT-based GMRES/AF 



More on GMRES/AF 
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  Two pseudo-time terms are used in GMRES: 

• The constant pseudo-time term in the preconditioner: 

[J]][I]
Δτ

V
]][[DΔτ[[I][A]

AF

TSAF 

• The growing pseudo-time term in  the space-time Jacobian of the GMRES: 

]]V[DJ
Δτ

V
[[A] TS

Newton



  The pseudo-time term in the FGMRES grows rapidly so that an exact 
Newton method can be recovered.  

  Here we employed an inexact Newton approach for efficiency 
reasons.  

• Linear tolerance of 0.1 
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 Case 1: Purely Periodic Pitching Airfoil with Single Frequency 
Prescribed Motion  

Test Cases 



Case 1: Purely Periodic Pitching Airfoil with Single 
Frequency Prescribed Motion  
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  Naca-0012 Airfoil 

  15573 triangular elements 

  Free stream Mach = 0.755 

  Prescribed pithing motion: 

𝛼𝑡 = 𝛼0 + 𝛼𝐴𝑆𝑖𝑛(𝜔𝑡) 

𝛼0 = 0.016° 𝛼𝐴 = 2.51° 

 𝜔 is specified via reduced frequency 

𝑘𝑐 = 0.0814 − 0.1628 



 Case 1-1 : Testing the performance of FFT based AF for Case 1 
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 Case 1: Purely Periodic Pitching Airfoil with Single Frequency 
Prescribed Motion  

Test Cases 



Case1-1 : AF Residual Validation 

 DFT and FFT based AF solver 
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𝑁 = 256 𝑁 = 243 



Case 1-1 : AF Performance comparison 

 DFT- and FFT- based AF solvers 

 Even number of samples up to 2048, odd number of samples up to 2187  
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Even Odd 



Case 1-1: Optimization for Real Valued Samples 

 Wall clock time versus number of time instances for original complex FFT 
and real-data split FFT implementation 
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 Case 1-1 : Testing the performance of FFT based AF for Case 1 
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 Case 1: Purely Periodic Pitching Airfoil with Single Frequency 
Prescribed Motion  

Test Cases 

 Case 1-2 : Testing the performance of FFT based GMRES/AF for 
Case 1 
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Case 1-2: FFT-GMRES/AF solver performance 

 Comparison of the non-linear residual versus iterations for the AF solver and versus 
Krylov vectors for the GMRES/AF solver with 8 and 1024 number of time instances. 

N = 8 N = 1024 
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Case 1-2: Study of Linear Tolerance 

 Residual versus Krylov vectors for different linear tolerances for 256 
number of time instances. 

N = 256 
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Case 1-2: Study of Linear Tolerance 

 Non-linear convergence, CFL history, and number of Krylov vectors in 
each iteration for linear tolerance of 0.5 (left plot), 0.1 (middle plot), 0.01 
(right plot). 

Linear-tol = 0.5 Linear-tol = 0.1 Linear-tol = 0.01 
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Case 1-2: Study of Linear Tolerance 

 Wall-clock time versus number of time instances for different linear 
tolerances . 



64 

Case 1-2: Performance of FFT-based AF and GMRES/AF 

 Wall-clock time versus number of time instances for FFT based GMRES/AF 
and FFT based AF solver for up to 2048 number of time instances 
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Case 1-2: Performance of DFT and FFT based GMRES/AF 

 Wall-clock time for DFT and FFT based GMRES/AF solvers for up to 2048 
number of time instances. 
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Case1-2: Solver Characteristic 

 Wall-clock time versus number of time instances for FFT based 
GMRES/AF and FFT based AF solver using different reduced frequencies  
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Case1-2: Mesh Resolution Study 

  Convergence study of GMRES/AF solver using 64 number of time instances 
and linear tolerance of 0.1, with: 20 block-Jacobi sweeps in the 
preconditioner(Left) solving Jacobi to machine zero in the preconditioner(Right) 

20 block-Jacobi sweeps Solving Jacobi to machine zero 
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Wall Clock Time due to Communication and Computation 

 Breakdown of wall-clock time for computation and communication of the solver 
running on NCAR Wyoming Yellowstone supercomputer using up to 2048 processors  



Wall Clock Time due to Communication and Computation 

 Breakdown of wall-clock time for computation and communication within parallel FFT 
routine running on NCAR- Wyoming Yellowstone supercomputer using up to 4096 
processors  

 Computation displays expected O(logN) weak scaling 

 The wall clock grows faster than expected due to pattern of communication each level 
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Wall Clock Time for First and Last Level 

 Comparison of communication time for first and last level of parallel FFT 
routine using up to 4096 processors 

 Difference in wall clock time due to non local communication. (Verified by 
NWSC- Yellowstone system staff) 
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 Case 1-1 : Testing the performance of FFT based AF for Case 1 
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 Case 1: Purely Periodic Pitching Airfoil with Single Frequency 
Prescribed Motion  

Test Cases 

 Case 1-2 : Testing the performance of FFT based GMRES/AF for 
Case 1 

 Case 2: Purely Periodic Pitching Airfoil with Gaussian Bump  
Motion  
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  Naca-0012 Airfoil 

  15573 triangular elements 

  Free stream Mach = 0.755 

  Prescribed pithing motion: 

𝛼𝑡 = 
1

20𝜋
𝑒−

(𝑡−10)2

2  

 𝜔 is specified via reduced frequency 

𝑘𝑐 = 0.208 

Case 2: Purely Periodic Pitching Airfoil with Gaussian Bump  
Motion  



 Case 1-1 : Testing the performance of FFT based AF for Case 1 
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 Case 1: Purely Periodic Pitching Airfoil with Single Frequency 
Prescribed Motion  

Test Cases 

 Case 1-2 : Testing the performance of FFT based GMRES/AF for 
Case 1 

 Case 2: Purely Periodic Pitching Airfoil with Gaussian Bump  
Motion  

 Case 2-1 : Comparison of the performance of FFT based 
GMRES/AF and BDF2 for Case 2 
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Case2-1: Gaussian Bump Pitching Motion 

  Time history of Gaussian bump prescribed pitching motion and (Left) and  
frequency content of prescribed motion signal (Right) 
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Case2-1: TS Solution 

  Computed lift coefficient history using TS solver with different number of 
time instances (Left) and details of differences between TS solutions for N = 32, 
64 and 256 (Right) 
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Case2-1: FFT- GMRES/AF Convergence 

  Convergence histories for TS solver as measured by residual versus 
cumulative number of Krylov vectors, using different number of time-instances 
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Case2-1: BDF2 Error Study 

  Temporal error of BDF2 solution for the first and fifth periods using 
different number of time-steps 
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Case2-1: BDF2 Solution 

  Computed lift coefficient time histories using the BDF2 scheme over last of 
5 periods for different numbers of time steps (Left) and detail of time histories 
near peak CL value (Right) 
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Case2-1: Comparison of BDF2 and TS Error 

  Temporal error of TS and BDF2 solutions as a function of the number of 
time-instances or time steps  
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Case2-1: Comparison of Run Time of BDF2 and TS 

 Run time for solving the Gaussian bump problem using BDF2 solver for 5 
periods, and TS solver for 8 to 256 time-steps per period or time-instances 



 Case 1-1 : Testing the performance of FFT based AF for Case 1 
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 Case 1: Purely Periodic Pitching Airfoil with Single Frequency 
Prescribed Motion  

Test Cases 

 Case 1-2 : Testing the performance of FFT based GMRES/AF for 
Case 1 

 Case 2: Purely Periodic Pitching Airfoil with Gaussian Bump  
Motion  

 Case 2-1 : Comparison of the performance of FFT based 
GMRES/AF and BDF2 for Case 2 

 Case 3: Quasi-Periodic Pitching Airfoil with Single Frequency 
Prescribed Motion  



Case 3: Quasi-Periodic Pitching Airfoil with Single 
Frequency Prescribed Motion  
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  Naca-0012 Airfoil 

  15573 triangular elements 

  Free stream Mach = 0.755 

  Prescribed pithing motion: 

𝛼𝑡 = 𝛼0 + 𝛼 (𝑡) +𝛼𝐴 𝑆𝑖𝑛(𝜔𝑡) 

𝛼0 = 0.016° 
𝛼𝐴 = 2.51° 

𝛼 𝑡 =  
0

𝛼𝑚
1

2
(1 − cos 𝜔𝑚 𝑡 − 𝑡1 )  𝑡 < 𝑡1 

𝑡 ≥ 𝑡1 

𝜔1 = 0.1628 
𝜔𝑚 = 0.1𝜔1 

Periodic Content 

Slow Transient 
Quasi- Periodic 

Problem 



 Case 1-1 : Testing the performance of FFT based AF  
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 Case 1: Purely Periodic Pitching Airfoil with Single Frequency 
Prescribed Motion  

Test Cases 

 Case 1-2 : Testing the performance of FFT based GMRES/AF  

 Case 2: Purely Periodic Pitching Airfoil with Gaussian Bump  
Motion  
 Case 2-1 : Comparison of the performance of FFT based 

GMRES/AF and BDF2  

 Case 3: Quasi-Periodic Pitching Airfoil with Single Frequency 
Prescribed Motion  
 Case 3-1 : Testing the performance of FFT based AF  
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Case 3-1: FFT-AF Residual Validation  

 Residual versus iterations for DFT and FFT based AF solver, using 16 time-instances 
per period for 5 periods 



Case 3-1: Performance of DFT- and FFT- based AF 

 Comparison of wall clock time versus number of time instances for 
DFT and FFT based AF solution of the problem. 

 Even Number of Samples up to  512 time-instances/processors 
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Case 3-1: Comparison of Convergence Rate of AF 
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 Comparison of convergence rate of the quasi-periodic AF scheme over 
five periods for different number of time instances per period 



 Case 1-1 : Testing the performance of FFT based AF  
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 Case 1: Purely Periodic Pitching Airfoil with Single Frequency 
Prescribed Motion  

Test Cases 

 Case 1-2 : Testing the performance of FFT based GMRES/AF  

 Case 2: Purely Periodic Pitching Airfoil with Gaussian Bump  
Motion  
 Case 2-1 : Comparison of the performance of FFT based 

GMRES/AF and BDF2  

 Case 3: Quasi-Periodic Pitching Airfoil with Single Frequency 
Prescribed Motion  
 Case 3-1 : Testing the performance of FFT based AF  

 Case 3-2 : Testing the performance of FFT based GMRES/AF  
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Case 3-2: FFT-GMRES/AF Residual Validation 

 Residual versus iterations for DFT and FFT based GMRES/AF solvers using 
16 time-instances per period for 5 periods. 
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Case 3-2: Performance of DFT- and FFT-based GMRES/AF 

 Wall-clock time for DFT- and FFT- based GMRES/AF solvers for up to 512 
number of time instances. 
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Case 3-2: Study of Linear Tolerance 

 Non-linear residual versus number of iterations for linear tolerance of 
0.1, 0.01, 0.001   

 Tighter linear tolerance results in greater wall lock time 
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Case 3-2: Study of Linear Tolerance 

 Wall-clock time versus number of time instances for different linear 
tolerances  
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Case 3-2: Performance of FFT- based AF and GMRES/AF 

 Wall-clock time versus number of time instances for FFT- based GMRES/AF 
and FFT- based AF solver for up to 512 number of time instances 



Case 3-2: Comparison of Convergence Rate of GMRES/AF 
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 Comparison of convergence rate of the quasi-periodic GMRES/AF 
scheme over five periods for different number of time instances per 
period 
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Case 3-2: Performance of BDF1TS and BDF2TS 

 Wall-clock time for FFT- based BDF1TS and BDF2TS solvers for up to 512 
number of time instances. 



95 

Case 3-2: Accuracy of BDF1TS and BDF2TS 

 Lift coefficient error versus log of time instances using BDF1TS and 
BDF2TS solvers 
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Summary and Conclusions (1/4) 

 
 The new implementation is based on the FFT and scales as 𝑁𝑙𝑜𝑔𝑁 and results in 

significant savings compared to previous implementations in terms of wall-clock 
time which was based on the DFT and scales as 𝑂(𝑁2)  

 

 

 

 A new parallel time-spectral algorithm is developed for periodic and quasi-periodic 
problems 

 
 An FFT-based AF algorithm is developed and used as the direct solver to solve 

purely periodic problems 

 
 

 FFT-based AF is significantly more efficient than the DFT-based AF solver in terms 
of wall-clock time 
• 𝑁𝑙𝑜𝑔𝑁 computation and communication versus 𝑂(𝑁2) 
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Summary and Conclusions (2/4) 

 

• The GMRES/AF scheme is shown to be consistently and significantly more efficient than 
the AF scheme alone 

 

 

 The FFT-based AF scheme reformulated as a preconditioner for GMRES 

 
 The overall FFT-based GMRES/AF solver performance can be more than an order of 

magnitude more efficient than the previous DFT-based implementations 

 
 Both the AF scheme used directly as a solver and the GMRES/AF linear solver are 

relatively insensitive to the number of time-instances and to the reduced frequency 
of the problem 

• 𝑁𝑙𝑜𝑔𝑁 computation and communication versus 𝑂(𝑁2) 

• 2 to 3 times speed up in GMRS/AF compared to AF 
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Summary and Conclusions (3/4) 

 

 The performance of the FFT-based time-spectral solvers is compared to the BDF2   

 The performance of the FFT-based TS solvers is studied in problems with prescribed 
motion including a wide range of frequency spectrum 

 

 By improvements made in time-spectral solvers done in this work,  these solvers 
can outperform the time-accurate solvers in problems with high frequency content 
as well as problems with few harmonic contents 
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Summary and Conclusions (4/4) 

 

 The application of FFT-based time spectral method is extended to quasi-periodic 
problems, using BDFTS formulations  

 The BDFTS equations correspond to rank-1 update of the fully-periodic time-
spectral equations and can be solved effectively by leveraging the FFT-based 
periodic AF solver using the Sherman-Morrison formulation 

 Using parallel FFT- based AF as a preconditioner for GMRES results in 2 to 3 
times more efficiency compared to AF alone as the solver. 

 Although BDF2TS requires longer wall-clock time for convergence, it provides 
better accuracy for cases with larger number of time instance, compared to 
BDF1TS scheme 

 FFT-based BDFTS formulations are dramatically more efficient than the DFT-
based BDFTS approach 

 • 𝑁𝑙𝑜𝑔𝑁 computation and communication versus 𝑂(𝑁2) in periodic component of the solver 
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Future Work  
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 Three dimensional parallel in space and time problems  

 Extension to other flow regimes  

 • The performance of the new approach was tested for 2D problems 
• The goal was to study the temporal efficiency of the solvers in all the test cases 

the spatial component was solved in serial 
• The 2D test cases with solution of the spatial part on one core are; representative 

of the size of a spatial portion in a parallel 3D run 

• By combining the temporal parallelism afforded by this approach with spatial 
parallelism, the solution of periodic and quasi-periodic problems of moderate 
spatial size can be effectively scaled to hundreds of thousands of cores 

• The solution of the Euler equations are presented in all the test cases 

• For turbulent flow problems, the spatial part becomes harder to solve, and 
requires more sophisticated spatial solvers 

• Other elaborate spatial solvers such as multigrid, … can make AF a stronger 
preconditioner for GMRES 



Future Work  
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 Studying the viability of BDFTS 

 • Unlike the TS method, BDFTS methods need to resolve the transient part. 
Majority of the CPU resources could be spent resolving the transient part of the 
solution  

• In most cases the problem needs the same number of periods as required in time-
accurate methods to resolve the slow transient content 

• In the BDFTS method each period must be solved faster than time-accurate 
methods, in order to outperform them 

• Comparison of the performance of BDF1TS and BDF2TS in 3D problems 
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