
To the University of Wyoming:
The members of the Committee approve the dissertation of Emmett M. Padway presented on

September 11, 2020.

Professor Dimitri J. Mavriplis, Chairperson

Professor Victor Ginting, Outside Member

Professor Michael Stoellinger

Professor Ray Fertig III

Professor Siva Nadarajah, External Examiner, McGill University

APPROVED:

Professor Carl Frick, Head, Department of Mechanical Engineering

Professor Cameron H. G. Wright, Interim Dean, College of Engineering and Applied Science

Padway, Emmett M., Tangent and Adjoint Problems in Partially Converged Flows, Ph.D., Department of

Mechanical Engineering, September, 2020.

Adjoint methods see widespread use in computational fluid dynamics (CFD) in two important domains of

the field: shape optimization and output-based refinement. CFD has become more widespread as computing

power has become more available and algorithms have become both more advanced and efficient. This allows

for the use of cheap, low-fidelity methods in the conceptual design stage, and more accurate high-fidelity

methods later in the detailed design stage. The high fidelity methods coupled with optimization toolboxes

for automated design have a significant place in the detailed design process, mainly to better inform the use

of expensive wind tunnel testing. Furthermore, the use of adjoint methods in shape optimization allows for

cheaper sensitivity evaluation for gradient-based design approaches, allowing for scaling independent of the

number of design variables. As a result highly refined/parameterized design optimizations are possible with

negligible cost increases.

Adjoint methods are also utilized in the context of adaptive mesh refinement as they can be used to

create output-based error estimates. Adjoint-based methods form an error estimate that calculates error in

the output-of-interest, and are desirable for their efficacy in tailoring/adapting meshes for maximum accuracy

in the engineering quantity of interest. This can allow for coarsening meshes in areas of little engineering

interest and refining in areas of high interest, thus resulting in a maximally useful mesh for engineering

quantities with a given number of degrees of freedom.

The adjoint systems used in these analyses require that the nonlinear problem be solved to machine

precision –that the discretized form of the governing equations be satisfied. However, as the field has

attempted more difficult simulations either due to the accuracy of spatial discretization of the simulation,

the geometry of the model, or the increasing push to unsteady flow, it has become increasingly difficult

to satisfy this constraint. Some members of the field have demonstrated that this can lead to difficult to

converge adjoint problems that provide sensitivities highly dependent on the state at which the simulation

is terminated. Additionally, this can lead to issues with the error estimation process by returning inaccurate

error estimates and poor refinement patterns.

This work develops a novel methodology for adjoint based optimization and error estimation for un-

converged simulations through linearization of the nonlinear solution process. It contains results for various

different nonlinear solvers and applications of the adjoint system to design optimization and error estimation.

As CFD has been used for more complex simulations (unsteady, high-order, complex geometry) the ability

to get a useful adjoint solution that is guaranteed to not diverge is tremendously desirable. The goal of

this work is to show a hierarchy of different linearizations with different approximations and apply them

to these partially converged problems. This work presents tangent and adjoint formulations for each of the

various nonlinear solution strategies used in the test cases, including the solution strategies required to avoid

flow divergence for problems with strong shocks. It also shows the varying linear solver technologies, used

1

in the nonlinear process, the mesh deformation process, and the tangent and adjoint processes. Included

also are three different error estimation techniques for the steady state adjoint and their analogues for the

pseudo-time accurate adjoint. These error estimation techniques are used to drive mesh adaptation and

the algorithms for the adaptive mesh refinement package are included as well. A detailed error analysis of

approximate linearization of the nonlinear solution process for both the tangent and adjoint modes is shown

as well. The end result is a series of methods and algorithms guaranteed to provide either adjoint based

sensitivities or adjoint based error estimates that are insensitive to the specific state of termination of the

solution process and can be useful for simulations which do not fully converge, where the calculation of

accurate sensitivities has been a major stumbling block to date.

TANGENT AND ADJOINT PROBLEMS IN PARTIALLY
CONVERGED FLOWS

by

Emmett M. Padway, B.S.M.E.

A dissertation submitted to the
Department of Mechanical Engineering

and the
University of Wyoming

in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY
in

MECHANICAL ENGINEERING

Laramie, Wyoming
September 2020

Copyright c© 2020

by

Emmett M. Padway

ii

To my beloved partner Larisa, my family, friends, and the great outdoors. I learned more here than I ever

thought possible and enjoyed my time here beyond my wildest dreams.

iii

iv

Contents

List of Figures ix

List of Tables xiii

Acknowledgments xv

Chapter 1 Background and Motivation 1

Chapter 2 Implementation Details: Aerodynamic Analysis, Sensitivities, and Parallelism 9

2.1 Governing Equations . 9

2.2 Boundary Conditions . 10

2.2.1 No Penetration Boundary Condition (Slip Wall) . 10

2.2.2 Characteristic Boundary Condition (Inflow/Outflow Boundary) 10

2.3 Spatial Discretization . 12

2.3.1 Numerical Flux . 12

2.3.2 Extension to Second-Order Spatial Accuracy . 13

2.3.3 Limiting Algorithm . 15

2.3.4 Smooth Function Implementations . 18

2.4 Nonlinear Solvers . 18

2.5 Linear Solvers . 20

2.6 The Design Problem . 21

2.6.1 Design Variables . 23

2.6.2 Mesh Deformation . 23

2.7 Sensitivity Computation Methods . 24

2.7.1 Finite Differences . 24

2.7.2 Tangent Formulation . 24

2.7.3 Discrete Adjoint Formulation . 26

2.8 Parallelism . 28

v

Chapter 3 Pseudo-time Accurate Approaches for Design for the Tangent and Adjoint

Problems for Simulations at Partial Convergence 31

3.1 Pseudo-time Accurate Tangent Problem for Design Optimization 32

3.1.1 Explicit Solve (Forward Euler) . 32

3.1.2 Low Storage Explicit Runge-Kutta (LSERK45) Solver 32

3.1.3 Newton Solver . 33

3.1.4 General Sensitivity Convergence Proof for Approximate Tangent Linearization of the

Fixed Point Iteration . 36

3.2 Pseudo-time Accurate Adjoint Problem for Design Optimization 38

3.2.1 Explicit Solver (forward Euler) . 41

3.2.2 Low Storage Explicit Runge-Kutta Solver . 43

3.2.3 Newton Solver . 46

3.2.4 General Sensitivity Convergence Proof for Approximate Adjoint Linearization of the

Fixed Point Iteration . 53

Chapter 4 Verification of Implementation 59

4.1 Verification of Analysis Order of Accuracy and Steady State Tangent and Adjoint Sensitivity

Computation . 59

4.2 Verification of the Pseudo-Time Accurate Tangent and Adjoint Sensitivities 63

4.2.1 Pseudo-time Accurate Tangent Verification . 64

4.2.2 Pseudo-time Accurate Adjoint Verification . 67

4.3 Summary . 68

Chapter 5 Investigation into Tangent and Adjoint Computed Sensitivities 71

5.1 The Pseudo-Time Adjoint as a Green’s Function . 71

5.2 Sensitivity Behavior as a Function of Backwards-In-Iteration-Space Integration 73

5.2.1 Application of the Pseudo-Time Accurate Adjoint to a Truncated Simulation 73

5.2.2 Application of the Pseudo-Time Accurate Adjoint to Non-converging Primal Problem 75

5.3 Sensitivity as a Function of Accuracy of Approximation of Fixed Point Linearization 84

5.3.1 Results for Inexactly Linearized Explicit Runge-Kutta Solver 84

5.3.2 Results for an Exact Jacobian Augmented with a Mass Matrix 85

5.3.3 Results for an Inexact Jacobian Augmented with a Mass Matrix 88

5.4 Summary . 91

Chapter 6 Optimization Results 93

6.1 Optimization of Symmetric Airfoil with Detached Bow Shock 93

6.1.1 Investigation of Linear Tolerance on Design Optimization 97

vi

6.2 Optimization of Symmetric Airfoil with Trailing Edge Unsteadiness 97

6.3 Optimization of ADODG NACA0012 Airfoil with Trailing Edge Unsteadiness 100

6.4 Optimization of Truncated NACA0012 Airfoil in High Angle of Attack Flow 106

6.5 Summary . 109

Chapter 7 Pseudo-time Accurate Approaches to Error Estimation and Adaptive Mesh

Refinement 111

7.1 A Review of the Dual-Weighted Residual . 111

7.1.1 Virtual Mesh Method . 114

7.2 Mesh Refinement . 115

7.2.1 CST Parameterization and Boundary Curvature Correction 116

7.3 Development of the Pseudo-Time Accurate Dual-Weighted Constraint 119

7.3.1 Error Estimation for Newton’s Method . 122

7.4 Mesh Refinement Results . 125

7.4.1 Detached Bow Shock Error Estimation . 126

7.4.2 Transonic Airfoil With Blunt Trailing Edge Error Estimation 137

7.5 Summary . 147

Chapter 8 Conclusions and Future Work 149

8.1 Summary . 149

8.2 Contributions to the Field . 150

8.3 Future Work . 151

vii

viii

List of Figures

1.1 Complex vs. adjoint sensitivities for partially converged unsteady rotorcraft flows 6

2.1 Design Process Flow Chart . 22

2.2 Cell coloring for arbitrary unstructured mesh . 28

2.3 Summary of OpenMP scaling . 30

4.1 Plot of energy on the finest mesh for Gaussian bump . 60

4.2 Order of accuracy verification plot . 60

4.3 Mesh comparison for NACA0012 verification case . 61

4.4 Mach flow field on adapted mesh for NACA0012 verification case 61

4.5 Analysis problem convergence and flow field for verification of sensitivities 62

4.6 Adjoint fields for verification case . 63

4.7 Computational mesh for NACA0012 airfoil in verification cases 64

4.8 Convergence of spatial residual and objective function for forward Euler pseudo-time evolution 65

4.9 Difference between pseudo-time accurate tangent sensitivities and complex sensitivities for

forward Euler pseudo-time evolution . 65

4.10 Convergence of objective function and residual for Newton-Chord Method 66

4.11 Difference between pseudo-time accurate tangent computed sensitivities and complex sensi-

tivities for Newton-Chord method at each pseudo-time step 66

4.12 Convergence of objective function and residual for quasi-Newton Method 67

4.13 Difference between pseudo-time accurate tangent computed sensitivities and complex sensi-

tivities for quasi-Newton method at each pseudo-time step 67

5.1 Residual convergence and adjoint magnitude behavior for Quasi-Newton scheme 72

5.2 Sensitivity convergence for Quasi-Newton scheme . 72

5.3 Density field for NACA0012 airfoil in Mach = .85, α = 3o 74

5.4 Residual and steady state adjoint convergence for truncated simulation in Mach = .85, α = 3o 75

5.5 Fine mesh for NACA0012 airfoil cut off at 97% chord length 76

ix

5.6 Primal problem convergence for Mach = .3, α = 3o . 76

5.7 Stagnation pressure for final state and average state for Mach = .3, α = 3o 77

5.8 Behavior of primal problem for different averaging windows for Mach = .3, α = 3o 77

5.9 Pseudo-Time accurate adjoint sensitivities for varying objective windows for Mach = .3,

α = 3o . 78

5.10 Angle between partially time-integrated and fully time-integrated sensitivities over iteration

space to final sensitivity for Mach = .3, α = 3o . 78

5.11 Steady state adjoint convergence for Mach = .3, α = 3o . 79

5.12 Primal problem convergence for cut-off NACA0012 airfoil at Mach = .7, α = 2o 80

5.13 Behavior of primal problem for different averaging windows for Mach = .7, α = 2o 80

5.14 Pseudo-Time accurate adjoint sensitivities for varying objective windows for Mach = .7,

α = 2o . 81

5.15 Angle convergence over iteration space to final sensitivity for Mach = .7, α = 2o 81

5.16 Steady State adjoint convergence for Mach = .7, α = 2o . 82

5.17 Effect of averaging sensitivities for pseudo-time accurate adjoint for Mach = .7, α = 2o . . . 83

5.18 Runge Kutta Sensitivity Convergence . 85

5.19 Runge Kutta Sensitivity Difference . 85

5.20 Sensitivity convergence for linear tolerance in a Newton solver, 1e − 1: difference between

current and final sensitivity values . 86

5.21 Iterative sensitivity difference for linear tolerance in a Newton solver, 1e− 1 86

5.22 Sensitivity convergence for linear tolerance in a Newton solver, 1e − 4: difference between

current and final sensitivity values . 87

5.23 Iterative sensitivity difference for linear tolerance in a Newton solver, 1e− 4 87

5.24 Iterative difference vs. linear tolerance in a Newton solver . 88

5.25 Sensitivity convergence for linear tolerance, 1e− 1: difference between current and final sen-

sitivity values . 89

5.26 Iterative sensitivity difference for linear tolerance, 1e− 1 . 89

5.27 Sensitivity convergence for linear tolerance, 1e− 4: difference between current and final sen-

sitivity values . 90

5.28 Iterative sensitivity difference for linear tolerance, 1e− 4 . 90

5.29 Iterative difference vs. linear tolerance . 90

6.1 Analysis convergence plot for detached bow shock case . 94

6.2 Backwards-in-iteration-space integration of sensitivities for detached bow shock case 94

6.3 Design cycle summary for detached bow shock . 95

6.4 Flow field comparison for baseline and optimized detached bow shock case 96

x

6.5 Mesh for NACA0012 truncated at 97% of the chord . 98

6.6 Analysis behavior for NACA0012 truncated at 97% of the chord in transonic flow 98

6.7 Design cycle summary for NACA0012 truncated at 97% of the chord in transonic flow 99

6.8 Density field comparison for NACA0012 truncated at 97% of the chord in transonic flow . . 99

6.9 Final state Mach field comparison for NACA0012 truncated at 97% of the chord in transonic

flow . 100

6.10 Mesh for NACA0012 truncated at 95% of the chord . 101

6.11 Analysis convergence plot for NACA0012 truncated at 95% of the chord in transonic flow . . 102

6.12 Design cycle summary for NACA0012 truncated at 95% of the chord in transonic flow 102

6.13 Density field comparison for NACA0012 truncated at 95% of the chord in transonic flow . . 103

6.14 Mach field comparison for NACA0012 truncated at 95% of the chord in transonic flow 104

6.15 Design cycle summary for NACA0012 truncated at 95% of the chord in transonic flow with

steady state adjoint results . 105

6.16 Baseline and optimized airfoils for optimization of NACA0012 airfoil with blunt trailing edge 105

6.17 Analysis convergence plot for NACA0012 truncated at 95% of the chord in transonic flow with

high angle of attack . 106

6.18 Design cycle summary for NACA0012 truncated at 95% of the chord in transonic flow with

high angle of attack . 107

6.19 Density field comparison for NACA0012 truncated at 95% of the chord in transonic flow with

high angle of attack . 107

6.20 Mach field comparison for NACA0012 truncated at 95% of the chord in transonic flow with

high angle of attack . 108

6.21 Design cycle summary for NACA0012 truncated at 95% of the chord in transonic flow with

high angle attack: comparison to steady state adjoint results 109

6.22 Baseline and optimized airfoils for high angle of attack optimization 109

7.1 Virtual Mesh Residual Diagram . 114

7.2 Curvature along a NACA0012 leading edge: contrast between initial mesh (red) and refined

mesh with curvature correction(blue) . 118

7.3 Curvature along a NACA0012 intermediate curvature: contrast between initial mesh (red)

and refined mesh with curvature correction(blue) . 118

7.4 Curvature along a NACA0012 trailing edge: contrast between initial mesh (red) and refined

mesh with curvature correction(blue) . 119

7.5 Coarse mesh for detached bow shock error estimation case 127

7.6 Objective and convergence behavior on a fine mesh . 127

7.7 Tenth adaptation cycle for detached bow shock with error estimation (final isotropic mesh) . 128

xi

7.8 18th and final adaptation cycle for detached bow shock with error estimation 129

7.9 Error histograms for detached bow shock case . 130

7.10 Functional and error estimate convergence for supersonic detached bow shock 130

7.11 Tenth adaptation cycle for detached bow shock with error estimation (final isotropic mesh) . 131

7.12 18th and final adaptation cycle for detached bow shock with error estimation 132

7.13 Error histograms for detached bow shock case . 133

7.14 Functional and error estimate convergence for supersonic detached bow shock 133

7.15 Tenth adaptation cycle for detached bow shock with error estimation and functional correction 134

7.16 18th and final adaptation cycle for detached bow shock with error estimation and functional

correction . 135

7.17 Error histograms for detached bow shock case with functional correction 136

7.18 Corrected functional and error estimate convergence for detached bow shock case 136

7.19 Coarse mesh for transonic blunt trailing edge error estimation case 137

7.20 Objective and convergence behavior on a fine mesh . 138

7.21 Sixth adaptation cycle for transonic blunt trailing edge with error estimation (final isotropic

mesh) . 139

7.22 16th and final adaptation cycle for transonic blunt trailing edge with error estimation 140

7.23 Error histograms for transonic blunt trailing edge case . 140

7.24 Functional and error estimate convergence for transonic blunt trailing edge 141

7.25 Sixth adaptation cycle for transonic blunt trailing edge with error estimation (final isotropic

mesh) . 142

7.26 16th and final adaptation cycle for transonic blunt trailing edge with error estimation 143

7.27 Error histograms for transonic blunt trailing edge case . 143

7.28 Functional and error estimate convergence for transonic blunt trailing edge 144

7.29 Sixth adaptation cycle for transonic blunt trailing edge with error estimation and functional

correction (final isotropic adaptation) . 145

7.30 16th and final adaptation cycle for transonic blunt trailing edge with error estimation and

functional correction . 146

7.31 Error histograms for transonic blunt trailing edge case with functional correction 146

7.32 Corrected functional and error estimate convergence for transonic blunt trailing edge case . . 147

xii

List of Tables

4.1 Verification of steady state adjoint and complex-step computed sensitivities 62

4.2 Comparison of pseudo-time-accurate adjoint and complex-step computed sensitivities 68

5.1 Comparison of pseudo-time accurate adjoint and steady state adjoint-computed sensitivities

for truncated primal problem in Mach = .85, α = 3o . 75

5.2 Pseudo-Time accurate adjoint and steady state sensitivities computed at final state for non-

converging primal problem for Mach = .3, α = 3o . 79

5.3 Pseudo-Time accurate adjoint and steady state sensitivities computed at averaged state for

non-converging primal problem for Mach = .3, α = 3o flow 80

5.4 Pseudo-Time accurate adjoint and steady state sensitivities for non-converging primal problem

Mach = .7, α = 2o . 82

5.5 Pseudo-Time accurate adjoint and steady state sensitivities for non-converging primal problem

for Mach = .7, α = 2o . 82

5.6 Comparison of partially integrated averaged pseudo-time accurate averaged sensitivities (com-

puted at iteration 30000) to fully backwards integrated instantaneous pseudo-time accurate

sensitivities for Mach = .7, α = 2o . 84

6.1 Comparison of adjoint and complex-step optimizations for detached bow shock case 95

6.2 Comparison of adjoint and complex-step optimizations for detached bow shock 97

xiii

xiv

Acknowledgments

This thesis would not have been possible without the support and advice of my committee members,

colleagues, friends, and family. First, my sincerest gratitude to my advisor, Professor Dimitri Mavriplis, who

gave me one of the most interesting projects I ever could have dreamed of and gave me the freedom to pursue

it. I tried idea after idea, with his advice to help me discard the worst ones and pursue the better ones

that make up this dissertation. He was an excellent resource and very patient throughout our exploration

of this topic. He encouraged me to start from scratch and I got the education in CFD that I had hoped for

when I decided to come to the University of Wyoming. My time here has been incredibly rewarding and

educational, and that is largely due to his influence and perspective on research. My thanks to Professor

Siva Nadarajah who gave me my introduction to fluid mechanics and CFD through both classes and his

time advising me when I worked in his lab; he was an excellent advisor and teacher. I asked him where

to go to obtain my PhD; I wanted to go somewhere I could start a project from scratch, work on adjoint

method development, and be close to a beach – he suggested Wyoming (2/3 isn’t bad, and he understood

the primacy of the research for the path ahead). I am grateful to Professor Stoellinger for his enlightening

course on turbulence, and his discussions on it which I hope to use in my research going forward. I would also

like to thank Professor Fertig with whom I took two excellent finite element courses and enjoyed discussing

hunting with throughout my time here. I would like to thank Professor Ginting as well for his feedback, I

had heard excellent things about him as a professor, and am regretful I never had the opportunity to take

a class with him. I am grateful to the members of my committee who read my dissertation and provided

valuable feedback on it as well as instruction through the various classes I took throughout my time here.

I am very appreciative of the more experienced researchers who helped me tremendously when I first ar-

rived: Mike, Behzad, Andrew, and Enrico; as well as those who were newer and I shared many memories with:

Sudeh and Donya. I’d like to thank my friends (Ayoub, Cory, Jan and Jan) and mentors (Mike Aftosmis,

Marian Nemec and Marsha Berger) at NASA Ames who made both my summers there so educational and

worthwhile. My time at Ames directed me toward an interest in error estimation and showed me an example

of experimental attitude necessary to do high quality research while having a large user base for a production

code. I also appreciated their emphasis on the importance of communicating the research in a digestible

manner to me and the scientific community at large. I’d also like to thank Mike Park at NASA Langley for

xv

spending time helping me work with his Refine package, which made the error estimation portion of this

work feasible. This work was made possible by NASA through NASA Grant NNX16AT23H and the NASA

Graduate Aeronautics Scholars Program, and by the Dassault Systémes U.S. Foundation through grant for:

”Inter-University Collaborative Design Project Using Multidisciplinary Design Optimization Technologies”.

Computing time was provided by NASA Advanced Supercomputing (NAS) on the Pleiades supercomputer

and by the Advanced Research Computing Center (ARCC) on the Teton supercomputer.

I am grateful to all my friends and family, especially my parents, for their support throughout this

challenging and lengthy process. I am thankful for my family’s support and for putting me in position to

pursue this graduate education. I am also so appreciative for my friends those from back home who came

out to visit or just kept me company over the phone, and new ones I made throughout my time here. Last,

but most certainly not least, thank you to my partner Larisa, who has planned such wonderful excursions

and activities for us throughout this journey, who supported me ceaselessly, and who encouraged me when

I had doubts as to the feasibility of the project.

Emmett M. Padway

University of Wyoming

September 2020

xvi

Chapter 1

Background and Motivation

The design problem in the field of partial differential equation (PDE) constrained optimization begins

from an objective function L to be minimized, subject to a constraint R = 0. In the field of the computational

fluid dynamics (CFD), L is often an integrated quantity, such as lift or drag, and it is expressed as L =

L(U(D), D), where U is the conservative variable vector, and D is the design variables. The constraint that

the discretized form of the governing equations is satisfied is written as R(U(D), D) = 0, and indicates

that the discretized form of the PDE has been solved to machine zero. To obtain the sensitivity vectors

(dLdD) to drive the optimization one may use the tangent method or the adjoint method. Beginning from

L = L(U(D), D), the derivative is:
dL

dD
=
∂L

∂D
+
∂L

∂U

dU

dD
(1.1)

By differentiating the PDE constraint it is possible to compute the values of dU
dD by solving the below system

of linear equations, which scales with the dimension of D.

dR

dD
= 0 =

∂R

∂D
+
∂R

∂U

dU

dD
(1.2)

Substituting in the expression for dU
dD obtained from the equation above returns the following expression.

dL

dD
=
∂L

∂D
− ∂L

∂U

[
∂R

∂U

]−1
∂R

∂D
(1.3)

This also allows for a simple definition of the adjoint equation; where ΛT is the adjoint variable vector:

ΛT = − ∂L
∂U

[
∂R

∂U

]−1

(1.4)

the adjoint equation scales with L rather than D, and can be used to compute the sensitivities.

dL

dD
=
∂L

∂D
+ ΛT

∂R

∂D
(1.5)

Using the constraint that the residual is equal to zero, while necessary for both formulations, is not always

feasible or possible – cases with complex geometries or high-order discretizations are difficult to converge to

1

Draft of 8:26 pm, Wednesday, November 18, 2020 2

machine zero. Often times the nonlinear flow equations are solved using some form pseudo-time integration.

Consequently, this work is focused on the development of a novel pseudo-time accurate approach to the

tangent and adjoint formulation for design optimization and error estimation which would therefore not

make use of such a constraint on the residual.

Today in the field of computational fluid dynamics (CFD), the most commonly used methods are

second-order accurate finite-volume codes with adjoint capabilities for design and/or error estimation. Some

research groups use higher order accurate discretizations with adjoint capabilities for error estimation, but

not often for design. The biggest use case as the field of CFD has progressed is multidisciplinary design

optimization (MDO). As part of this increased use of MDO, the field has seen an increased desire for a totally

automatic design process with minimal user input that provides for a robust and efficient design process with

a minimum amount of physical testing (due to the prohibitive expense of such tests). To make this goal – as

well as current design optimizations – computationally tractable, most MDO is done using gradient driven

optimization as this allows for far fewer function evaluations when compared to gradient-free methods, such

as genetic or particle swarm algorithms. This is necessary when the function evaluations are as expensive

as they are for many CFD simulations. The optimization toolboxes used for these purposes (SNopt [1, 2],

DAKOTA [3], etc.) are indifferent to the source of the gradient calculation. The finite-difference approach

to compute sensitivities is trivial to implement, and would therefore appear to be a natural method by

which to obtain the gradients. However, the finite difference method is both susceptible to round-off error

and prohibitively expensive as it requires n + 1 function evaluations for n design variables. If one simply

wanted to address the round off error one could use complex-step finite-differences [4]; however, this will be

more expensive than the typical finite-difference approach due to the expense from the complex arithmetic,

and would still scale with the number of design variables. Therefore researchers aim to provide sensitivities

through the more efficient tangent or adjoint methods. The last two methods [5] are more accurate than

the traditional finite-difference method (providing they are properly implemented), and, as shown above, are

developed through conditions on convergence of the nonlinear problem to generate mathematical equations

to solve for the sensitivities. The tangent formulation scales similarly to the finite-difference method, in that

it generates a linear system which scales with the number of design variables; the adjoint transposes the

system and scales independently of the number of design variables, it scales with the number of objective

functions. For many aerospace applications the number of design variables is one to two orders of magnitude

higher than the number of objective functions and the adjoint method is a powerful and preferred technique

to obtain sensitivities. Also, the adjoint solution is well suited for adaptive mesh refinement (AMR) as a

tool to estimate the error in a functional and refine a computational mesh to increase accuracy in the output

of interest [6, 7].

The first attempts to use computational methods for design were by Lighthill using conformal mapping

for design in subsonic flow [8]. McFadden later extended this method to compressible flow through use of

Draft of 8:26 pm, Wednesday, November 18, 2020 3

artificial viscosity and thus allowing for design even in the presence of shock waves [9]. In the 1970s many

groups started looking into the use of transonic small disturbance theory and other potential flow methods

for design [10, 11]. Jameson also began developing transonic Euler codes for structured and unstructured

meshes [12, 13]. Lions et al. [14]and Pironneau et al. [15] later developed the first formulations of elliptic

design problems through use of the adjoint. Jameson then applied adjoint methods to the Euler equations

using the conformal mapping approach for the airfoil design [16]. Subsequently, Hicks and Henne used finite-

differences to tackle partial differential equation (PDE) constrained optimization with shape parameterization

to ensure smooth perturbations of the baseline geometry [17]. Jameson then applied the adjoint method in

the context of PDE constrained optimization for shape optimization [16]. In such cases, where there are

many design variables required to obtain a sufficiently fine design space, the adjoint allows for less costly

sensitivity calculation as discussed previously. As the adjoint has become more prevalent, the field has

seen three dimensional design optimization as well as multidisciplinary optimization methodologies become

possible. Nadarajah et al. developed optimal design for unsteady – also referred to as time-accurate –

flows [5]. This was followed by Mani et al. [18] developing the unsteady adjoint for design in multidiscplinary

problems. Today the field has multiple codes that can run unsteady multidiscplinary design cases. Zhang et

al. [19] presented results from a monolithic aerostructural Reynolds Averaged Navier Stokes (RANS) code

for unsteady design/optimization. Fabiano et al. [20], Anderson et al. [21]. and Kamali et al. [22], show

results for a loosely coupled aero-thermo-elastic-acoustic solver with design capabilities.

The history of AMR shows the development and effect of adjoint methods as well. AMR has become a

larger part of the expanding field of CFD as computers and algorithms have developed. As the field has ma-

tured and seen an explosion in computing power and the development of stronger and more efficient methods,

more complicated and expensive simulations are being undertaken. In order to make these simulations more

computationally tractable the field has moved towards mesh refinement methodologies, which can now be

found in many cutting edge research codes as well as some industrial codes. The earliest refinement methods

were pioneered by Berger and Oliger in 1982 [23]. These were then moved by Berger first to multidimensional

Euler flows [24] and then to arbitrary complex geometries [25]. These utilized patch based methodologies

and form the basis of many packages used today. The other prominent methodology used is local refinement,

first displayed in performant codes by Lohner in 1987 [26]. The simplest mesh refinement technology is

a preprocessing refinement, that takes the initial mesh and refines in an area the user believes will have

important flow features; this suffers from being non-adaptive. To compensate for this lack of adaptivity,

these methods may be used in conjunction with an adaptive method. An example of such a code is the well

validated and widely used Cart3D code which has an a priori refinement tool combined with an output-based

error estimate to drive the adaptive refinement technology [6,27]. When looking at adaptive refinement, the

two main branches of adaptive methodologies are feature-based and error/output-based refinement. Feature

based refinement refines the mesh in areas of high flow gradients and coarsens in smooth areas; the idea

Draft of 8:26 pm, Wednesday, November 18, 2020 4

being that areas of high flow gradients are crucial to resolve accurately in order to obtain accuracy in the

outputs of engineering interest. The Refine package from NASA can calculate the Mach Hessian for the user

from a flow field and can use that to drive the adaptation process on simplex meshes [28]. Feature-based

methods are popular due to ease and low cost of implementation. Many large scale codes use feature-based

adaptation when error estimates are difficult or expensive to implement or compute; one such example is

refining based on q-criterion in exascale simulations of wind turbines [29].

The error-based or output-based refinement techniques utilize measures of error in the PDE discretiza-

tion or the output of interest to drive the mesh adaptation. In error based refinement, without a specific

output of interest, the error is computed in one of the two following ways. The first way is a more general

approach that can be used in both Finite Volume (FVM) and Finite Element Method (FEM) codes; the

mesh is uniformly refined and the converged flow state is interpolated onto the refined mesh and the residual

is calculated on the fine mesh, then the residual from the fine mesh is restricted back to the coarse mesh.

While the residual on the coarse mesh may be machine zero, the coarse mesh flow field interpolated onto

the fine mesh will lead to a nonzero residual evaluation as these are different discretizations of the PDE

with different solutions. The second method is often used in FEM codes; the residual operator for a higher

order discretization than was utilized in the analysis is calculated using the converged flow state and the

magnitude of the residual in each element becomes the refinement criterion and drives the mesh refinement

module [30]. Similarly, the higher-order discretization will have a different converged flow state than the

lower order one and therefore the residual will be nonzero. The issue with error-based approaches that do

not factor in the output is that the mesh may be refined in places to better satisfy the governing equations

that have no impact on the output of engineering interest. Output-based error estimates have seen the most

development in recent years due to their usefulness in engineering applications, and this is where the adjoint

formulation enters the picture. These began with the formulation by Becker and Rannacher [31] for FEM

solvers, these use the adjoint to weight the residual from a higher order discretization to drive the refinement

process, this is referred to as the dual weighted residual (DWR) error estimate. These were then moved to

FVM solvers by Venditti and Darmofal including functional corrections [7]. Mani and Mavriplis [32] then

applied these error estimation techniques to unsteady aerostructural problems refining the temporal mesh.

Whether one uses an industry code to solve a complicated geometry or a high-order research code to

solve a simple geometry the same issue can occur: a lack of convergence of the residual. In typical engineering

analysis cases one might simply check that the integrated quantities (such as lift and drag) do not vary with

further iterations, and assume that this is sufficient for engineering purposes and design; this is not the

case. As discussed previously, the adjoint and tangent systems require that the primal problem be fully

converged, indicating that the governing equations have been satisfied to machine precision. Therefore the

commonly used heuristic of convergence of engineering forces is no longer sufficient. However, as CFD has

developed and matured and the field has tackled more difficult problems (higher-order formulations, blunt

Draft of 8:26 pm, Wednesday, November 18, 2020 5

geometries, or time-accurate simulations) this constraint has become more difficult or impractical to obey,

and numerous design or mesh refinement cycles have been performed using adjoint systems linearized about

partially converged primal solutions. This defect shows itself in less robust and more difficult to solve adjoint

systems that are also sensitive to the specific state of the primal problem about which they are linearized

when the convergence of the primal simulation is terminated prematurely [33,34]. For AMR, this can lead to

refining the mesh in areas that may not contribute to the output of interest, and coarsening in areas where the

output of interest is affected, which can impact the accuracy of the primal problem as the mesh adaptation

proceeds. In the realm of design optimization, inaccurate adjoint vectors can lead to inaccurate sensitivities,

which can change the course of the design cycle and lead to stagnation (as the Karush-Kuhn-Tucker (KKT)

conditions, which govern termination, require that the gradient vanish at a local extremum) [2].

Krakos and Darmofal [33] illustrate that for a nonconvergent case, the state about which the adjoint

is linearized can notably affect the sensitivity calculations. The authors show that by running the non-

convergent steady-state case as a time-accurate case and applying the unsteady adjoint to the time-accurate

case returns useful and accurate adjoint computed sensitivities for the time-averaged lift. The authors suggest

that for steady-state cases which can be solved by strong solvers, but which may show physical unsteadiness,

the time-accurate approach is in fact the proper analysis framework to use as otherwise CFD practitioners

may risk obtaining unphysical and non-useful sensitivity vectors. Krakos et al. follow their previous work

with an investigation of statistical and windowing techniques to allow only partial time integration for

periodic primal flows with time-averaged outputs of interest [35]. The authors demonstrate that with proper

windowing techniques only partial time integration is required to obtain accurate sensitivities. However

even for time-accurate formulations, Mishra et al. [36] have demonstrated growing error in the sensitivity

vector throughout the adjoint reverse time-integration due to partial convergence of the primal problem at

each implicit time step, which is a common practice in applied CFD problems. Mishra et al. applied the

unsteady adjoint to a helicopter blade optimization and compared the sensitivities of the tangent and adjoint

linearizations to those of the complex-step finite-difference approach for both a rigid and a flexible structure.

Figure 1, taken with permission from the work of Mishra et al., shows growing error in the sensitivity through

the time integration for a flexible rotor case with the aforementioned partial convergence at each implicit

time step. The left plot shows the absolute error growing as the tangent is integrated forward in time and

the adjoint is integrated backwards in time for one rotor revolution. The right plot shows the relative error

for the two methods over the same window with the adjoint plotted as it integrates backwards in time.

It is clear that the discrepancy between the complex-step finite-difference sensitivities and the adjoint

computed sensitivities increases steadily over time for this rotorcraft simulation. Therefore, it seems to be

necessary to develop a method that would be accurate without this reliance on full convergence of the implicit

time step. Furthermore, this raises the question as to how partial convergence of the steady-state nonlinear

problem affects the accuracy of the tangent and adjoint computed sensitivities. Luers et al. [37] illustrate

Draft of 8:26 pm, Wednesday, November 18, 2020 6

Figure 1.1: Complex vs. adjoint sensitivities for partially converged unsteady rotorcraft flows

the importance of accurate gradients in well converging cases that have not reached deep convergence. In

their paper they present steady-state optimizations for a CRESCENDO turbine cascade, and contrast the

optimization for finite-difference computed gradients to that driven by adjoint computed gradients in a

case with a 5 order drop in the nonlinear residual. They ran this partially converged analysis problem

and compared the adjoint to the finite-difference computed sensitivities and showed very good qualitative

correspondence and took this as verification of the implementation of the adjoint and the ability to only

partially converge the analysis and still obtain useful sensitivities. They then show that by using the finite-

difference provided gradients the optimized objective function is lower than that obtained by using the

adjoint provided gradients, computed through linearization about the partially converged state. Brown and

Nadarajah [38] investigate an upper bound for the error in the adjoint computed sensitivities arising from

partial convergence of the analysis problem for problems that are smoothly converging to the steady-state

solution. From these error estimates, the authors can focus computational resources on the more crucial

stages of the design cycle, i.e., get a mostly directionally correct sensitivity vector early on in the design

cycle and obtain more accurate vectors as the optimizer moves closer to the minimum where accuracy in the

sensitivity vector is of utmost importance. The work of Brown and Nadarajah is a natural solution to the

issues demonstrated by Luers et al. [37] in their volumetric optimization cases.

The development of an approach for computing tangent and adjoint problems in nonconvergent steady-

state problems is the thrust of this thesis. The proposed approach linearizes the fixed point iteration

used to solve the steady-state problem to develop the pseudo-time accurate tangent and adjoint systems

[34, 39]. The pseudo-time accurate formulation of the tangent and adjoint systems is used with a pseudo-

time averaged objective functional to compute the adjoint and tangent sensitivities for a system in limit-cycle

oscillations. These methods will provides sensitivities that correspond exactly to the sensitivities obtained

Draft of 8:26 pm, Wednesday, November 18, 2020 7

through the complex step differentiation of the solution process. The argument is that these sensitivities,

which correspond to the linearization of the simulation itself are the ones to use for optimization rather

than sensitivities provided by an adjoint linearized about an unconverged state. In this work it is shown

that the pseudo-time accurate approach yields benefits not only for the truncated cases like those of Luers

et al. [37], but also (and primarily) for cases that cannot and will not converge. The pseudo-time accurate

formulations of the adjoint problem will be applied to design optimization and error estimation and adaptive

mesh refinement, showing the efficacy of such techniques.

Draft of 8:26 pm, Wednesday, November 18, 2020 8

Chapter 2

Implementation Details:

Aerodynamic Analysis, Sensitivities,

and Parallelism

2.1 Governing Equations

The governing equations for this work are the steady Euler equations. denoted by:

∇ · F (U) = 0 (2.1)

where U is the conservative variable vector and F (U) is the conservative variable flux. The conservative

variable vector U is written as:

U =


ρ

ρu

ρv

ρe

 (2.2)

where ρ is the density, u and v are the velocity components in the x and y directions respectively and e is

the energy. The flux operator has two components, in the x and y directions:

Fx(U) =


ρu

ρu2 + p

ρuv

(ρe+ p)u

 ,Fy(U) =


ρv

ρuv

ρv2 + p

(ρe+ p)v

 (2.3)

P is the fluid pressure obtained by:

P = (γ − 1)ρ

(
e− 1

2

(
u2 + v2

))
(2.4)

9

Draft of 8:26 pm, Wednesday, November 18, 2020 10

where γ = 1.4 is the specific heat ratio. The flux at a face with normal (nx, ny) is given as:

F(U) = Fx(U)nx + Fy(U)ny (2.5)

2.2 Boundary Conditions

This work uses dual consistent formulations of the boundary conditions to allow for better refinement

patterns as shown in other works [40].

2.2.1 No Penetration Boundary Condition (Slip Wall)

The no penetration boundary condition enforces the condition on the boundary wall (denoted by Γwall):

~u · ~n = 0, ~x ∈ Γwall (2.6)

This is enforced by taking the state of the boundary element (u+) and calculating a boundary state (ub)

from it. The flux across the face is then calculated using the exact flux F where F = F (ub(u+)). In order to

impose the no-penetration boundary condition/slip-wall, the normal component of the velocity is enforced

to be equal to zero and the tangent component is unchanged across the boundary. This gives the following

equations:

~ub · ~n = 0

~ub · ~t = ~u+ · ~t
(2.7)

where ~t is the tangent vector to the boundary.

u+ =


ρ+

ρ+ub

ρ+vb

ρ+e+

 (2.8)

2.2.2 Characteristic Boundary Condition (Inflow/Outflow Boundary)

Here again it is used that the boundary cell (ub) is a function of the boundary element (u+) and the

flux is computed across the face using the same exact flux F . First, the Riemann invariants – denoted by

Draft of 8:26 pm, Wednesday, November 18, 2020 11

Rp and Rm – must be defined so that the boundary state can be computed.

w1 = s

w2 = ~u · ~t

w3 = Rp = ~u · ~n+
2c

γ − 1

w4 = Rm = ~u · ~n− 2c

γ − 1

(2.9)

The code is nondimensionalized such that the speed of sound, c, is equal to unity. The above quantities

must stay constant across the boundary and whether the information is propagated from the outside onto

the boundary or from the inside out is dependent on the flow regime. In subsonic flow the characteristics

will flow in and out of the domain, and the boundary state will depend on both the freestream values and

the values inside the domain. For a subsonic inflow boundary (~u · ~n < 0) the invariants are calculated as

follows:

w1 = s =
P∞
ργ∞

w2 = ~u · ~t = −u∞ny + v∞nx

w3 = Rp = ~u · ~n+ +
2c+

γ − 1

w4 = Rm = ~u · ~n∞ −
2c∞
γ − 1

(2.10)

For a subsonic outflow boundary (~u · ~n > 0) the invariants are calculated as follows:

w1 = s =
P+

(ρ+)γ

w2 = ~u · ~t = −u+ny + v+nxw1

w3 = Rp = ~u · ~n+ +
2c+

γ − 1

w4 = Rm = ~u · ~n∞ −
2c∞
γ − 1

(2.11)

The Riemann invariants are used to compute the boundary state and therefore the boundary flux.

Supersonic flow is much simpler as all the characteristics point downstream, and so the upstream state is

not impacted by the downstream one. For inflow the boundary state is given by:

ub =


ρ∞

ρ∞u∞

ρ∞v∞

ρ∞e∞

 (2.12)

Draft of 8:26 pm, Wednesday, November 18, 2020 12

and for the outflow it is given by:

ub =


ρ+

ρ+u+

ρ+v+

ρ+E+

 (2.13)

2.3 Spatial Discretization

The solver uses a finite-volume cell-centered approach that will be expanded on in the following sections.

The residual about the closed control volume is:

R =

∫
dB

[F (U)] · n, dB =

nedge∑
i=1

F⊥ei (U, nei)Bei (2.14)

In a first-order finite-volume discretization the conservative variable values in the cell are held to be

piecewise constant and the cell values are used to evaluate the numerical fluxes at the edge midpoints. This

leads to a nearest neighbors stencil and the flow Jacobian is computed by linearizing the flux at each face

with respect to the left and right states and storing these values in a sparse edge based structure of diagonals

and off diagonals. The matrix vector product
[
∂R
∂u

]
1
v is evaluated by looping over the edges.

2.3.1 Numerical Flux

In this work three flux schemes are implemented for the interior numerical fluxes: Lax-Friedrichs/Rusanov

scheme [41], Van Leer flux splitting [42], and Roe flux [43]. The Lax-Friedrichs scheme is written as:

F =
1

2
(FL + FR + α(UL − UR)) (2.15)

where α is the max eigenvalue at the interface:

α = max
L,R

(|~u · ~n|+ c) (2.16)

The Van-Leer flux splitting scheme, which is predominantly used in this work, is implemented as:

fx = ± ρ

4c
(u± c)2


1

(γ−1)u±2c
γ

v

v2

2 + [(γ−1)u±2c]2

2(γ2−1)

 , fy = ± ρ

4c
(v ± c)2


1

u

(γ−1)v±2c
γ

u2

2 + [(γ−1)v±2c]2

2(γ2−1)

 (2.17)

The numerical flux at the face is computed by:

f(u) = fxL(u)nx + fyL(u)ny + fxR(u)nx + fyR(u)ny (2.18)

The Roe flux is calculated as follows:

F =
1

2
(F (uL) + F (uR)) +

1

2

∣∣Ā∣∣(uL − uR) (2.19)

Draft of 8:26 pm, Wednesday, November 18, 2020 13

where the
∣∣Ā∣∣ matrix is the linearization of the flux about the Roe state, which is created through the use

of Roe averaging. This can be rewritten:

F =
1

2
(F (uL) + F (uR)) + T |Λ|T−1(uL − uR) (2.20)

where the |Λ| matrix is a diagonal matrix containing the eigenvalues corresponding to the characteristics:

u − c, u, u + c. Oftentimes this can require the use of an entropy fix, although the Harten-Hyman entropy

fix [44] was implemented it was not used, and instead the following is used [45]:

u = sign(u)max(|u|, δ(|u|+ c)) (2.21)

u+ c = sign(u− c)max(|u+ c|, δ(|u|+ c)) (2.22)

u− c = sign(u− c)max(|u− c|, δ(|u|+ c)) (2.23)

where δ is a small limiting parameter between zero and one that prevents the eigenvalues from approaching

zero and thus the dissipation from disappearing.

2.3.2 Extension to Second-Order Spatial Accuracy

The code developed for this work is spatially second-order accurate and uses gradient reconstruction

to extend beyond first-order accuracy. Gradient reconstruction works by taking each cell to have piecewise

linear conservative variable values using a gradient reconstruction method to reconstruct from the cell center

to the face midpoint. The equation below shows the state reconstruction, where the conservative variable

reconstruction at the face is the centroid value (ui) plus the dot product of the gradient and the distance

from the centroid of cell i to the center/Gauss point of the shared face k (~rik).

urcik = u+∇ui · ~rik (2.24)

The flux at the face separating cells i and j is calculated by using the numerical flux functions outlined

previously with inputs being the reconstructed states. That is to say, F = F (uL, uR) where, as above,

uL = ui +∇ui · ~rik and uR = uj +∇uj · ~rjk. This reconstruction expands the stencil of the discretization

to a neighbors of neighbors stencil; the first-order flux functions use a nearest neighbors approach and the

reconstructed states extend this to the neighbors of neighbors stencil. This changes the Jacobian calculation

and storage requirements. The first-order Jacobian is expressed as
[
∂R
∂u

]
1

which consists of diagonal entries

for each cell and off diagonal entries for each edge. When moving to the second-order accurate Jacobian,

expressed as
[
∂R
∂u

]
2
, there is now a neighbors of neighbors stencil which takes up 2.5 times more memory

than the first-order accurate one. Rather than storing the full matrix it is factored and any matrix vector

products are formed in a staged approach. The matrix is computed as below:[
∂R

∂u

]
2

=
∂R

∂uL

∂uL
∂U

+
∂R

∂uR

∂uR
∂U

(2.25)

Draft of 8:26 pm, Wednesday, November 18, 2020 14

In order to compute the matrix vector product of
[
∂R
∂u

]
2
δU , it is calculated as:

δuL =
∂uL
∂U

δU

δuR =
∂uR
∂U

δU[
∂R

∂u

]
2

=
∂R

∂uL
δuL +

∂R

∂uR
δuR

(2.26)

Where the components of the matrix ∂R
∂uL

,∂uL

∂U and ∂uR

∂U are all stored in a sparse storage format. Breaking

down the matrix vector product allows for easy verification of the linearization. By using a random vector

perturbation δU to U it is possible to first check the linearization of the left side reconstructed state using

the identity below for the complex-step method.

∂uL
∂U

δU =
Imag(uL(U + iεδU))

ε
(2.27)

The linearization of the right constructed state can be verified similarly.

∂uR
∂U

δU =
Imag(uR(U + iεδU))

ε
(2.28)

The linearization of the residual with respect to the left and right reconstructed states can be checked by

combining the two routines above using two random perturbation vectors δuL and δuR.

∂R

∂uL
+

∂R

∂uR
=
Imag(R(uL + iεδuL, uR + iεδuR))

ε
(2.29)

This linearization uses the linearized flux functions used in the first-order accurate spatial residual lineariza-

tion but substitutes in the second-order accurate conservative variable values. The gradient reconstruction

used in this work is the weighted least squares gradient reconstruction.

This was implemented by using Cramer’s rule to solve the following system of linear equations:

aiux + biuy = di

biux + ciuy = ei

(2.30)

where the left hand side is defined below.

ai =

N∑
k=1

w2
ikdx

2
ik

bi =

N∑
k=1

w2
ikdxikdyik

ci =

N∑
k=1

w2
ikdy

2
ik

di =

N∑
k=1

w2
ikduikdxik

ei =

N∑
k=1

w2
ikduikdyik

(2.31)

Draft of 8:26 pm, Wednesday, November 18, 2020 15

w is the distance weights between the cell centroids and the d terms are the differences in coordinates and

conservative variable values between the cell centroids.

dxik = xk − xi

dyik = yk − yi

duik = uk − ui

wik =
1√

dx2
ik + dy2

ik

(2.32)

Since this work uses a cell-centered finite volume discretization there will often be meshes that contain

elements with two boundary faces, as such the least squares system includes the boundary states and distances

as part of the least squares system. It should be noted from the boundary formulation given above that the

boundary states computed are created at the boundary Gauss points, and that therefore the distance in the

least squares system is from the cell centroid to the Gauss point (the edge midpoint) rather than to a ghost

centroid reflected across the boundary face. When this is implemented incorrectly this can lead to a loss of

accuracy across the boundary.

The gradient reconstruction routines used in the residual evaluations are also used to calculate the

objective functions for design optimization. The quantities of engineering interest, such as lift and drag,

are computed on the airfoil boundary, but the conservative variable values are computed and stored at the

cell centers. For the first-order spatially accurate solver, the cell center values are used at the boundary as

the conservative variable values are taken to be constant through the cells. For the second-order spatially

accurate solver the option is to either use the cell center values, or to reconstruct from the cell center to

the boundary and evaluate the forces based off those reconstructed values. While this method usually leads

to greater accuracy, the cell gradients are only first-order accurate on arbitrary meshes and their accuracy

can suffer on highly stretched or anisotropic meshes, which can in turn affect the quantities of engineering

interest.

2.3.3 Limiting Algorithm

It should be noted that for second-order discretizations in transonic or hypersonic flow, often a gra-

dient/slope limiting method is required to assist in stability of the flow solver; this limits the solution to

being first-order accurate in the vicinity of shocks to keep the total variation diminishing property necessary

for stability. This work uses a modified Venkatakrishnan’s Limiter towards that end, shown in algorithm

2. Venkatakrishnan’s limiter is itself a smooth modification of the Barth-Jespersen limiter. The original

Barth-Jespersen limiter is shown in algorithm 1 and is written as follows for each cell:

1. Find the largest negative and positive differences between the cell average solution in the neighbors

and the current control volume

Draft of 8:26 pm, Wednesday, November 18, 2020 16

2. Compute the unlimited reconstructed value at the face midpoint

In the implementation in this work the reconstruction is performed at the intersection of the vector

between the two cell centers and the face separating them, this prevents spurious limiting

3. Compute the maximum allowable value of the limiter of each field variable and each face by enforcing

that no extremum is created at each face

This is done by reconstructing the the midpoint of each face and checking that the reconstructed

value is not larger than the cell center values of the cells that share the face

4. Take the minimum value at each face to get the most conservative limiter for each field variable

In algorithm form:

Algorithm 1 Barth-Jespersen Limiter

1: procedure Barth-Jespersen
2: for i = 1, ..., fields do
3: δumini =∞, δumaxi = 0
4: for j = 1, ..., neighbors do

5: δumini = min(δumini , ūi − ¯
uji)

6: δumaxi = max(δumaxi , ūi − ¯
uji)

7: for j = 1, ..., neighbors do
8: urcj = ui +∇ūi · ~rj

9: Φij =


min(1,

δumax
i

urcj
−ūi

), if uij − ūi > 0

min(1,
δumin

i

urcj
−ūi

), if uij − ūi < 0

1, ifuij − ūi = 0

10: Φi = min(Φij)

To aid convergence and differentiability, Venkatakrishnan’s limiter replaces the min in step 9 with a

smooth approximation of the form:

φ(y) =
y2 + 2y

y2 + y + 2
(2.33)

where y = ∆+

∆−
,

∆+ =

 δumaxi , if uij − ūi > 0

δumini , if uij − ūi < 0
(2.34)

and ∆− is written below.

∆− = ∇ui · ~rij (2.35)

This expression in terms of y can be modified to prevent activation in smooth regions, as will be shown in

the algorithm of the implementation used in this work. In this work Venkatakrishnan’s limiter is modified

in a few important ways.

1. All max and min functions use smooth max and min functions to allow differentiability

Draft of 8:26 pm, Wednesday, November 18, 2020 17

2. All switches in the code dependent on the flow state are done in a smooth and blended manner using

a sine shut-off function to aid differentiability

3. The limiter is augmented with a stagnation point fix that turns off the limiter entirely if the local Mach

number is below a certain value (again done in a smooth manner)

4. Finally, the limiter contains a realizability check that if violated (pressure, energy, or density are

reconstructed to below 5% of the cell center value) the cell is knocked down to first-order

Algorithm 2 Augmented Venkatakrishnan Limiter

1: procedure Augmented Venkatakrishnan Limiter
2: M1 = .80,M2 = .85, εlim = 1e− 5, εTFOs = −.95, εTFOe = −.9
3: ε =

√
κ(r1)

3
, where r1 is the radius of the circumscribed circle of the triangular cell

4: Mmax = M̄
5: for i = 1, ..., fields do
6: Φi = 1
7: δumini =∞, δumaxi = 0
8: for j = 1, ..., neighbors do

9: δumini = min(δumini , ūi − ¯
uji)

10: δumaxi = max(δumaxi , ūi − ¯
uji)

11: Mmax = max(Mmax,Mi)

12: σMach = 1− SSO(Mmax,M1,M2)
13: for j = 1, ..., neighbors do
14: ∆− = ∇ūi · ~rj
15: s = SSO(∆−, 0, εlim)
16: ∆+ = (1− s)(umini − ūi) + s(umaxi − ūi)
17: φ =

∆2
++ε2+2∆+∆−

∆2
++ε2+2∆+∆−+2∆2

−

18: Stagnation point fix
19: φ = σMach + (1− σMach)φ
20: Φi = min(Φi, φ)

21: Begin realizability check
22: for j = 1, ..., neighbors do
23: urcj = ui + Φ∇ūi · ~rj
24: δρ = ρrcj − ρ̄
25: δP = Prcj − P̄
26: δE = Ercj − Ē
27: se = SSO(δe, εTFOs

, εTFOe
)

28: sp = SSO(δp, εTFOs
, εTFOe

)
29: sρ = SSO(δρ, εTFOs , εTFOe)
30: s = min(sρ, se, sp)
31: Φ = sΦ

This limiter in algorithm (2) provides better convergence properties than the standard Venkatakrishnan

Limiter, and is used in this work. It can also be noted that due to the use of smooth max and min functions,

as well as a smoothly blending shut-off (SSO) function outlined in equation (2.40) [46], every step in this

limiter is differentiable. This makes the linearization of the limiters possible and much easier to code, as

multiple branching statements are avoided.

Draft of 8:26 pm, Wednesday, November 18, 2020 18

2.3.4 Smooth Function Implementations

With the goal of making this code smooth and differentiable to assist in convergence and adjoint lin-

earization, 5 smooth functions to approximate sign, absolute value, max, min, and a state-dependent branch-

ing statement have been implemented. The branching statement uses the smooth shut-off function as in the

limiting algorithm.

sign(x) = tanh(100x) (2.36)

|x| = x2

sign(x) + 1e− 13
(2.37)

max(x, y) =
1

2
(x+ y + |x− y|) (2.38)

min(x, y) =
1

2
(x+ y − |x− y|) (2.39)

SSO(x, xs, xe) =


0 if x < xs

1
2

(
sin
(
π
2

2x−(xe+xe)
xe−xs

)
+ 1
)

if xs < x < xe

1 if x > xe

(2.40)

where θ is defined by:

θ =
π

2

2x− (xe + xe)

xe − xs
(2.41)

2.4 Nonlinear Solvers

The solver technology implemented in this work consists of either explicit time stepping through pseudo-

time using a forward Euler scheme or a low storage five stage Runge-Kutta scheme; or implicit time stepping

through Newton’s Method. The forward Euler scheme is written as follows.

uk = uk−1 + CFL∆t(uk−1, D)R(u(D), D) (2.42)

The five stage Runge-Kutta shown below is used because of its increased stability over the forward Euler

method. It is as follows, iterating k through pseudo-time/nonlinear iterations and l through stages one to

five at each pseudo-time iteration:

uk,l = uk,0 + CFLαl−1∆t(uk−1,0)R(uk−1,l−1) (2.43)

with the end of the sub-stage time-stepping being governed as follows.

uk,0 = uk−1,5 (2.44)

Newton’s method was implemented using pseudo-transient continuation (PTC) with a first-order Back-

ward Difference (BDF1) scheme in the context of a quasi-Newton method. For Newton’s method the time-

stepping procedure is written as:

uk = uk−1 + ∆u (2.45)

Draft of 8:26 pm, Wednesday, November 18, 2020 19

where ∆u is computed by solving the following system of linear equations.

[P] ∆u = −R(u) (2.46)

∆u can be substituted into the time-stepping equation (2.45) to obtain the final form of this equation.

uk = uk−1 − [Pk−1]
−1
R (2.47)

Where [Pk−1] is a first or second-order accurate Jacobian of the spatial residual augmented with a diagonal

term to ensure that it is diagonally dominant. In this work, typically the preconditioner matrix is the

first-order accurate Jacobian:

[Pk−1] =
∂R

∂uk−1
+

vol

∆tCFL
(2.48)

vol is the area of the cell, and the CFL is scaled either with a simple ramping coefficient (β) and a maximum

allowable CFL:

CFL = min(β ∗ CFL,CFLmax) (2.49)

or with a line search and CFL controller, which seeks to minimize the L2 norm of the pseudo-unsteady

residual. The pseudo-unsteady residual is defined below.

Rt(u+ α∆u) =
vol

∆t
α∆uk +R(u+ α∆uk) (2.50)

When the temporal residual decreases, this is considered to be a satisfactory value for α and the CFL is

changed accordingly. Algorithm 3 shows the actual process for the line search and CFL controller.

Algorithm 3 CFL controller

1: procedure Line Search and CFL Controller
2: rt0 = ‖Rt(u+ ∆u)‖2
3: rs0 = ‖R(u)‖2
4: rs1 = ‖R(u+ ∆u)‖2
5: if rs0 < rs1 then
6: for k = 1, ..., itermax do
7: α = cα
8: rt1 = ‖Rt(u+ α∆u)‖2
9: if rt1 < rt0) then exit

10: if alpha < alphal1 then
11: α = 0
12: CFL = β1CFL
13: else if alphal1 < α < alphal2 then
14: CFL = CFL
15: else if α < alphal2 then
16: CFL = min(β2CFL,CFLmax)

Where the parameters itermax, c, αl1, αl2, β1, and β2 are all user defined input values, defaulted to

30, .9, .1, .75, .1, and 1.5 respectively.

Draft of 8:26 pm, Wednesday, November 18, 2020 20

2.5 Linear Solvers

The need for linear solvers implemented in this work is driven first by the need to solve a linear system

in the Newton-Krylov nonlinear solver shown above in equation 2.47 as well as the requirement of solving

the tangent and adjoint systems. Generally a linear system is defined as below, with A being a matrix, and

x and b being vectors of unknowns and knowns respectively.

Ax = b (2.51)

The linear residual of the system is written as follows.

r = b−Ax (2.52)

In order to solve the linear system in this work either element-implicit Jacobi or Gauss-Seidel smoothers

are used, shown in algorithms 4 and 5 respectively. They are used either as linear solvers or as preconditioners

for BiCGStab [47] or FGMRES [48] linear solvers. This is done by lagging the diagonal components, denoted

as [D], with the right hand side being the linear residual of the original system. If the discretization is first-

order accurate, then the residual and Jacobian will both be first-order accurate. If the discretization is

second-order accurate, the residual is second-order accurate, and the Jacobian can be either first or second-

order accurate. If the Jacobian is first-order accurate this is a defect-correct or inexact Newton solver. If the

Jacobian is second-order accurate then the smoother can use either the first-order or second-order accurate

Jacobian on the left hand side; if the Jacobian is second-order accurate in both the linear system and the

smoother then the smoother is under relaxed. The smoothers used in this work often use the first-order

accurate left hand side for simplicity and computational expense.

Algorithm 4 Element-Implicit Jacobi

1: procedure Jacobi
2: k = 0
3: v = Ax
4: r = b− v
5: for k < itermax do
6: i = 0
7: for i < cellnum do
8: ∆xi = − [Di]

−1
ri

x = x+ ω∆x
9: if (‖r‖ < lintol) then exit

The smoothing iteration for the analysis code as:

[D]1 ∆u = −R−
[
∂R

∂u

]
1

∆u (2.53)

Typically this would hamper the nonlinear solution process as it would only allow for the inexact Newton

solver, however, using second-order matrix vector products and first-order preconditioning is an effective

Draft of 8:26 pm, Wednesday, November 18, 2020 21

Algorithm 5 Element-Implicit Gauss-Seidel

1: procedure Gauss-Seidel
2: k = 0
3: for k < itermax do
4: i = 0
5: for i < cellnum do
6: for k < nneighbors(i) do
7: vi = vi +Ai,kxi,k

8: ri = bi − vi
9: ∆xi = − [Di]

−1
ri

x = x+ ω∆x
10: if (‖r‖ < lintol) then exit

and widely used technique to implement GMRES or other Krylov solvers and this allows for a second-order

accurate Jacobian in the Newton-Krylov solver used for the primal problem. The flexible GMRES linear

solver is also implemented to solve the stiff steady state tangent and adjoint systems. For preconditioning it

uses either of the point-implicit linear smoothers.

Algorithm 6 Flexible Restarted GMRES

1: procedure Flexible GMRES
2: for k = 1, ..., ncycles do
3: r0 = b−Ax0, β = ‖r0‖, v1 = r0/β
4: for j = 1, ...,m do
5: zj = M−1vj
6: vj+1 = Azj
7: for i = 1, ..., j do
8: hi,j = (vj+1, vi)
9: vj+1 = vj+1 − hi,jvi

10: hj+1,j = ‖vj+1‖, vj+1 = vj+1/hj+1,j

11: Define Zm = [z1, ..., zm] , H̄m = [hi,j]1<i<j+1,1<j<m

12: Solve least squares problem for ym
13: x0 = x0 + Zmym

2.6 The Design Problem

The bulk of this work focuses on gradient based design for aerodynamic shape optimization, and it is

assumed that these cases begin with a baseline geometry and mesh [49]. A flowchart showing the optimization

process is in Figure 2.1.

First, the design variables smoothly perturb the geometry nodes. Second, the perturbed geometry moves

the volume nodes of the mesh through use of a mesh motion algorithm. The flow solution problem is solved

on the perturbed geometry and mesh. The objective function is then solved using the computed flow field.

Finally the sensitivities are computed (often using the adjoint method) and the objective and sensitivities

are given to an optimizer to provide new values of the design variables and the sequence is repeated. The

Draft of 8:26 pm, Wednesday, November 18, 2020 22

D

Solve
Primal

Problem

Compute
Objective &
Sensitivities

Compute
Surface

Geometry

Compute
Volume
Mesh

Xs Converged?Xv U 𝐿,
𝑑𝐿

𝑑𝐷

No

Yes

Success!

Xv

Figure 2.1: Design Process Flow Chart

below sequence outlines the design problem where D is the design variable vector, xsurf is the geometry

coordinate vector, xv is the volume mesh point coordinate vector, U is the conservative variable vector, and

L is the objective function.

xsurf = xsurf (D) (2.54)

xv = xv(xsurf) (2.55)

U = U(xv) (2.56)

L = L(U, xv) (2.57)

The functional dependence of the objective function is written as:

L = L(U(xv(xsurf (D))), xv(xsurf (D))) (2.58)

An example of a design case is optimizing the airfoil shape for given inflow conditions with an objective

that would be minimized at a target lift coefficient (cLT) with minimal drag coefficient; such an objective

function is given below.

J = ωcl(cL − CLT)2 + ωcdc
2
D (2.59)

For this work, the code is coupled with SNopt [1, 2] as the optimizer and allows use of quadratic penalty

composite objective functions to weight and target lift, drag, and entropy.

Draft of 8:26 pm, Wednesday, November 18, 2020 23

2.6.1 Design Variables

The design optimization portion of this code is done using Hicks-Henne bump functions [17] – the

simplicity of implementation makes them a desirable approach – to smoothly perturb the airfoil coordinates.

The equation is:

δxs(x) = a · sin4(πxmi) (2.60)

where:

mi =
ln(.5)

ln(xMi
)

(2.61)

where xMi
is the bump center, xs is the surface node under the bump functions’ influences, x is the location

of the surface node in question, and a is the amplitude of the bump function as well as the design variable.

The bump functions are spread out evenly along the chord for all cases.

2.6.2 Mesh Deformation

There are two separate mesh deformation schemes used in this work to compute the mesh motion for

design optimization. The first is a local method based off of Batina’s spring analogy [50], where a system of

linear equations is solved for mesh deformations based off the surface deformations.

[K] ∆xv = ∆xs (2.62)

[K] is the sparse spring stiffness matrix which is only non-zero where the nodes are connected by an edge.

In those entries, the stiffness value is:

kik = − 1

r2
ik

(2.63)

and the diagonal elements of the matrix are the sum of the edge stiffnesses going into each node:

kii =

ncon∑
k=1

1

r2
ik

(2.64)

where rik is the distance between nodes i and k. This equation is solved using point Jacobi. This method

is slow without multigrid, and as such in this work most of the results use the second mesh deformation

scheme which is more robust and faster when compared to the spring analogy approach.

The second mesh deformation scheme is a global inverse distance weighted method [51]. The displace-

ment at each node in the mesh is determined as follows:

∆xk =

∑
wik(~r)~δi(~r)∑
wik(~r)

(2.65)

where the wik function is the weight of surface point i on interior node k, and the delta function is the

surface points displacement. The weight function is calculated as follows:

wik(~r) = Ai

[(
Ldef
‖~rk − ~ri‖

)a
+

(
αLdef
‖~rk − ~ri‖

)b]
(2.66)

Draft of 8:26 pm, Wednesday, November 18, 2020 24

where Ldef is the characteristic length of the body, a and b are experimentally derived constants, and α is

a fraction of Ldef to reserve for stiffer deformation.

2.7 Sensitivity Computation Methods

2.7.1 Finite Differences

The finite difference method begins from an objective function L(U(D), D), depending on the conserva-

tive variable vector (U) and the design variable vector (D). Each design variable is perturbed independently

and the primal system (analysis) solved, with the difference in the objective function recorded and divided

by the perturbation:

dL

dDi
=
L(U(D + δDi), D + δDi)− L(U,D)

δDi
(2.67)

This method is clearly expensive as it requires n+1 analysis runs for n design variables. Furthermore,

the finite difference approach suffers from round off error for ε << 1 [4]. This approach can be improved

using the complex step method. This is done for scalar functions by using a complex perturbation εδDi to

the inputs:

dL

dDi
= Imag

(
L(U(D + iεδDi), D + iεδDi)− L(U,D)

εδDi

)
(2.68)

This can be extended to vector valued functions, where this corresponds to the Frechét derivative.

Beginning with a function f(u), where f and u are both vector valued, the Frechét derivative below is the

derivative of f with respect to u along the vector v.

∂f

∂u
v = Imag

(
f(u+ iεv)− f(u)

ε

)
(2.69)

This identity is used frequently for Jacobian free Newton Krylov (JFNK) solvers so as to avoid having

to implement the full linearization of the residual operator; this can also be used to compute the tangent

system, or the forward linearization. This method cannot be used for the adjoint system, as a result some

research groups use coloring techniques to form the full Jacobian matrix in the minimum number of residual

evaluations [52] and then transpose the Jacobian in order to solve the adjoint system that is shown later.

2.7.2 Tangent Formulation

For an aerodynamic optimization problem, consider an objective functional L(u(D), x(D)), for example

lift or drag, where u is the conservative flow variable vector, and x is the mesh coordinate vector. In order

to obtain an expression for the sensitivities take the derivative of the objective functional. [53]:

dL

dD
=

∂L

∂xv

dxv
dD

+
∂L

∂u

du

dxv

dxv
dD

(2.70)

Draft of 8:26 pm, Wednesday, November 18, 2020 25

For the above expression ∂L
∂xv

and ∂L
∂u can be directly obtained by differentiating the subroutine that calculates

the objective function. If dxv

dD is calculated by solving an implicit mesh deformation scheme, like Batina’s

spring analogy shown earlier [50], the mesh sensitivity equation is:

[K]
dxv
dDi

=
dxs
dDi

(2.71)

where [K] is the global stiffness matrix, xv is the interior mesh coordinate vector and xs is the vector of

coordinates on the geometry. For an explicit mesh motion method like the global inverse distance weighted

method used in this work [51], the mesh sensitivities are computed explicitly:

dxv
dDi

= [K]
dxs
dDi

(2.72)

where [K] is the matrix formed from the explicit method. For both methods, dxs

dDj
is calculated through

differentiating the shape design variables.

It is not possible to obtain du
dD through linearization of the subroutines in the code without linearizing

the entire primal solution process, as will be covered in later sections. In order to solve for this term one can

instead use the constraint that for a fully converged flow, the discretized form of the governing equations is

satisfied and the residual is equal to zero – denoted by R(u(D), x(D)) = 0. By taking the derivative of the

residual operator one may obtain the equation below.

[
∂R

∂xv

]
dxv
dD

+

[
∂R

∂u

]
du

dD
= 0 (2.73)

The sensitivity of the residual to the design variables must be isolated to obtain the tangent system.[
∂R

∂u

]
du

dD
= −

[
∂R

∂xv

]
dxv
dD

(2.74)

dL

dD
=

∂L

∂xv

dxv
dD
− ∂L

∂u

[
∂R

∂u

]−1 [
∂R

∂xv

]
dxv
dD

(2.75)

The
[
∂R
∂xv

]
on the right hand side of the equation above is calculated as follows:[

∂R

∂xv

]
2

=

[
∂R

∂xv
+

∂R

∂uL

∂uL
∂xv

+
∂R

∂uR

∂uR
∂xv

]
(2.76)

In order to compute the matrix vector product of
[
∂R
∂u

]
2
δxv, it is calculated as:

δR =
∂R

∂xv
δxv

δuL =
∂uL
∂xv

δxv

δuR =
∂uR
∂xv

δxv

dR

dxv
= δR+

∂R

∂uL
δuL +

∂R

∂uR
δuR

(2.77)

Draft of 8:26 pm, Wednesday, November 18, 2020 26

As before, this break down of the matrix vector product allows for easy verification of the linearization. By

using a random vector perturbation δxv added to the nodal coordinate vector xv the linearization of the

residual operator with respect to the nodal coordinate can be checked through perturbation of the nodes

while holding the reconstructed states to be unchanged:

∂R

∂xv
δxv =

Imag(R(uL, uR, xv + iεδxv))

ε
(2.78)

the linearization of left side reconstructed state with respect to the nodal coordinates can be checked

using the identity below:
∂uL
∂xv

δxv =
Imag(uL(U, xv + iεδxv))

ε
(2.79)

The linearization of the right constructed state can be verified similarly.

∂uR
∂xv

δxv =
Imag(uR(U, xv + iεδxv))

ε
(2.80)

Finally, the linearization of the entire residual operator with respect to the nodal coordinate vector can be

verified as below.
dR

dxv
δxv =

R(uL(U, xv + iεδxv), uR(U, xv + iεδxv), xv + iεδxv)

ε
(2.81)

The entire chain from the residual to the design variable can be verified using perturbations of the design

variables:

dR

dxv

dxv
dxs

dxs
dD

δD =
R(uL(U, xv(xs(D + iεδD))), uR(U, xv(xs(D + iεδD))), xv(xs(D + iεδD)))

ε
(2.82)

combining this verification with the verification of the flow Jacobian allows the researcher to move on to the

tangent and adjoint systems confident that the manual linearizations are correct.

In this work, the linear system in equation 2.74 is solved using linear solvers discussed previously. The

linear system is created using hand differentiated subroutines to provide the left hand matrix
[
∂R
∂u

]
and the

right hand side
[
∂R
∂xv

]
dxv

dD , which scales with the design variables. It is then possible to substitute du
dD into

equation (2.70) to obtain the final sensitivities. The tangent system is also called the forward linearization,

and when looking at the flow of information in the tangent the reason for this terminology becomes clear; The

tangent follows the forward linearization process of equation 2.58. The tangent begins from a perturbation

to the design variables and moves that perturbation to the airfoil geometry and then onto the volume mesh.

The change in the volume mesh is then passed onto a change in the conservative variables, and finally the

sensitivity of the objective is computed.

2.7.3 Discrete Adjoint Formulation

This section discusses the discrete adjoint and its application to the design process and error estimation.

In this work the discrete adjoint is computed used, it is implemented by first discretizing the nonlinear

problem and then by linearizing the PDE to obtain the adjoint [54]. In the continuous form, the PDE

Draft of 8:26 pm, Wednesday, November 18, 2020 27

itself is linearized and then discretized to obtain the adjoint. The discrete adjoint has become widespread

due to the ease of implementation, the low barrier to understanding (it falls out naturally from the chain

rule), and the fact that it can be easily verified (the discrete adjoint sensitivities should match the tangent

provided ones and the complex ones for a simulation that is converged to machine zero). In the limit of

an infinitesimally fine mesh, the continuous and discrete adjoint solutions should correspond exactly to one

another for a dually consistent discretization. The adjoint formulation begins with the same sensitivity

equation as in the tangent equation:

dL

dD
=

∂L

∂xv

dxv
dxs

dxs
dD

+
∂L

∂u

du

dxv

dxv
dxs

dxs
dD

(2.83)

Using the condition R(u(D), D) = 0, one can return to equation (2.74) and pre-multiply both sides of the

equation by the inverse Jacobian matrix to obtain:

∂u

∂D
= −

[
∂R

∂u

]−1 [
∂R

∂xv

]
dxv
dxs

dx

dD
(2.84)

Substituting the above expression into the sensitivity equation yields:

dL

dD
=

∂L

∂xv

dxv
dxs

dxs
dD
− ∂L

∂u

[
∂R

∂u

]−1 [
∂R

∂xv

]
dxv
dxs

dxs
dD

(2.85)

An adjoint variable Λ is defined such that:

ΛT = −∂L
∂u

[
∂R

∂u

]−1

(2.86)

which gives an equation for the adjoint variable:[
∂R

∂u

]T
Λ = −

[
∂L

∂u

]T
(2.87)

This linear system can be solved and the sensitivities for the objective function can therefore be obtained as

follows:
dL

dD
=

[
∂L

∂xv
+ ΛT ∂R

∂xv

]
dxv
dxs

dxs
dD

(2.88)

It is advisable to then define a mesh adjoint variable Λxs , to keep the adjoint’s scaling properties and avoid

solving many mesh motion systems. For the implicit mesh motion system the mesh adjoint is computed by

solving the equation below.

[K]
T

Λxs =

[
∂L

∂xv

]T
+

[
∂R

∂xv

]T
Λ (2.89)

Similarly, for an explicit mesh motion system the mesh adjoint is computed as follows:

Λxs = [K]
T

[[
∂L

∂xv

]T
+

[
∂R

∂xv

]T
Λ

]
(2.90)

and the final expression for sensitivity is given as:

dL

dD
= Λxs

T dxs
dD

(2.91)

Draft of 8:26 pm, Wednesday, November 18, 2020 28

The adjoint system is of interest, because as mentioned previously, it results in an equation for the sensitivity

that does not scale with the number of design variables. The adjoint is called the reverse linearization as it

reverses the flow of information from the tangent and will proceed in the reverse of the behavior shown in

2.58. It begins with a perturbation to the objective that results in a perturbation of the residual operator, the

perturbation in the residual operator is then transferred to the volume mesh. The volume mesh perturbations

are then propagated onto the surface mesh nodes, and from there they are moved onto the design variables;

thus completing the reverse propagation from the objective function to the design variables.

2.8 Parallelism

When moving to more expensive problems, parallelization become necessary in order to get results

within a reasonable time frame; this code was parallelized using OpenMP directives in Fortran due to the

ease of implementation into existing codes. This was done using a cell and edge coloring scheme, and since

this is a cell-centered finite volume code, many properties of the parallelization are guaranteed, which makes

the cell coloring simpler. It is guaranteed that there will be at most 4 colors for the cell coloring algorithm

shown in algorithm 7, with the colored mesh shown in Figure 2.2.

Figure 2.2: Cell coloring for arbitrary unstructured mesh

Even though an arbitrary unstructured triangular mesh is guaranteed to have no more than 4 colors for

an optimal edge coloring algorithm with switching [55], algorithm 8 shows the greedy algorithm used in this

Draft of 8:26 pm, Wednesday, November 18, 2020 29

Algorithm 7 Cell Coloring Algorithm

1: procedure Color Cells
2: for cellnum = 1, ..., nCells do
3: for col = 1, ..., 4 do
4: tf ← FALSE
5: for neighbor = 1, .., 3 do
6: coln← cellArray(neighbor)
7: if col = coln then
8: tf ← TRUE
9: exit

10: if tf == FALSE then
11: cellArray(cellnum)← col
12: exit
13: Reorder cells by color

work which is guaranteed to have no more than 5 colors. While this is suboptimal, optimal algorithms of

parallelization and coloring is not the thrust of this work.

Algorithm 8 Edge Coloring Algorithm

1: procedure Color Edges
2: for edgenum = 1, ..., nEdges do
3: for col = 1, ..., 5 do
4: tf ← FALSE
5: ifinterioredge, neNeighbors← 4
6: ifboundaryedge, neNeighbors← 2
7: for neighbor = 1, .., neNighbors do
8: coln← edgeArray(neighbor)
9: if col = coln then

10: tf ← TRUE
11: exit
12: if tf == FALSE then
13: edgeArray(edgenum)← col
14: exit
15: Reorder edges by color

Figure 2.3 shows the scaling of the different parts of this framework by showing the speedup compared to

the serial code. The residual evaluations scale poorly and as such scalable solvers should have fewer residual

evaluations and spend more time in the more scalable parts of the code. The analysis mode scales better

than the residual evaluations as this was run with a Newton-Krylov solver and the linear solver portion scales

better, as is shown for the tangent and the adjoint modes. The steady state tangent and adjoint systems

scale quite well, as the bulk of the computational expense is easily parallelized as it is primarily work done

with the linear solver. The pseudo-time accurate adjoint scales similarly to the analysis, which accords with

intuition as it is the linearization of the analysis and requires more of the less scalable Jacobian and residual

evaluations rather than spending more time on the scalable linear solver. One benefit of using the first-order

accurate Jacobian as the smoother – as shown in the linear solver section– is ease of parallelism and coloring.

Draft of 8:26 pm, Wednesday, November 18, 2020 30

Because of the nearest neighbors stencil, the triangular element coloring for parallelization is limited to four

colors rather than ten, and it requires no additional subroutines to compute the coloring.

Figure 2.3: Summary of OpenMP scaling

Chapter 3

Pseudo-time Accurate Approaches for

Design for the Tangent and Adjoint

Problems for Simulations at Partial

Convergence

One important aspect to note about the following derivations is that due to the theoretical overlap

between the one shot adjoint approach [56] and the methods shown here to compute sensitivities at partial

convergence is the similar condition on convergence. The one shot method guarantees convergence of the

adjoint problem by the linearization of the given fixed point iteration, the method presented here linearizes

the entire history of the fixed point iteration. The one shot method uses the fact that the fixed point

iteration is contractive to say that the transpose linearization can converge, similarly it can be said that the

full linearization of the fixed point linearization history can converge. The motivation behind the pseudo-time

accurate tangent and adjoint formulations rests in switching the constraint from R = 0, which is only true at

the state of a fully converged primal problem, to a constraint that is true from iteration to iteration through

linearization of the fixed-point iteration used to solve the nonlinear problem; by definition this formulation

is solver dependent.

31

Draft of 8:26 pm, Wednesday, November 18, 2020 32

3.1 Pseudo-time Accurate Tangent Problem for Design Optimiza-

tion

3.1.1 Explicit Solve (Forward Euler)

The pseudo-time accurate tangent is first developed for a forward Euler (explicit) solver, this is the

simplest linearization shown in this work. The fixed-point iteration is written below.

uk+1 = uk + CFL∆tR (3.1)

Where the CFL is a user defined parameter chosen to assist with stability as described previously in the

section on nonlinear solvers. The equation for the local explicit time step limit ∆t is given as:

∆ti =
ri√

(u2 + v2) + c
(3.2)

where ri is the circumference of the inscribed circle for mesh cell i, u and v are the horizontal and vertical

velocity components respectively, and c is the speed of sound in the triangular element.

Simplifying the notation from the steady state adjoint derivation will make the following derivations

easier to follow and so the convention is established that ∂
∂D = ∂

∂xv

dxv

dxs

dxs

dD and d
dD = d

dxv

dxv

dxs

dxs

dD .Taking the

derivative of each side of the equation (3.1) returns:

duk+1

dD
=
duk

dD
+ CFL∆t

[
∂R

∂D
+

[
∂R

∂u

]
2

du

dD

k
]

(3.3)

which gives a simple expression for a pseudo-time-accurate sensitivity of the conservative variable vector to

the design variable vector. This expression was derived using the assumption of constant time-steps, and

can be extended to varying time steps by including a term for the varying time-step:

duk+1

dD
=
duk

dD
+ CFL∆t

[
∂R

∂D
+

[
∂R

∂u

]
2

du

dD

k
]

+ CFL

[
∂∆t

∂D
+
∂∆t

∂uk
duk

dD

]
R (3.4)

3.1.2 Low Storage Explicit Runge-Kutta (LSERK45) Solver

This nonlinear solver/fixed point iteration is explicit, like the forward Euler scheme, but is a multi-stage

solver. The pseudo-time evolution is written as follows:

uk,l = uk,0 + CFLαl−1∆tR(uk,l−1) (3.5)

where ∆t is computed based off the stage at the initial stage and held frozen throughout the sub-stages.

∆t = ∆t(uk,0) (3.6)

Draft of 8:26 pm, Wednesday, November 18, 2020 33

Taking the derivative of each side returns the below expression for the accumulation of the sensitivities of

the conservative variable vector to the design variable vector.

duk,l+1

dD
=
duk,0

dD
+ CFLαl

[(
∂∆t

∂uk,0
duk,0

dD
+
∂∆t

∂D

)
R(uk,l) + ∆t

(
∂R

∂D
+

[
∂R

∂u

]
2

duk,l

dD

)]
(3.7)

3.1.3 Newton Solver

This section shows three different methods to handle the linearization of the inexact-Newton solver, and

it will discuss the different assumptions that go into each method and the practicality of implementation

thereof. The assumptions relate to how the linearization of the approximate inverse of the left hand matrix is

computed/estimated. Newton’s method was implemented using pseudo-transient continuation (PTC) with

a BDF1 scheme in the context of a quasi-Newton method. This is specifically not a full Newton method as

it typically uses an approximation to the Jacobian matrix which is the Jacobian of the first-order spatially

accurate discretization, and the resulting linear system is only approximately solved. For Newton’s method

the time-stepping procedure is written as first shown in equation (2.45) and reproduced in equation 3.8.

uk = uk−1 + ∆u (3.8)

∆u is computed by solving the following system of linear equations.

[P] ∆u = −R(u) (3.9)

Substituting in the expression for ∆u into the fixed point iteration in equation (3.8) returns the final form

of this equation.

uk = uk−1 − [Pk−1]
−1
R (3.10)

Here [Pk−1] is a first-order spatially accurate Jacobian augmented with a diagonal term to ensure that it is

diagonally dominant, shown in equation (3.11).

[Pk−1] =

[
∂R

∂uk−1

]
1

+
vol

∆tCFL
(3.11)

The subscript on the Jacobian above denotes that it is a first-order accurate Jacobian; in this work the

subscripts of 1 and 2 will denote first and second-order spatially accurate Jacobian matrices respectively.

The derivatives of the nonlinear solution process are written below.

du

dD

k

=
du

dD

k−1

− [Pk−1]
−1

[
∂R

∂D
+

[
∂R

∂uk−1

]
2

du

dD

k
]
−R(uk−1)

[
∂ [Pk−1]

−1

∂D
+
∂ [Pk−1]

−1

∂u

du

dD

k−1
]

(3.12)

Equation 3.12 shows the evolution of the sensitivities of the conservative variable vector to the design

variable vector through pseudo-time, assuming that it is possible to linearize the approximate matrix inverses

commonly used in Newton-Krylov solvers.

Draft of 8:26 pm, Wednesday, November 18, 2020 34

3.1.3.1 Tangent System for Newton-Chord Method

If one chooses to neglect the change in the preconditioner due to the flow conditions and the design

variables this can simplify equation 3.12 a great deal. By freezing the preconditioner matrix inverse and

thereby avoiding taking derivatives of the approximate inverse preconditioner matrix, the second term on

the right-hand side of 3.13 is set to zero and the results is Equation 3.13. Since the preconditioner shown

in 3.11 is an approximate Jacobian, this corresponds to using a frozen Jacobian, which is also known as a

Newton-Chord method. For these methods, where the Jacobian is frozen in pseudo-time and the approximate

inversion uses a smoothing operation that is independent of the right hand side and the flow state, this is the

exact linearization of the primal solution process. It could also be argued by ergodicity that, for partially

converged cases, oscillations about some mean are independent of the initial state, even if the preconditioner

in the primal is not frozen in these limit cycle oscillations. Furthermore, the residual in these limit cycle

oscillations are very small and will be multiplying this small in magnitude derivative of the preconditioner.

Therefore neglecting the derivative of the preconditioner matrix inverse could lead to negligible contributions

from this term overall. It could also be investigated whether running for a long enough period of pseudo-

time in the limit cycle oscillation zone gives sufficient information to provide a suitable approximation of

the tangent system and allows a close approximation of the sensitivities obtained using the complex-step

method. Proceeding with the simplified equation:

du

dD

k

=
du

dD

k−1

− [Pk−1]
−1

[
∂R

∂D
+

[
∂R(uk−1)

∂uk−1

]
2

du

dD

k−1
]

(3.13)

This can then be rewritten as a pseudo-time evolution equation for the sensitivities of the conservative

variable vector with respect to the design variable vector.

du

dD

k

=
du

dD

k−1

+ ∆

(
du

dD

)
(3.14)

and therefore it is necessary to solve the following linear system:

[Pk−1] ∆

(
du

dD

)
= −

[
∂R

∂D
+

[
∂R(uk−1)

∂uk−1

]
2

du

dD

k−1
]

(3.15)

It is important to note that the [Pk−1]
−1

in the equation above is not the exact inverse of the preconditioner

matrix [Pk−1]. Rather the algorithm performs the same number of steps to invert it as it did in the primal

problem at each nonlinear iteration, as this formulation is drawn directly off the primal solution process.

If this iterative process is run at the converged state then it corresponds to the direct differentiation; its

adjoint presented later is the dual of that process [57,58].

Draft of 8:26 pm, Wednesday, November 18, 2020 35

3.1.3.2 Tangent System for quasi-Newton Method with Inverse Approximation

Rather than neglecting the change in the preconditioner this section uses a definition of the derivative

of the matrix inverse defined as:
d [K]

−1

dx
= − [K]

−1

[
dK

dx

]
[K]
−1

(3.16)

This assumption will not be exact for any case in which the linear system solve is not exact to machine

precision. However, it will allow for a clearly defined source of error in these computations and makes

possible investigations as to how much the tolerance of the linear system affects the sensitivity computation.

This also allows for research as to the behavior in near-ergodic limit cycle oscillations. By computing the

total derivative of the nonlinear solver– as in equation 3.12– and substituting in the expression from 3.16

into equation 3.12, the below expression is obtained, where d[Pk]
dD is left unexpanded.

duk

dD
=
duk−1

dD
− [Pk−1]

−1

[[
∂R

∂uk−1

]
2

duk−1

dD
+

[
∂R

∂x

]
dx

dD

]
+ [Pk−1]

−1 d [Pk−1]

dD
[Pk−1]

−1
R(uk−1, D)

(3.17)

Expanding the total derivative d[Pk]
dD reveals that the derivative of the preconditioner matrix in the right

most term is in fact the sum of two matrix vector products as shown below.

duk

dD
=
duk−1

dD
− [Pk−1]

−1

[[
∂R(uk−1)

∂uk−1

]
2

duk−1

dD
+
∂R

∂D

]
+ [Pk−1]

−1

[
∂Pk−1

∂uk−1

duk−1

dD
+
∂Pk−1

∂D

]
[Pk−1]

−1
R(uk−1, D)

(3.18)

The linearization of the preconditioner matrix is an undesirable item to compute as it is the Hessian of the

first-order accurate residual operator augmented with the derivative of the mass matrix. Fortunately, this

formulation only requires two Hessian vector products that can be obtained through complex perturbations to

the conservative variable vector and mesh coordinate vector, and subsequent evaluation of the preconditioner

matrix; thus avoiding the need for the full Hessian computation. Furthermore, one of the matrix inverses

from equation 3.18 can be removed by reusing the computation of ∆u and substituting that value for

[Pk−1]
−1
R(uk−1, D). This returns the equation below.

duk

dD
=
duk−1

dD
− [Pk−1]

−1

[[
∂R(uk−1)

∂uk−1

]
2

duk−1

dD
+

[
∂R

∂x

]
dx

dD

]
+ [Pk−1]

−1

[
∂Pk−1

∂uk−1

duk−1

dD
+
∂Pk−1

∂D

]
∆u

(3.19)

This allows for the definition of a pseudo-time accurate evolution equation for the sensitivities of the

conservative variables with respect to the design variables.

du

dD

k

=
du

dD

k−1

+ ∆

(
du

dD

)
(3.20)

and the linear system is solved as shown below.

[Pk−1] ∆

(
du

dD

)
= −

[[
∂R(uk−1)

∂uk−1

]
2

duk−1

dD
+
∂R

∂D

]
+

[
∂Pk−1

∂uk−1

duk−1

dD
+
∂Pk−1

∂D

]
∆u (3.21)

Draft of 8:26 pm, Wednesday, November 18, 2020 36

It is important to note that this expression is only exact for exact solution of the linear system, but for

those cases this algorithm will provide exact correspondence between this formulation and the complex-

step sensitivities. This obviates the need to differentiate the linear system solver, which is intractable for

many cases for the forward mode, and even more difficult for the reverse or adjoint mode. The reverse

differentiation of a Krylov solver would be an onerous task that would yield little gain. One additional

point is that with this method there are no conditions on exact duals of the linear solver, and one can use

different linear solvers for each of the primal, tangent and adjoint modes. Please note, that where in the

initial formulation– in equation (3.18)– the equation presents 3 approximate linear solves; when grouping

like terms and using the already stored information from the primal solve, this algorithm requires only one

approximate linear solve as shown in equation 3.21, the same as in the primal problem nonlinear solver.

3.1.3.3 Exact Tangent System for quasi-Newton Method

This section uses Frechét derivatives to compute the linearization of the approximate matrix inverse.

Grouping the derivative terms in equation 3.12 returns the following equation.

du

dD

k

=
du

dD

k−1

−

[
∂([Pk−1]

−1
R)

∂D
+
∂([Pk−1]

−1
R)

∂uk−1

duk−1

dD

]
(3.22)

Using complex perturbations to the conservative variable vector of duk−1

dD and to the mesh coordinate vector

of dx
dD allows for the Frechét differentiation of the linear solver and the forward in pseudo-time accumulation

of the sensitivity of the conservative variables to the design variables.

3.1.4 General Sensitivity Convergence Proof for Approximate Tangent Lin-

earization of the Fixed Point Iteration

Since the tangent method presented in 3.1.3.2 contains the inverse identity approximation from equation

3.16 that is not exact except in the limit of machine precision linear system tolerance, there is an interest in

quantifying the error introduced by this approximate linearization of the fixed point iteration. The following

proof is for the more general case of linearizing a fixed point iteration that multiplies the residual operator

by some operator A where the residual is exactly linearized with respect to its inputs, but the linearization

of A has some general approximation. This begin withs a fixed point iteration:

uk+1 = N(uk, D) = uk +H(uk, D) = uk +A(uk, D)R(uk, D) (3.23)

where A is some operator dependent on the pseudo-temporal discretization and R is the appropriate residual

operator for the spatial discretization. For an exact linearization of the solution process this results in the

expression below:
duk+1

dD
=
dN(uk)

dD
=
duk

dD
+
dA

dD
R+A

dR

dD
(3.24)

Draft of 8:26 pm, Wednesday, November 18, 2020 37

For an inexact linearization A is inexactly linearized as d̃A
dD , with x̃ denoting the inexact value of x due to the

errors in the linearization of A. The computed linearization of the fixed point iteration with the approximate

linearization of A is below:

d̃uk+1

dD
=

˜dN(uk)

dD
=
d̃uk

dD
+
d̃A

dD
R+A

d̃R

dD
(3.25)

The equation above shows an error in the total derivative of the residual operator, because while although

the partial linearizations of the residual are exact, the total derivative include the inexact linearization of

the conservative variables with respect to the design variables.

d̃R

dD
=
∂R

∂D
+
∂R

∂u

d̃u

dD
(3.26)

To get the error in the conservative variable linearization it is necessary to subtract the two expressions

from one another:

duk+1

dD
− d̃uk+1

dD
=
duk

dD
− d̃uk

dD
+
dA

dD
R− d̃A

dD
R+A

dR

dD
−A d̃R

dD
(3.27)

dε
dD is defined as the error in du

dD and used to group like terms:

dεk+1

dD
=
dεk

dD
+

[
dA

dD
− d̃A

dD

]
R+A

[
dR

dD
− d̃R

dD

]
(3.28)

The error in dA
dD is expanded to obtain the below expression.

dεk+1

dD
=
dεk

dD
+

[
∂A

∂D
+
∂A

∂uk
duk

dD
− ∂̃A

∂D
− ∂̃A

∂uk
d̃uk

dD

]
R

+A

[
∂R

∂D
+
∂R

∂uk
duk

dD
− ∂R

∂D
− ∂R

∂uk
d̃uk

dD

] (3.29)

In the third term on the right hand side the ∂R
∂D terms cancel out and the following expression is obtained.

dεk+1

dD
=
dεk

dD
+

[
∂A

∂D
+
∂A

∂uk
duk

dD
− ∂̃A

∂D
− ∂̃A

∂uk
d̃uk

dD

]
R

+A

[
∂R

∂uk
duk

dD
− ∂R

∂uk
d̃uk

dD

] (3.30)

By grouping like terms and using the definition of dε
dD one obtains the below expression.

dεk+1

dD
=
dεk

dD
+

[(
∂A

∂D
− ∂̃A

∂D

)
+

(
∂A

∂uk
− ∂̃A

∂uk

)
duk

dD
+
∂A

∂uk
dεk

dD

]
R

+A

[
∂R

∂uk
dεk

dD

] (3.31)

By rearranging these terms the below expression is obtained, where the first three terms on the right

hand side are the linearization of the fixed point iteration multiplied by dε
dD and the final term is the error

in the approximate linearization multiplied by the residual of the nonlinear problem.

Draft of 8:26 pm, Wednesday, November 18, 2020 38

dεk+1

dD
=
dεk

dD
+A

[
∂R

∂uk
dεk

dD

]
+
∂A

∂uk
dεk

dD
R+

[(
∂A

∂D
− ∂̃A

∂D

)
+

(
∂A

∂uk
− ∂̃A

∂uk

)
duk

dD

]
R (3.32)

Finally by grouping the first three terms on the right hand side into Bk where Bk = ∂N
∂uk , the use of the

Cauchy-Schwarz inequality returns the inequality below.∥∥∥∥dεkdD +A

[
∂R

∂uk
dεk

dD

]
+
∂A

∂uk
dεk

dD
R

∥∥∥∥ < ∥∥Bk∥∥∥∥∥∥dεkdD
∥∥∥∥ (3.33)

B is the derivative of the contractive fixed point iteration, therefore ‖B‖ < 1. As a result, the error

in the sensitivities expressed by dε
dD decreases as the residual decreases and the contractivity of the fixed

point iteration progresses through the primal solution process. The triangle inequality is used to show the

pseudo-temporal evolution of the error as governed by the equation below.∥∥∥∥dεk+1

dD

∥∥∥∥ < ‖B‖∥∥∥∥dεkdD
∥∥∥∥+

∥∥∥∥∥
[
dA

dD
− d̃A

dD

]
R

∥∥∥∥∥ (3.34)

This shows that once the residual is much lower than the sensitivity error, the sensitivity converges as

the contractivity of the fixed-point iteration of the nonlinear problem. One can also note, that in cases where

A approaches −∂R∂u
−1

there is no dependence on contractivity of the fixed point in the derivative and the

error will be multiplied by the residual in all terms.

3.2 Pseudo-time Accurate Adjoint Problem for Design Optimiza-

tion

The pseudo-time accurate (PTA) adjoint method is drawn from the derivation of the unsteady adjoint. In

this method, the derivation begins from viewing each pseudo-time step as a time step and working backwards

through pseudo-time to get the adjoint based off the linearization of the nonlinear solution process. In this

derivation the objective function is a pseudo-time averaged functional averaged over the last m steps for a

simulation that ran through n pseudo-time steps.

L = L(un, un−1, ..., un−m, D) (3.35)

where un is the conservative variable vector at the final time step and D is the design variable vector. For

the constraint, since R(u,D) = 0 cannot be used, as that is not true at each pseudo-time step, the constraint

is instead based off the pseudo-time evolution of the solution, the kth constraint will be referred to as Gk,

which is the shifted fixed-point at iteration k. Based on the nonlinear solution process used in this work the

constraint is dependent only on the old time-step, the new time-step, and the design variables, expressed as

below. This constraint is solver dependent and will be different for each nonlinear solution strategy.

G = G(uk, uk−1, D) = 0 (3.36)

Draft of 8:26 pm, Wednesday, November 18, 2020 39

To begin one must define an augmented objective function with n constraints and n Lagrange multipliers:

J(D,un, un−1, un−2, ...,Λn,Λn−1, ...) = L(un, un−1, ..., un−m, D)

+ ΛnTGn(un(D), un−1(D), D)

+ Λn−1TGn−1(un−1(D), un−2(D), D)

+ ...

+ Λ1TG1(u1(D), u0(D), D)

(3.37)

Then the derivative of the augmented objective function is taken with respect to the Lagrange multi-

pliers, knowing that each derivative must be 0 at an optimum that satisfies the constraints. This gives:

∂J

∂Λn
= Gn(un(D), un−1(D), D) = 0

∂J

∂Λn−1
= Gn−1(un−1(D), un−2(D), D) = 0

...

∂J

∂Λ1
= G1(u1(D), u0(D), D) = 0

(3.38)

where the initial prescribed state u0 that is not dependent on the design variables. If the derivative of the

augmented objective function is taken with respect to the design variables it returns the sensitivity equation

below.

∂J

∂D
=
∂L

∂D
+ ΛnT

∂Gn

∂D
+ Λn−1T ∂G

n−1

∂D
+ Λn−2T ∂G

n−2

∂D
+ ... (3.39)

In order to get an expression for the adjoint, the derivative of the augmented objective function is taken

with respect to the conservative variable vector at different pseudo-time steps.

∂J

∂un
=

∂L

∂un
+ ΛnT

∂Gn

∂un
= 0

∂J

∂un−1
=

∂L

∂un−1
+ ΛnT

∂Gn

∂un−1
+ Λn−1T ∂G

n−1

∂un−1
= 0

∂J

∂un−2
=

∂L

∂un−2
+ Λn−1T ∂G

n−1

∂un−2
+ Λn−2T ∂G

n−2

∂un−2
= 0

...

∂J

∂u1
=

∂L

∂u1
+ Λ2T ∂G

2

∂u1
+ Λ1T ∂G

1

∂u1
= 0

(3.40)

Using that L = L(un, un−1, ..., un−m, D) returns the below expression where the source term ∂L
∂uk only

Draft of 8:26 pm, Wednesday, November 18, 2020 40

appears for the last m pseudo-time steps.

∂J

∂un
=

∂L

∂un
+ ΛnT

∂Gn

∂un
= 0

∂J

∂un−1
=

∂L

∂un−1
+ ΛnT

∂Gn

∂un−1
+ Λn−1T ∂G

n−1

∂un−1
= 0

...

∂J

∂un−m
=

∂L

∂un−m
+ Λn−(m−1)T ∂G

n−(m−1)

∂un−m
+ Λn−mT

∂Gn−m

∂un−m
= 0

∂J

∂un−(m+1)
= Λn−mT

∂Gn−m

∂un−(m+1)
+ Λn−(m+1)T ∂G

n−(m+1)

∂un−(m+1)
= 0

...

∂J

∂u1
= Λ2T ∂G

2

∂u1
+ Λ1T ∂G

1

∂u1
= 0

(3.41)

Using the equation for the adjoint at the final pseudo-time step returns the following expression for the final

state adjoint. [
∂Gn

∂un

]T
Λn = −

[
∂L

∂un

]T
(3.42)

Using the other adjoint equations gives a recurrence relation for k = m + 1, ..., n − 1 with a source term of

the linearization of the objective function.

∂Gk−1

∂uk−1

T

Λk−1 = − ∂Gk

∂uk−1

T

Λk −
[

∂L

∂uk−1

]T
(3.43)

Outside of the functional averaging window (k = 1, 2, ...m), the source term vanishes, and the recurrence

relation is simplified.

∂Gk−1

∂uk−1

T

Λk−1 = − ∂Gk

∂uk−1

T

Λk (3.44)

Its important to note, that the same result must be possible without the use of Lagrange multipliers.

Starting with the objective function:

L = L(un, D) = L(un(un−1, D), D) = L(un(un−1(un−2, D), D), D) = ... (3.45)

The derivative of the objective function (the sensitivity equation) is written below.

dL

dD
=
∂L

∂D
+

∂L

∂un
∂un

∂D

+
∂L

∂un
∂un

∂un−1

∂un−1

∂D

+ ...

+
∂L

∂un
∂un

∂un−1
...
∂u1

∂D

+
∂L

∂un
∂un

∂un−1
...
∂u0

∂D

(3.46)

Draft of 8:26 pm, Wednesday, November 18, 2020 41

Using that the initial condition has no dependence on the design variables it is possible to neglect the

last term to get:

dL

dD
=
∂L

∂D
+

∂L

∂un
∂un

∂D
+

∂L

∂un
∂un

∂un−1

∂un−1

∂D
+ ...+

∂L

∂un
∂un

∂un−1
...
∂u1

∂D
(3.47)

which allows the definition of an adjoint recurrence relation as above.

Λk−1 =

[
∂uk

∂uk−1

]T
Λk (3.48)

This returns the sensitivity equation:

dL

dD
=
∂L

∂D
− ΛnT

∂un

∂D
− Λn−1T ∂u

n−1

∂D
+ ...+ Λ1T ∂u

1

∂D
(3.49)

where ∂un

∂D = ∂Gn

∂D The same can also be shown for a pseudo-time averaged objective function, but for

simplicity that is not shown here.

3.2.1 Explicit Solver (forward Euler)

uk+1 = uk + CFL∆tR (3.50)

For this explicit solver the constraint formula for each pseudo-time step is written below. This use of

the shifted fixed point as the constraint is consistent throughout this

Gk(uk(D), uk−1(D), D) = uk − uk−1 − CFL∆tR(uk−1) = 0 (3.51)

Taking the derivative of this constraint returns the three equations below, linearized with respect to the

old state (uk−1) the new state (uk) and the design variables.

∂Gk

∂uk
= I

∂Gk

∂uk−1
= −I − CFL∆t

[
∂R(uk−1)

∂uk−1

]
2

∂Gk

∂D
= −CFL∆t

∂R(uk−1)

∂D

(3.52)

Using the equation for the adjoint at the final pseudo-time step with the constraint derivatives returns:

[I] Λn = −
[
∂L

∂un

]T
(3.53)

By plugging in the constraint derivatives into equation 3.44 returns an adjoint recurrence relation of the

form shown in the general derivation.

[I] Λk−1 = −
[
−I − CFL∆t

[
∂R(uk−1)

∂uk−1

]
2

]T
Λk − ∂L

∂uk
(3.54)

Draft of 8:26 pm, Wednesday, November 18, 2020 42

Starting from the augmented objective function as displayed below and in equation 3.37:

J(D,un, un−1, un−2, ...,Λn,Λn−1, ...) = L(un, un−1, ..., un−m, D)

+ ΛnTGn(un(D), un−1(D), D)

+ Λn−1TGn−1(un−1(D), un−2(D), D)

+ ...

+ Λ1TG1(u1(D), u0(D), D)

(3.55)

This returns the sensitivity equation:

∂J

∂D
=
∂L

∂D
+ ΛnT

∂Gn

∂D
+ Λn−1T ∂G

n−1

∂D
+ ...+ Λ1T ∂G

1

∂D
(3.56)

substituting in the constraint derivatives gives the expression for the sensitivities:

∂J

∂D
=
∂L

∂D
− ΛnT

[
CFL∆t

∂R(uk−1)

∂D

]
− Λn−1T

[
CFL∆t

∂R(uk−2)

∂D

]
− ...

− Λ1T

[
CFL∆t

∂R(u0)

∂D

]
(3.57)

3.2.1.1 Forward Euler with variable time steps

For variable time steps the equations change as follows: First the constraint derivatives change to include

the sensitivity of the variable time step:

∂Gk

∂uk
= I

∂Gk

∂uk−1
= −I − CFL∆tk−1

[
∂R(uk−1)

∂uk−1

]
2

− CFL∂∆tk−1

∂uk−1
R

∂Gk

∂D
= −CFL∆tk−1 ∂R(uk−1)

∂D
− CFL∂∆tk−1

∂D
R

(3.58)

Using the equation for the adjoint at the final pseudo-time step with the constraint derivatives returns

as before:

[I] Λn = −
[
∂L

∂un

]T
(3.59)

By plugging in the constraint derivatives into equation 3.44 the adjoint recurrence relation is changed

to include the linearization of the pseudo-time step:

[I] Λk−1 = −
[
−I − CFL∆tk−1

[
∂R(uk−1)

∂uk−1

]
2

− CFL ∂∆t

∂uk−1
R

]T
Λk − ∂L

∂uk−1
(3.60)

Draft of 8:26 pm, Wednesday, November 18, 2020 43

This can be applied to sensitivity equation 3.39 where the constraint derivative is expanded to get a

final expression for the sensitivity equation:

∂J

∂D
=
∂L

∂D
− ΛnT

[
CFL∆tn−1 ∂R(un−1)

∂D
+ CFL

∂∆t

∂D
R

]
− Λn−1T

[
CFL∆tn−2 ∂R(un−2)

∂D
+ CFL

∂∆t

∂D
R

]
− ...

− Λ1T

[
CFL∆t0

∂R(u0)

∂D
+ CFL

∂∆t

∂D
R

]
(3.61)

Looking at the expression for the sensitivities for the forward Euler with constant time-step (equation

3.57) and with variable time-step (equation 3.61), it is clear that neither expression requires solving a linear

system with the Jacobian as the A matrix.

3.2.2 Low Storage Explicit Runge-Kutta Solver

This Runge-Kutta solver gives a more complicated fixed-point iteration as shown in the tangent deriva-

tion. The first portion occurs within the time step k and iterates for l = 1 through 5:

uk,l = uk,0 + CFL∆tαl−1R(uk,l−1) (3.62)

And the second portion defines the new state:

uk,0 = uk−1,5 (3.63)

This leads to two separate constraint equations, the first of which is based of the sub-stage iteration.

Gk,l(uk,l, uk,l−1, uk,0, D) = uk,l − uk,0 − CFLαk∆tR(uk,l−1) = 0 (3.64)

This has the following derivatives:

∂Gk,l

∂uk,l
= I

∂Gk,l

∂uk,l−1
= −CFLαk∆t

[
∂R(uk,l−1)

∂uk,l−1

]
2

∂Gk,l

∂uk,0
= −I − CFLαk ∂∆t

∂uk,0
R(uk,l−1)

∂Gk,l

∂D
= −CFLαk

[
∂∆t

∂D
R+ ∆t

∂R

∂D

]
(3.65)

The second constraint is based off the pseudo-time update that assigns a value to uk,0 from uk−1,5.

Gk,0(uk,0(D), un−1,5(D)) = uk,0 − uk−1,5 = 0 (3.66)

Draft of 8:26 pm, Wednesday, November 18, 2020 44

This has the following derivatives, which are simple by nature of the simplicity of the update.

∂Gk,0

∂uk,0
= I

∂Gk,0

∂uk−1,5
= −I

∂Gk,0

∂D
= 0

(3.67)

It is therefore necessary to modify 3.37 and get the expression for the sensitivity equation for a Runge-

Kutta solver and take into account the sub-iteration behavior.

J(D,un, un−1,5, ..., un−1,0, ...,Λn,Λn−1,5, ...,Λn−1,0, ...)

=

L(un, D) + ΛnTGk,0(un(D), un−1,5(D), D)

+ Λn−1,5TGn−1,5(un−1,5(D), un−1,4(D), un−1,0(D), D)

+ ...

+ Λn−1,1TGn−1,1(un−1,1(D), un−1,0(D), D)

+ Λn−1,0TGn−1,0(un−1,0(D), un−2,5(D), D)

+ ...

+ Λ0,1TG0,1(u0,1(D), u0(D), D)

(3.68)

By taking the derivatives with respect to the states the recurrence relations are obtained. Beginning

with L = L(un, ..., un−m, D) returns the below expression:

∂J

∂un
=

∂L

∂un
+ ΛnT

∂Gn

∂un
= 0

∂J

∂un−1,5
= ΛnT

∂Gk,0

∂un−1,5
+ Λn−1,5T ∂G

n−1,5

∂un−1,5
= 0

∂J

∂un−1,4
= Λn−1,5T ∂G

n−1,5

∂un−1,4
+ Λn−1,4T ∂G

n−1,4

∂un−1,4
= 0

...

∂J

∂un−1,0
=

∂L

∂un−1,0
+ Λn−1,5T ∂G

n−1,5

∂un−1,0
+ Λn−1,4T ∂G

n−1,4

∂un−1,0
+ Λn−1,3T ∂G

n−1,3

∂un−1,0

+ Λn−1,2T ∂G
n−1,2

∂un−1,0
+ Λn−1,1T ∂G

n−1,1

∂un−1,0
+ Λn−1,0T ∂G

n−1,0

∂un−1,0
= 0

...

∂J

∂un−m,0
=

∂L

∂un−m,0
+ Λn−m,5T

∂Gn−m,5

∂un−m,0
+ Λn−m,4T

∂Gn−m,4

∂un−m,0
+ Λn−m,3T

∂Gn−m,3

∂un−m,0

...

∂J

∂u1
= Λ2T ∂G

2

∂u1
+ Λ1T ∂G

1

∂u1
= 0

(3.69)

Draft of 8:26 pm, Wednesday, November 18, 2020 45

Using the equation for the adjoint at the final pseudo-time step returns:[
∂Gn

∂un

]T
Λn = −

[
∂L

∂un

]T
(3.70)

The adjoint recurrence relation equation for the pseudo-time update in 3.63 returns the adjoint equation

below for k = 1, 2, ..., n− 1. [
∂Gk−1,5

∂uk−1,5

]T
Λk−1,5 = −

[
∂Gk,0

∂uk−1,5

]T
Λk,0 (3.71)

The sub-stage fixed point iteration returns an adjoint expression for k = 1, 2, ..., n− 1 and l = 1, 2, 3, 4:[
∂Gk,l−1

∂uk,l−1

]T
Λk,l−1 = −

[
∂Gk,l

∂uk,l−1

]T
Λk,l (3.72)

The final adjoint equation is applied for k = 1, 2, ..., n − 1 and l = 0, and is complicated due to the

presence of the 0 state in all 5 steps of the Runge-Kutta fixed-point iteration:[
∂Gk,0

∂uk,0

]T
Λk,0 =− ∂L

∂uk
−
[
∂Gk,1

∂uk,0

]T
Λk,1 −

[
∂Gk,2

∂uk,0

]T
Λk,2 −

[
∂Gk,3

∂uk,0

]T
Λk,3

−
[
∂Gk,4

∂uk,0

]T
Λk,4 −

[
∂Gk,5

∂uk,0

]T
Λk,5

(3.73)

The specific definitions of the derivatives are substituted into the recurrence relations to get the following

equations. The adjoint for the last time step is:

[I]
T

Λn = −
[
∂L

∂un

]T
(3.74)

Substituting in the constraint derivatives into 3.71 returns the adjoint equation to switch from the 5

index to the next state.

Λm−1,5 = Λk,0 (3.75)

Substituting the constraint derivatives into equation 3.72 shows that the adjoint relation has no dependence

on the time step, because the pseudo-time step depends only on the 0 state.

[I]
T

Λk,l−1 = −
[
CFL∆tkαl−1

[
∂R(uk,l−1)

∂uk,l−1

]
2

]T
Λk,l (3.76)

Finally, the constraint for the base state in the Runge-Kutta solver is shown below by substituting in the

appropriate derivatives into 3.73, where the derivatives of the pseudo-time step appear.

[I]
T

Λk,0 =− ∂L

∂uk
−
[
−I − CFLα0 ∂∆t

∂uk,0
R(uk,0)− CFLα0∆t

∂R(uk,0)

∂uk,0

]T
Λk,1

−
[
−I − CFLα1 ∂∆t

∂uk,0
R(uk,1)

]T
Λk,2

−
[
−I − CFLα2 ∂∆t

∂uk,0
R(uk,2)

]T
Λk,3

−
[
−I − CFLα3 ∂∆t

∂uk,0
R(uk,3)

]T
Λk,4

−
[
−I − CFLα4 ∂∆t

∂uk,0
R(uk,4)

]T
Λk,5

(3.77)

Draft of 8:26 pm, Wednesday, November 18, 2020 46

The equation below is the result of taking the partial derivative of equation 3.68.

∂J

∂D
= L(un, ..., un−m, D) + ΛnT

∂Gk,0

∂D

+ Λn−1,5T ∂G
n−1,5

∂D

+ ...

+ Λn−1,1T ∂G
n−1,1

∂D

+ Λn−1,0T ∂G
n−1,0

∂D

+ ...

+ Λ0,1T ∂G
0,1

∂D

(3.78)

Substituting in the definitions for the constraint derivatives returns:

∂J

∂D
= L(un, ..., un−mD)− Λn−1,5TCFLαk

[
∂∆tn−1

∂D
R(un−1,4) + ∆tn−1 ∂R(un−1,4)

∂D

]
− ...

− Λn−1,1TCFLαk
[
∂∆tn−1

∂D
R(Un−1,0) + ∆tn−1 ∂R(un−1,0)

∂D

]
− ...

− Λ0,5TCFLαk
[
∂∆t0

∂D
R(u0,4) + ∆t

∂R(u0,4)

∂D

]
− ...

− Λ0,1TCFLαk
[
∂∆t0

∂D
R(u0,0) + ∆t

∂R(u0,0)

∂D

]

(3.79)

3.2.3 Newton Solver

3.2.3.1 Adjoint Computed Sensitivities for Newton-Chord Method

It is necessary to refer once again to equation (3.10)

uk = uk−1 − [Pk−1]
−1
R (3.80)

To proceed all terms are moved to one side and the following equation is obtained as the constraint, through

use of the shifted fixed point iteration.

Gk(uk(D), uk−1(D), D) = uk − uk−1 + [Pk−1]
−1
R(uk−1) = 0 (3.81)

The preconditioner matrix is defined as seen previously in (3.11):

[Pk] =

[
∂R

∂uk

]
1

+
vol

∆tkCFLk
(3.82)

Draft of 8:26 pm, Wednesday, November 18, 2020 47

The next step is to take the derivatives of the constraint equations. These are written as follows.

∂Gk

∂uk
= I

∂Gk

∂uk−1
= −I +

∂ [Pk−1]
−1
R(uk−1)

∂uk−1
= −I + [Pk−1]

−1

[
∂R(uk−1)

∂uk−1

]
2

+
∂ [Pk−1]

−1

∂uk−1
R(uk−1)

∂Gk

∂D
= −I +

∂ [Pk−1]
−1
R(uk−1)

∂D
= [Pk−1]

−1 ∂R(uk−1)

∂D
+
∂ [Pk−1]

−1

∂D
R(uk−1)

(3.83)

By using the same logic as in the pseudo-time accurate Newton-Chord tangent method, the precondi-

tioner is frozen and its derivatives are set to 0.

∂Gk

∂uk
= I

∂Gk

∂uk−1
= −I + [Pk−1]

−1

[
∂R(uk−1)

∂uk−1

]
2

∂Gk

∂D
= [Pk−1]

−1 ∂R(uk−1)

∂D

(3.84)

For a Newton-Chord solver, this is the exact linearization. However, for an inexact quasi-Newton scheme, as

was discussed in the tangent formulation, this is only an approximation of the exact sensitivity equations,

with the possibility being to run long enough in the oscillatory portion of the convergence history to get a

good enough adjoint approximation to compute sensitivities, or to freeze the preconditioner inverse for exact

sensitivities. Using the equation for the adjoint at the final pseudo-time step with the constraint derivatives

returns the same initial source term.

[I] Λn = −
[
∂L

∂un

]T
(3.85)

Substituting in the constraint derivatives into equation (3.44) returns the following recurrence relation

[I] Λk−1 = −
[
−I + [Pk−1]

−1

[
∂R(uk−1)

∂uk−1

]
2

]T
Λk (3.86)

This recurrence relation can be written in delta form so that it more closely follows the primal problem.

To this end, a ∆Λ is defined such that Λk−1 = Λk + ∆Λ, which gives the recurrence relation as:

∆Λ = −
[
[Pk−1]

−1

[
∂R(uk−1)

∂uk−1

]
2

]T
Λk (3.87)

distributing the transpose allows the rewriting of the equation.

∆Λ = −
[
∂R(uk−1)

∂uk−1

]T
2

[Pk−1]
−T

Λk (3.88)

This motivates the definition of a secondary adjoint variable for each recurrence relation which requires the

solution of a system of linear equations at each iteration which follows the behavior of the primal problem

and the tangent lineatization.

[Pk−1]
T
ψk = Λk (3.89)

Draft of 8:26 pm, Wednesday, November 18, 2020 48

Using the secondary adjoint variable in the delta form of the adjoint recurrence relation returns the

equation below.

∆Λ =

[
∂R(uk−1)

∂uk−1

]T
2

ψk (3.90)

It is important to note that, as in the tangent mode, to obtain exact correspondence, these linear systems

must be solved as the exact dual of the primal solve, as this algorithm transposes exactly the primal solve.

Substituting in the appropriate constraint derivatives into equation 3.39 returns the following equation for

the sensitivities.

dJ

dD
=
∂L

∂D
+ ΛnT [Pn−1]

−1 ∂R(un−1)

∂D
+ Λn−1T [Pn−2]

−1 ∂R(un−2)

∂D
+ ...+ Λ1T [P0]

−1 ∂R(u0)

∂D
(3.91)

The sensitivity equation above has an additional linear solve at each nonlinear iteration for each design

variable. This scales as the tangent and is highly undesirable. The secondary adjoint variable can be used

in the sensitivity equation (3.39) and returns an expression without any additional linear solves.

dJ

dD
=
∂L

∂D
+ ψnT

∂R(un−1)

∂D
+ ψn−1T ∂R(un−2)

∂D
+ ...+ ψ1T ∂R(u0)

∂D
(3.92)

3.2.3.2 Adjoint Computed Sensitivities for quasi-Newton Method with Inverse Identity

This derivation begins with the derivatives of the constraint equations as shown in equation (3.83),

before the simplification shown for the Newton-Chord method. These are written as follows.

∂Gk

∂uk
= I

∂Gk

∂uk−1
= −I + [Pk−1]

−1

[
∂R(uk−1)

∂uk−1

]
2

+
∂ [Pk−1]

−1

∂uk−1
R(uk−1)

∂Gk

∂D
= [Pk−1]

−1 ∂R(uk−1)

∂D
+
∂ [Pk−1]

−1

∂D
R(uk−1)

(3.93)

By using the differentiation of matrix inverse first shown in equation (3.16) and reproduced below

d [K]
−1

dx
= − [K]

−1

[
dK

dx

]
[K]
−1

(3.94)

the derivative of the constraint term is obtained and shown below.

∂Gk

∂uk
= I

∂Gk

∂uk−1
= −I + [Pk−1]

−1

[
∂R(uk−1)

∂uk−1

]
2

− [Pk−1]
−1 ∂ [Pk−1]

∂uk−1
[Pk−1]

−1
R(uk−1)

∂Gk

∂D
= [Pk−1]

−1 ∂R(uk−1)

∂D
− [Pk−1]

−1 ∂ [Pk−1]

∂D
[Pk−1]

−1
R(uk−1)

(3.95)

The definition of the nonlinear solver increment allows simplification of the above equation to the below

one, where ∆u replaces [Pk−1]
−1
R(uk−1).

Draft of 8:26 pm, Wednesday, November 18, 2020 49

∂Gk

∂uk
= I

∂Gk

∂uk−1
= −I + [Pk−1]

−1

[
∂R(uk−1)

∂uk−1

]
2

− ∂ [Pk−1]

∂uk−1
∆u

∂Gk

∂D
= [Pk−1]

−1

[
∂R(uk−1)

∂D
− ∂ [Pk−1]

∂D
∆u

] (3.96)

Using the equation for the adjoint at the final pseudo-time step with the constraint derivatives gives the

same initial source term as in the Newton-Chord formulation.

[I] Λn = −
[
∂L

∂un

]T
(3.97)

Substituting in the constraint derivatives from equation (3.96) into equation (3.44) returns:

[I] Λk−1 = −
[
−I + [Pk−1]

−1

[[
∂R(uk−1)

∂uk−1

]
2

− ∂ [Pk−1]

∂uk−1
∆u

]]T
Λk (3.98)

This recurrence relation can also be rewritten in delta form as in the Newton-Chord formulation.

∆Λ = −
[
[Pk−1]

−1

[[
∂R(uk−1)

∂uk−1

]
2

− ∂ [Pk−1]

∂uk−1
∆u

]]T
Λk (3.99)

Distributing the transpose returns the following equation.

∆Λ = −
[[
∂R(uk−1)

∂uk−1

]
2

− ∂ [Pk−1]

∂uk−1
∆u

]T
[Pk−1]

−T
Λk (3.100)

This motivates the definition of a secondary adjoint variable for each recurrence relation, the same one as in

the Newton-Chord formulation:

[Pk−1]
T
ψk = Λk (3.101)

Using the secondary adjoint variable gives the final form of the recurrence relation as shown below.

∆Λ = −
[[
∂R(uk−1)

∂uk−1

]
2

− ∂ [Pk−1]

∂uk−1
∆u

]T
ψk (3.102)

It is important to note that, as noted for the tangent, that this algorithm does not need exact correspondence

here between the dual solver and the forward one, this will recover machine precision in the limit of the linear

system being solved to machine precision regardless of the linear solver used in any mode of the algorithm.

The next step has the substitution of the constraint derivatives from equation (3.96) into the sensitivity

equation (3.39) and returns the expression below.

dJ

dD
=
∂L

∂D
+ ΛnT [Pn−1]

−1

[
∂R(un−1)

∂D
− ∂ [Pn−1]

∂D
∆u

]
+ ...+ Λ1T [P0]

−1

[
∂R(u0)

∂D
− ∂ [P0]

∂D
∆u

]
(3.103)

Referring back to the definition of the secondary adjoint variable allows further simplification of this equation.

It removes an additional linear solve per pseudo-time step and returns the equation below:

Draft of 8:26 pm, Wednesday, November 18, 2020 50

dJ

dD
=
∂L

∂D
+ ψnT

[
∂R(un−1)

∂D
− ∂ [Pn−1]

∂D
∆u

]
+ ...+ ψ1T

[
∂R(u0)

∂D
− ∂ [P0]

∂D
∆u

]
(3.104)

note that the adjoint sensitivity formulation requires only one approximate linear solution per nonlinear

step, as shown in equation 3.101, which parallels the behavior of the nonlinear and tangent solvers.

3.2.3.3 Adjoint Computed Sensitivities for quasi-Newton Method with Exact Linearization

through Frechét Differentiation

This section begins its derivation with the derivatives of the constraint equations as shown in equation

(3.83), before the simplifications shown for either of the two previous formulations. These are written as

follows.
∂Gk

∂uk
= I

∂Gk

∂uk−1
= −I +

∂ [Pk−1]
−1
R(uk−1)

∂uk−1

∂Gk

∂D
=
∂ [Pk−1]

−1
R(uk−1)

∂D

(3.105)

This derivation proceeds by assuming that it is possible to differentiate the linear solver with respect to the

design variables and the state variables. The assumption is that this can be done using the Frechét derivative

as was done for the tangent exact linearization. Using the equation for the adjoint at the final pseudo-time

step with the constraint derivatives returns the same initial source term as in the previous formulations.

[I] Λn = −
[
∂L

∂un

]T
(3.106)

Substituting in the constraint derivatives from equation (3.83) into equation (3.44) returns:

[I] Λk−1 = −

[
−I +

∂ [Pk−1]
−1
R(uk−1)

∂uk−1

]T
Λk (3.107)

as before this recurrence relation can be rewritten in delta form.

∆Λ = −

[
∂ [Pk−1]

−1
R(uk−1)

∂uk−1

]T
Λk (3.108)

It is clear that the above equation requires a transpose Frechét derivative, which is impossible to implement

without creating the full tensor using forward products and then doing the transpose matrix vector product.

This would be very expensive and impractical. Should the derivation be continued it is possible to obtain

the sensitivity equation which is also untenably expensive.

dJ

dD
=
∂L

∂D
+ ΛnT

∂ [Pn−1]
−1
R(un−1)

∂D
+ ...+ Λ1T ∂ [P0]

−1
R(u0)

∂D
(3.109)

Draft of 8:26 pm, Wednesday, November 18, 2020 51

This equation will scale, like the tangent, with the number of design variables, and requires many Frechét

differentiations of the linear solver at each nonlinear step, this is because of the lack of the secondary adjoint

that was previously present through manipulation of the linear solves and made this possible.

3.2.3.4 Adjoint Computed Sensitivities for quasi-Newton Method with Exact Linearization

through Manual Differentiation

As above this section begins with the derivatives of the constraint equations as shown in equation (3.83),

as in the previous formulation. These are written as follows.

∂Gk

∂uk
= I

∂Gk

∂uk−1
= −I +

∂ [Pk−1]
−1
R(uk−1)

∂uk−1

∂Gk

∂D
=
∂ [Pk−1]

−1
R(uk−1)

∂D

(3.110)

This derivation assumes that linearization of the linear solver with respect to the inputs, the design vari-

ables, the state variables, and the right hand side is possible; while relaxation methods are right hand side

independent, Krylov solvers are path dependent and right hand side dependent, and therefore the linear

solver must be differentiated with respect to the right hand side. The assumption is that this differentiation

can be done manually and returns the following expression for the derivatives of the constraints.

∂Gk

∂uk
= I

∂Gk

∂uk−1
= −I +

∂ [Pk−1]
−1

∂uk−1
R(uk−1) +

∂ [Pk−1]
−1

∂R(uk−1)

[
∂R(uk−1)

∂uk−1

]
2

R(uk−1) + [Pk−1]
−1

[
∂R(uk−1)

∂uk−1

]
2

∂Gk

∂D
=
∂ [Pk−1]

−1

∂D
R(uk−1) +

∂ [Pk−1]
−1

∂R(uk−1)

∂R(uk−1)

∂D
R(uk−1) + [Pk−1]

−1 ∂R(uk−1)

∂D

(3.111)

Using the equation for the adjoint at the final pseudo-time step with the constraint derivatives returns

the same initial source term as in the previous formulations.

[I] Λn = −
[
∂L

∂un

]T
(3.112)

Substituting in the constraint derivatives from equation (3.111) into equation (3.44) returns:

[I] Λk−1 = −

[
−I +

∂ [Pk−1]
−1

∂uk−1
R(uk−1) +

∂ [Pk−1]
−1

∂R

[
∂R(uk−1)

∂uk−1

]
2

R(uk−1) + [Pk−1]
−1

[
∂R(uk−1)

∂uk−1

]
2

]T
Λk

− ∂L

∂uk−1

(3.113)

This recurrence relation can be rewritten in delta form as in the previous formulations.

Draft of 8:26 pm, Wednesday, November 18, 2020 52

∆Λk−1 = −

[
∂ [Pk−1]

−1

∂uk−1
R(uk−1) +

∂ [Pk−1]
−1

∂R

[
∂R(uk−1)

∂uk−1

]
2

R(uk−1) + [Pk−1]
−1

[
∂R(uk−1)

∂uk−1

]
2

]T
Λk

− ∂L

∂uk−1

(3.114)

Distributing the transpose and grouping like terms returns the below expression:

∆Λ = −

[
∂ [Pk−1]

−1

∂uk−1
R(uk−1) +

∂ [Pk−1]
−1

∂R

[
∂R(uk−1)

∂uk−1

]
2

R(uk−1)

]T
Λk

−
[
∂R(uk−1)

∂uk−1

]
2

[Pk−1]
−T

Λk − ∂L

∂uk−1

(3.115)

This motivates the definition of a secondary adjoint variable for each recurrence relation, as in the previous

formulations.

[Pk−1]
T
ψk = Λk (3.116)

Substituting in the secondary adjoint variable shows that this method requires only one linear solve per

nonlinear iteration as in the analysis, but this requires some very involved derivatives. In order to obtain the

below expression it is necessary to linearize the approximate linear solver with respect to the full conservative

variable vector and the residual vector.

∆Λ = −

[
∂ [Pk−1]

−1

∂uk−1
R(uk−1) +

∂ [Pk−1]
−1

∂R(uk−1)

[
∂R(uk−1)

∂uk−1

]
2

R(uk−1)

]T
Λk −

[
∂R(uk−1)

∂uk−1

]
2

ψk (3.117)

Clearly the above equation has such involved derivatives that computation through the use of hand

differentiation is not practical. The linearization of a GMRES algorithm is untenable even in the forward

mode, much less in the reverse. There are also further issues that will be addressed at the end of the

derivation. Now that an expression for the pseudo-time adjoint has been obtained the next step is to move

on to the sensitivity equation and plug in the appropriate constraint derivatives.

dJ

dD
=
∂L

∂D
+ ΛnT

[
∂ [Pn−1]

−1

∂D
R(un−1) +

∂ [Pn−1]
−1

∂R(un−1)

∂R(un−1)

∂D
R(un−1) + [Pn−1]

−1 ∂R(un−1)

∂D

]
+ ...

+ Λ1T

[
∂ [P0]

−1

∂D
R(u0) +

∂ [P0]
−1

∂R(u0)

∂R(u0)

∂D
R(u0) + [P0]

−1 ∂R(u0)

∂D

] (3.118)

It looks as though this formulation requires the solution as many linear systems per nonlinear iterations as

there are design variables but,through the reuse of the secondary adjoint variable it is possible to do away

Draft of 8:26 pm, Wednesday, November 18, 2020 53

with this additional cost as in previous sections.

dJ

dD
=
∂L

∂D
+ ΛnT

[
∂ [Pn−1]

−1

∂D
R(un−1) +

∂ [Pn−1]
−1

∂R(un−1)

∂R(un−1)

∂D
R(un−1)

]
+ ψnT

∂R(un−1)

∂D

+ ...

+ Λ1T

[
∂ [P0]

−1

∂D
R(u0) +

∂ [P0]
−1

∂R(u0)

∂R(u0)

∂D
R(u0)

]
+ ψ1T ∂R(u0)

∂D

(3.119)

For additional insight the partial derivatives of the design variables are expanded:

dJ

dD
=
∂L

∂x

∂x

∂D
+ ΛnT

[
∂ [Pn−1]

−1

∂x

∂x

∂D
R(un−1) +

∂ [Pn−1]
−1

∂R(un−1)

∂R(un−1)

∂x

∂x

∂D
R(un−1)

]
+ ψnT

∂R(un−1)

∂x

∂x

∂D

+ ...

+ Λ1T

[
∂ [P0]

−1

∂x

∂x

∂D
R(u0) +

∂ [P0]
−1

∂R(u0)

∂R(u0)

∂x

∂x

∂D
R(u0)

]
+ ψ1T ∂R(u0)

∂x

∂x

∂D

(3.120)

which reveals that in order to evaluate this expression the linearization of the GMRES solver with respect to

the mesh coordinate variables is necessary for shape optimization. In summation, this algorithm requires that

the developer linearize the iterative solver with respect to the nodal coordinates, the conservative variables,

and the residual/right hand side; furthermore it actually requires not just the derivative of the linear solver,

but the derivative of the approximate inverse it represents which is never explicitly computed or stored. This

is an impractical algorithm and so it is not used going forward. Therefore, in this work the inexact quasi-

Newton method with the inverse identity is used for the bulk of the results. It is the simplest to implement

for the level of accuracy it provides and it allows for investigation of the effects of partial convergence of the

linear system on the accuracy of the sensitivities going forward.

3.2.4 General Sensitivity Convergence Proof for Approximate Adjoint Lin-

earization of the Fixed Point Iteration

As in the tangent section, it is desirable to quantify the error introduced to the sensitivity calculation by

the approximate linearization of the matrix inverse through the inverse identity approximation. It is known

that for a properly implemented linearization and transposition that the adjoint and tangent return the same

sensitivity values. Therefore the error in the sensitivities goes to zero when computed through the adjoint

as the nonlinear problem is converged, as was proven to be the case for the tangent sensitivities. To begin

the more rigorous proof, it is necessary to begin from the more general version of the solver as a fixed point

iteration that multiplies the residual operator by some A operator. It is important to note that by definition

of the fixed point, A is not orthogonal to R and it is bounded away from 0, lest the fixed point terminate at

a state that does not satisfy the discretized form of the governing equations (signified by R = 0).

uk+1 = N(uk, D) = uk +H(uk, D) = uk +A(uk, D)R(uk, D) (3.121)

Draft of 8:26 pm, Wednesday, November 18, 2020 54

The fixed point iteration derivatives are expressed below, where the linearization of the residual is exact,

but the linearization of the A matrix is approximate in the actual implementation:

∂Hk+1

∂uk
=
∂A(uk, D)

∂uk
R(uk, D) +A(uk, D)

∂R(uk, D)

∂uk
(3.122)

The sensitivity equation first shown in equation (3.39) in the initial pseudo-time accurate adjoint derivations

are reproduced below, where G is the shifted fixed point iteration, G = u−N(u).

dL

dD
=
∂L

∂D
+ ΛnT

∂Gn

∂D
+ Λn−1T ∂G

n−1

∂D
+ Λn−2T ∂G

n−2

∂D
+ ...+ Λ1T ∂G

1

∂D
(3.123)

Substituting in the approximate terms into 3.39 returns the expression below, where the approximation in a

given variable x denoted by x̃:

d̃L

dD
=
∂L

∂D
+ Λ̃nT

∂̃Gn

∂D
+ Λ̃n−1T ∂̃G

n−1

∂D
+ Λ̃n−2T ∂̃G

n−2

∂D
+ ...+ Λ̃1T ∂̃G

1

∂D
(3.124)

By subtracting the exact sensitivity equation from the approximate one, the error equation below is

obtained. In it there is error in the pseudo-temporal adjoint vectors due to the linearization error of the

fixed point with respect to the flow variables (Λ̃), and there is explicit error from inexact linearization of the

fixed point (∂̃G
k

∂D).

dL

dD
− d̃L

dD
=

(
∂L

∂D
− ∂L

∂D

)
+

(
ΛnT

∂Gn

∂D
− Λ̃nT

∂̃Gn

∂D

)

+

(
Λn−1T ∂G

n−1

∂D
− Λ̃n−1T ∂̃G

n−1

∂D

)

+

(
Λn−2T ∂G

n−2

∂D
− Λ̃n−2T ∂̃G

n−2

∂D

)
+ ...

+

(
Λ1T ∂G

1

∂D
− Λ̃1T ∂̃G

1

∂D

)

(3.125)

It is necessary to define three error terms for the errors at each nonlinear iteration, the error in: the

pseudo-time adjoint, the linearization of the nonlinear iteration with respect to the state variable and the

linearization with respect to the design variables. These are denoted by εkΛ, ε
k
u, ε

k
D respectively.

εkΛ = Λk − Λ̃k

εku =
∂Gk

∂uk−1
− ∂̃Gk

∂uk−1

εkD =
∂Gk

∂D
− ∂̃Gk

∂D

(3.126)

Draft of 8:26 pm, Wednesday, November 18, 2020 55

Using these epsilon definitions makes it possible to simplify equation 3.125 into the below equation with

the epsilon terms as the unknowns.

dL

dD
− d̃L

dD
= εnTΛ

∂Gn

∂D
+ ΛnT εnD − εnTΛ εnD

+ εn−1T
Λ

∂Gn−1

∂D
+ Λn−1T εn−1

D − εn−1T
Λ εn−1

D

+ εn−2T
Λ

∂Gn−2

∂D
+ Λn−2T εn−2

D − εn−2T
Λ εn−2

D

+ ...

+ ε1TΛ
∂G1

∂D
+ Λ1T ε1D − ε1TΛ ε1D

(3.127)

This proof cannot proceed any further without some expressions for the epsilon error terms, and it is

therefore necessary to proceed using the fact that only the ∂A
∂() term has an approximation to get the following

two identities:

εku =
∂Gk

∂uk−1
− ∂̃Gk

∂uk−1
=
∂A

∂u
R+A

∂R

∂u
− ∂̃A

∂u
R−A∂R

∂u
=

(
∂A

∂u
− ∂̃A

∂u

)
R

εkD =
∂Gk

∂D
− ∂̃Gk

∂D
=
∂A

∂D
R+A

∂R

∂D
− ∂̃A

∂D
R−A∂R

∂D
=

(
∂A

∂D
− ∂̃A

∂D

)
R

(3.128)

The two error terms above have a scaling with the residual that is important to keep in mind. Using the

definitions of the error terms allows for an expression of the difference between the sensitivities with exact

and approximate linearizations. Using equation 3.44 gives an error recurrence relationship:

εk−1
Λ = − ∂Gk

∂uk−1

T

Λk +
∂̃Gk

∂uk−1

T

Λ̃k (3.129)

Since Λn = ∂L
∂un which has no approximation error, εnΛ = 0. It is possible to substitute in the epsilon

identities into the equation above to obtain the one below.

εk−1
Λ =

(
∂Gk

∂uk−1

T

− εku

)(
Λk − εkΛ

)
− ∂Gk

∂uk−1

T

Λk

= −εkTu Λk + εkTu εkΛ −
∂Gk

∂uk−1
εkΛ

(3.130)

Applying this epsilon recurrence relation to the second to last iteration:

εn−1
Λ = −εnTu Λn + εnTu εnΛ −

∂Gn

∂un−1
εnΛ (3.131)

then using εnΛ = 0 and substituting in the expression for εkTu returns.

εn−1
Λ = −

(
∂A

∂u
− ∂̃A

∂u

)
RnΛn (3.132)

Draft of 8:26 pm, Wednesday, November 18, 2020 56

It is therefore clear that in order to show that the error goes to zero it must be shown that
∥∥RkΛk

∥∥ ≈ 0

for all iterations. It is important here to refer back to the definition of the fixed point iteration; A is

bounded away from 0 and A is not orthogonal to R (lest the fixed point terminate at a state that does not

satisfy the discretized form of the PDE). Therefore ‖A‖ 6= 0 and ‖RnΛn‖ ≈ 0 Since the pseudo-temporal

adjoint converges at the reverse of the analysis process (through linearizing the fixed point iteration and

transposing the derivative),
∥∥RkΛk

∥∥ = ‖RnΛn‖, which for a converged simulation is on the order of machine

zero. Therefore the errors in the linearization of the A operator (denoted by εu) do not contribute to the

sensitivity error as the εΛ they contribute to is itself equal to zero. The reverse convergence of the adjoint

as compared to the analysis mode is confirmed by the results in [39], where the adjoint is shown to converge

to its final value in the reverse of the analysis problem.

εk−1
Λ = −

(
∂A

∂u
− ∂̃A

∂u

)
RkΛk ≈ 0 (3.133)

Otherwise, for a stalled or truncated simulation, the error at every iteration is scaled by the magnitude of

the residual at the final state. Using that εkΛ = 0 for a converged simulation returns the following expression:

dL

dD
− d̃L

dD
= ΛnT εnD + Λn−1T εn−1

D + Λn−2T εn−2
D + ...+ Λ1T ε1D (3.134)

Substituting in the expression for the error in the linearization of the nonlinear iteration with respect

to the design variable returns the following equation for the error in the sensitivities.

dL

dD
− d̃L

dD
= −ΛnT

(
∂A

∂u

n

− ∂̃A

∂u

n)
Rn

− Λn−1T

(
∂A

∂u

n−1

− ∂̃A

∂u

n−1)
Rn−1

− Λn−2T

(
∂A

∂u

n−2

− ∂̃A

∂u

n−2)
Rn−2

− ...

− Λ1T

(
∂A

∂u

1

− ∂̃A

∂u

1)
R1

(3.135)

Cauchy-Schwarz inequality allows for the identity at each pseudo-temporal iteration:

ΛkT

∂A
∂u

k

− ∂̃A

∂u

k
Rk ≤

∥∥∥∥∥∥∂A∂u
k

− ∂̃A

∂u

k
∥∥∥∥∥∥∥∥RkΛk

∥∥ (3.136)

This means that the error added at each iteration in the backwards-in-pseudo-time integration is upper

bounded by

∥∥∥∥∂A∂u k − ∂̃A
∂u

k
∥∥∥∥∥∥RkΛk

∥∥ Using the same argument as above that
∥∥RkΛk

∥∥ ≈ ‖ΛnRn‖ ≈ 0 returns

that for a converged flow the error in the sensitivities goes to 0. Again it is shown that the convergence

of the nonlinear problem leads to less error in the sensitivities even in unconverged flows. The expressions

Draft of 8:26 pm, Wednesday, November 18, 2020 57

above show that the error in the sensitivities is dependent on the error in the A operator and the residual of

the nonlinear problem. For quasi-Newton solvers like the ones that are the thrust of this work, this indicates

the convergence is a multiple of the tolerance of the linear system and the convergence of the non-linear

problem, and this behavior is borne out in the results section.

Draft of 8:26 pm, Wednesday, November 18, 2020 58

Chapter 4

Verification of Implementation

4.1 Verification of Analysis Order of Accuracy and Steady State

Tangent and Adjoint Sensitivity Computation

This code is verified in three parts: first, the order of accuracy is verified through a Gaussian bump case

and a uniformly refined mesh. Then the code is compared to a well validated code on a benchmarked test

case to ensure proper implementation of the physics modules. Finally the steady state adjoint and tangent

are verified through comparison to the sensitivities obtained through complex differentiation. The Gaussian

bump case is a flat plate with a small Gaussian bump with an amplitude of .05 in subsonic (M = .2) flow.

For an ideal case, the solution should have no drag due to the lack of viscosity or shock discontinuities,

therefore, any drag is due to the discretization error. As the mesh is refined, it is expected to see the drag

vanish at a second-order rate (that the drag decreases with the square root of the mesh sizing at a slope of

2). Figure 4.1 shows the converged flow on the finest mesh used. Figure 4.2 shows the expected convergence

of the drag error and second order accuracy is confirmed.

To verify proper implementation of the physics the test case of a NACA0012 airfoil in Mach .85 flow

with no angle of incidence was run. This case was chosen because it has been benchmarked as part of the

ADODG workshop and the well known and well validated Cart3D code presents results for the baseline case

that closely correspond to the results obtained by this in-house finite-volume code. This test case was run

on a mesh generated by an in-house two-dimensional unstructured mesh generation [59,60] (shown in Figure

4.3a) and then refined with an in-house AMR package; the refined mesh is shown in Figure 4.3b. The flow

field shown in Figure 4.4 is run on this refined mesh. This case shows close correspondence to the values

obtained by Cart3D [61] which obtained a drag coefficient of 471.3 counts, this code obtained a value of

457.7 counts; a difference of only 2.8% between two codes that vary vastly in terms of implementation and

discretization. The flow does not show exact symmetry but this can be attributed to the highly asymmetric

59

Draft of 8:26 pm, Wednesday, November 18, 2020 60

Figure 4.1: Plot of energy on the finest mesh for Gaussian bump

Figure 4.2: Order of accuracy verification plot

nature of the mesh.

Finally, the sensitivities computed through the classical/steady state tangent and adjoint methods are

verified for a transonic flow test case. This was run on the UMESH2D mesh shown in Figure 4.3a with the

Draft of 8:26 pm, Wednesday, November 18, 2020 61

(a) Baseline Mesh (b) Adapted Mesh

Figure 4.3: Mesh comparison for NACA0012 verification case

Figure 4.4: Mach flow field on adapted mesh for NACA0012 verification case

second-order objective function –calculated by reconstructing the solution variables from the cell center to

the airfoil surface– with the objective function being J = c2L + c2D. This case also used the new limiting

algorithm to assist with stability, symmetric Hicks-Henne bump functions as the design variables, and the

inverse distance weighting method for the mesh deformation. The convergence history and the flow field are

Draft of 8:26 pm, Wednesday, November 18, 2020 62

shown in tandem in Figure 4.5, which shows good convergence in the residual, as the non-linear problem

has stalled at 12 orders of convergence with the nonlinear residual being on the order of 1e − 15. Figure

4.6 presents the adjoint plots for density, momentum and energy with the expected behavior. Table 4.1

shows the sensitivities obtained from the tangent and adjoint systems and compares the results to those

obtained by the complex-step method (with the difference from the complex-step method sensitivities being

in bold-face) to verify the linearization of the analysis code and that the tangent and adjoint have been

properly implemented. For this case the absolute tolerance of the non-linear problem was set to 5e-16 and

that of the linear problem was set to 5e-15. This work presents good agreement (but not perfect) for such

inputs.

(a) Analysis Convergence (b) Mach Flow Field

Figure 4.5: Analysis problem convergence and flow field for verification of sensitivities

Sensitivity Computation Design Variable 1 Design Variable 2

Complex-Step Value 2.67138168470938 5.95205862248555
Adjoint Value 2.67138168470456 5.95205862247514
Tangent Value 2.67138168470465 5.95205862247512

Table 4.1: Verification of steady state adjoint and complex-step computed sensitivities

Draft of 8:26 pm, Wednesday, November 18, 2020 63

(a) Density Adjoint (b) x-Momentum Adjoint

(c) y-Momentum Adjoint (d) Energy Adjoint

Figure 4.6: Adjoint fields for verification case

4.2 Verification of the Pseudo-Time Accurate Tangent and Ad-

joint Sensitivities

The verification of the pseudo-time accurate formulations of the tangent and adjoint problems is done

using the computed sensitivities of a combined weighted lift and drag objective functional (L = ωLcL+ωDcD)

as proxies for the behavior of the tangent and adjoint systems and as a means to examine their behavior

and convergence. The design variables are two Hicks-Henne bump functions located at one third and two

thirds of the chord length respectively (denoted by the red circles in the figure) which symmetrically perturb

the airfoil. The mesh sensitivities were calculated with the spring analogy outlined previously. The mesh

is unstructured and consists of 4212 triangular elements shown in Figure 4.7; this mesh is used for all

Draft of 8:26 pm, Wednesday, November 18, 2020 64

verification cases as well as the investigations in the following chapter. All verification cases were run with

Mach = .6 and α = 1o.

Figure 4.7: Computational mesh for NACA0012 airfoil in verification cases

4.2.1 Pseudo-time Accurate Tangent Verification

For the pseudo-time accurate tangent system verification, the complex step computed sensitivities are

compared to those provided by the pseudo-time accurate tangent system. Since the pseudo-time accurate

tangent formulation is designed to compute the exact derivative it is expected to see exact correspondence

between the two methods, i.e. differences near the order of machine zero at every step of the nonlinear

solution process.

4.2.1.1 Forward Euler Pseudo-Time Evolution

Figure 4.8 shows the convergence of the primal system residual and the convergence of the objective

functional to its final value. Figure 4.9 shows verification of the implementation of the pseudo-time accurate

tangent. This figure shows the difference between the pseudo-time accurate tangent and complex sensitivities

is on the order of machine zero regardless of the residual value at the given pseudo-time step. The error is

of order 1e− 15 for both design variables, and as such it is clear this method is verified.

Draft of 8:26 pm, Wednesday, November 18, 2020 65

(a) Residual (b) Objective Functional

Figure 4.8: Convergence of spatial residual and objective function for forward Euler pseudo-time evolution

(a) Design Variable 1 (b) Design Variable 2

Figure 4.9: Difference between pseudo-time accurate tangent sensitivities and complex sensitivities for for-
ward Euler pseudo-time evolution

4.2.1.2 Newton-Chord Method

The verification of the Newton-Chord linearization is accomplished by starting the analysis problem

at initial conditions and running a quasi-Newton algorithm for 25 steps, at which point the preconditioner

is frozen and the algorithm continues solving the analysis problem with this frozen preconditioner. The

complex-step finite-difference sensitivities were calculated by restarting at the 26th iteration with the frozen

preconditioner and introducing a complex perturbation to the design variables, therefore ensuring the com-

plex perturbation does not affect the preconditioner. To run the pseudo-time accurate tangent, the tangent

problem was restarted at the 26th iteration. To parallel the Newton-Chord solution, the preconditioner

matrix on the left hand side of equation (3.15) is the frozen Jacobian matrix, and the terms on the right

hand side are the linearization of the spatial residual operator, which changes through pseudo-time. Since

Draft of 8:26 pm, Wednesday, November 18, 2020 66

this is the exact derivative of the analysis solution process, it is expected that exact correspondence between

the complex step derivative and the pseudo-time accurate tangent sensitivity is obtained. The functional

and residual behavior are depicted in Figure (4.10). Figure (4.11) plots the difference between the complex

and pseudo-time accurate tangent method sensitivities at each pseudo time step, and confirms that the two

sensitivity methods agree to machine precision.

(a) Functional (b) Residual

Figure 4.10: Convergence of objective function and residual for Newton-Chord Method

(a) Design Variable 1 (b) Design Variable 2

Figure 4.11: Difference between pseudo-time accurate tangent computed sensitivities and complex sensitiv-
ities for Newton-Chord method at each pseudo-time step

4.2.1.3 Quasi-Newton Method

The verification in this section is done by using a very tight tolerance on the linear system of 1e− 13 at

every non-linear iteration. The Hessian vector products are computed using complex-step perturbation to

the conservative variable vectors and the mesh coordinate vector as stated previously. Figure (4.12) shows

Draft of 8:26 pm, Wednesday, November 18, 2020 67

the convergence of the nonlinear residual and the objective of the analysis system. Figure (4.13) shows

the difference between the complex and pseudo-time accurate tangent method sensitivities at each pseudo-

time step. At each step machine level correspondence between the complex-step and tangent computed

sensitivities is obtained; provided that the linear system is solved to machine precision. This is sufficient

verification of the implementation.

(a) Functional (b) Residual

Figure 4.12: Convergence of objective function and residual for quasi-Newton Method

(a) Design Variable 1 (b) Design Variable 2

Figure 4.13: Difference between pseudo-time accurate tangent computed sensitivities and complex sensitiv-
ities for quasi-Newton method at each pseudo-time step

4.2.2 Pseudo-time Accurate Adjoint Verification

Because the adjoint sensitivities are computed through reverse integration in pseudo-time, a comparison

similar to the graphical representation in the tangent section is not practical. As such, Table 4.2 shows the

difference between the complex and adjoint provided sensitivities on truncated runs for verification purposes.

Draft of 8:26 pm, Wednesday, November 18, 2020 68

It is clear that regardless of the convergence of the residual, which is marked by reporting the L2-norm of

the spatial residual at the final iteration in the rightmost column of the table, that exact correspondence

between the sensitivities provided by the adjoint and complex-step methods is obtained. The table below

that RK5 denotes the 5 stage low storage explicit Runge-Kutta scheme (of which forward Euler is a special

case), NC denotes the frozen preconditioner Newton-Chord method, and QNII is the Quasi-Newton method

using the identity for the derivative of an inverse matrix.

Scheme Steps Complex Sensitivity Adjoint Sensitivity ||Residual||2
RK5 50 2.582417731112833 2.582417731112833 0.2315064463096067E-03
RK5 200 1.8735681698763 1.8735681698761 0.1941186088514834E-03
RK5 25000 -36.6039235232560 -36.6039235232588 0.7237556735513925E-04
NC 10 -2.344315562026746 -2.344315562026735 0.3205858355993253E-03
NC 20 -5.117070610162804 -5.5117070610162807 0.2522158472255535E-03

QNII 10 -3.482196439075767 -3.482196439075786 0.2982633094835574E-03
QNII 20 -2.264493935071775 -2.264493935071703 0.1691766297621063E-03

Table 4.2: Comparison of pseudo-time-accurate adjoint and complex-step computed sensitivities

4.3 Summary

This chapter presents verification of design order of accuracy as well as validation by comparison to the

well verified Cart3D code from NASA Ames. The appropriate decrease of drag with mesh refinement was

observed for a Gaussian bump case and the percentage difference in drag between the two codes was 2.8%.

The steady state tangent and adjoint were then verified by comparing the computed sensitivities through

those methods to those computed by the complex-step finite-difference method. Finally the pseudo-time ac-

curate tangent and adjoint were verified by comparison to the results from the complex-step finite-difference

method. The 5 stage explicit Runge-Kutta solver was linearized through the pseudo-time accurate tangent

formulation and the sensitivities at each iteration were compared to those obtained through complex differen-

tiation and showed machine zero level error at each iteration. Then the implicit Newton solver linearization

was verified for both approximations of the linearization of the preconditioner matrix inverse. The Newton-

Chord method was verified by running a simulation with a frozen preconditioner with a complex perturbation

to the design variables that did not affect the preconditioner, thus making the Newton-Chord linearization

an exact linearization of the solution process; the tangent sensitivities were compared to those obtained

through complex differentiation and showed machine zero level error at each iteration. The quasi-Newton

method linearization using the identity for the derivative of a matrix inverse was verified by converging the

linear system to machine zero at each nonlinear iteration, a comparison between the tangent and complex

linearization again showed machine zero level correspondence at every iteration, thus confirming the proper

implementation. Finally, the adjoint linearizations of these solvers were verified by early termination of the

simulations and full backwards-in-pseudo-time integration and comparison of the adjoint-computed sensitiv-

Draft of 8:26 pm, Wednesday, November 18, 2020 69

ities to the complex-step computed sensitivities. The sensitivities from the adjoint linearizations of all the

nonlinear solvers show machine zero level difference with the complex-step computed sensitivities at these

unconverged states, thus confirming proper implementation of the adjoint linearizations.

Draft of 8:26 pm, Wednesday, November 18, 2020 70

Chapter 5

Investigation into Tangent and

Adjoint Computed Sensitivities

5.1 The Pseudo-Time Adjoint as a Green’s Function

Referring back to 3.44 allows for a generalized Green’s function of the fixed-point iterations. Starting with

the adjoint recurrence relation at k:[
∂Gk−1

∂uk−1

]T
Λk−1 = −

[
∂Gk

∂uk−1

]T
Λk −

[
∂L

∂uk−1

]T
(5.1)

and turning this a perturbation form returns the equation below.

δL = −Λk−1T δGk−1 − ΛkT δGk (5.2)

This corresponds to a generalized Green’s function of the constraint operator (dependent on the time

evolution method), where small perturbations in the time evolution operator produce a corresponding change

in the objective at iterations where the output of interest depends on the flow field at that nonlinear iteration,

otherwise it changes to the below equation.

0 = Λk−1T δGk−1 + ΛkT δGk (5.3)

The generalized Green’s function dictates how a perturbation in the constraint would change subse-

quent pseudo-time accurate flow adjoint vectors through the backwards-in-iteration-space integration. It

is informative to look at the behavior of the adjoint for an exact Newton solver linearized in the adjoint

mode with the inverse identity and measured by the magnitude of the L2-norm of the adjoint field variables.

Figure (5.1) shows that the magnitude of the norm of the adjoint field behaves as the inverse of the analysis

problem convergence. The adjoint magnitude, plotted on a reversed x-axis, is greatest at convergence of

71

Draft of 8:26 pm, Wednesday, November 18, 2020 72

the analysis problem and near machine zero at initialization of the nonlinear problem. Furthermore, the

adjoint magnitude is negligible during the region dominated by the pseudo-transient behavior early on in the

analysis problem; it is only significant during the region dominated by the quadratic convergence behavior.

Figure (5.2) shows that the adjoint very quickly integrates to near the final sensitivity as it integrates back-

wards through time; in contrast, the tangent system has very inaccurate gradients early on, and then only

computes useful ones in the quadratic convergence region. This would indicate that full differentiation of the

analysis solve is not necessary, rather the differentiation algorithm could be run only through the quadratic

convergence region of the simulation.

(a) Residual Convergence (b) Adjoint Magnitude Behavior (reversed x-axis)

Figure 5.1: Residual convergence and adjoint magnitude behavior for Quasi-Newton scheme

(a) Tangent Sensitivity Convergence (b) Adjoint Sensitivity Convergence (reversed x-axis)

Figure 5.2: Sensitivity convergence for Quasi-Newton scheme

Draft of 8:26 pm, Wednesday, November 18, 2020 73

5.2 Sensitivity Behavior as a Function of Backwards-In-Iteration-

Space Integration

In this section a comparison is done between the pseudo-time accurate adjoint and the classical – or

steady state – adjoint. The first case is a well converging simulation that is truncated before the residual

reaches machine zero, and compares the sensitivities from the steady state adjoint linearized about the final

state to those from a pseudo-time accurate adjoint. Then there are two cases which fail to converge and

enter limit cycle oscillations; these cases show the effect of increasing the averaging window of the objective

functional on the pseudo-time accurate adjoint-computed sensitivities. Next, the sensitivities of the steady

state adjoint linearized about the final state of the simulation as well as about the averaged state are shown

and these sensitivities are compared to those provided by the pseudo-time accurate adjoint using the same

functional averaging window as that used to generate the average state. Finally, we also consider the effect

of averaging the computed sensitivities.

The objective functional for a simulation that runs for n pseudo-time steps is either a windowed com-

bination of the coefficients of lift and drag, in which case the lift and drag coefficients are averaged over the

last m pseudo-time steps, or an instantaneous combination at the final state, which can be calculated by

setting m = 1. The windowed objective function is written below, where ω is the weight, in this work ω = 8.

L =
1

m

n∑
i=n−m+1

CLi
+ ωCDi

(5.4)

The comparisons in this section will compare the values of the sensitivity vectors computed from the different

methods to one another, as well as the directions of those sensitivity vectors. The sensitivity vector direction

is typically used in the line search methods found in most gradient-based optimizers, and errors in the search

direction can lead to suboptimal designs or outright failure of the design process. All cases to follow in

this investigation on sensitivity behavior as a function of the backwards-in-iteration-space integration were

run with the low storage explicit five stage Runge-Kutta scheme; the adjoint linearizations were the exact

linearizations of this scheme.

5.2.1 Application of the Pseudo-Time Accurate Adjoint to a Truncated Simu-

lation

This case shows that, for a well converging primal problem which is truncated before deep convergence

and which has a well converging adjoint system, there is a significant difference in the values between the

pseudo-time accurate adjoint and the steady state adjoint-computed sensitivities. For this case the primal

problem was solved for a NACA0012 airfoil on the mesh shown for verification in Figure 4.7, at Mach = .85

and α = 3o. The simulation is terminated when the L2-norm of the residual is less than 1e−6. The resulting

Draft of 8:26 pm, Wednesday, November 18, 2020 74

density field is shown in Figure 5.3.

The next step was to solve the steady state adjoint problem linearized about the final state; the con-

vergence plots of the nonlinear residual in the primal problem and the linear residual in the adjoint problem

are shown in Figure 5.4. The design variables consisted of 4 Hicks-Henne bump functions equally spaced at

one-fifth, two-fifths, three-fifths and four-fifths of the chord length of the airfoil. The mesh sensitivities were

calculated from the spring analogy method.

Figure 5.3: Density field for NACA0012 airfoil in Mach = .85, α = 3o

Table 5.1 shows the magnitude and percentage differences between the the steady state adjoint-computed

sensitivities to the pseudo-time accurate adjoint-computed sensitivities. This table depicts that there are

clearly large differences between the sensitivities obtained by the two approaches. It is instructive to then

evaluate the angle between the two sensitivity vectors, as the direction is the most important part of the

sensitivity vector for the optimization process (within reasonable magnitude errors). The angle θ is calculated

as follows, with u and v being the sensitivity vectors.

a =
u · v
‖u‖‖v‖

(5.5)

θ = arccos(a), θ ≤ 180

θ = 360− arccos(a), θ > 180
(5.6)

Draft of 8:26 pm, Wednesday, November 18, 2020 75

(a) Nonlinear Residual Convergence (b) Adjoint Linear Convergence

Figure 5.4: Residual and steady state adjoint convergence for truncated simulation in Mach = .85, α = 3o

Design Variable Steady State Value Pseudo-Time Accurate Value Percent Difference

1 -38.9168562768552 -34.07260014448312 14.2%
2 -58.8314866801896 -62.28918541979274 5.6%
3 -51.9374815863084 -70.15517817818902 26.0%
4 -69.3520141341324 -95.35571541527936 27.3%

Table 5.1: Comparison of pseudo-time accurate adjoint and steady state adjoint-computed sensitivities for
truncated primal problem in Mach = .85, α = 3o

Using the values for the sensitivity vectors shown above in Table 5.1 it is possible to obtain a value of the

angle between the two sensitivity vectors of θ = 8.652o. Between the angle value and difference in the

magnitude values it is clear that there are significant discrepancies between the results of these two methods

of sensitivity computation. Even in cases of well converging primal problems there are significant benefits

from the use of the pseudo-time accurate adjoint as there is a significant difference between the steady

state adjoint sensitivities and the exact sensitivities of the partially converged solution as obtained by the

pseudo-time accurate adjoint formulation.

5.2.2 Application of the Pseudo-Time Accurate Adjoint to Non-converging Pri-

mal Problem

A primal problem for a cutoff airfoil (NACA0012 with a blunt trailing edge at 97% of the chord length)

was solved using a fine mesh with 64398 triangular elements shown in Figure 5.5 in order to devise a non-

convergent steady state problem.

5.2.2.1 Subsonic Case

The flow conditions for this test case are given by Mach = .3 and α = 3o. Figure 5.6 shows the

convergence of the residual, lift coefficient and drag coefficient through 60000 iterations, at which point the

residual stopped decreasing when it was run out to 80000 iterations.

Draft of 8:26 pm, Wednesday, November 18, 2020 76

(a) Mesh (b) Trailing Edge

Figure 5.5: Fine mesh for NACA0012 airfoil cut off at 97% chord length

Figure 5.6: Primal problem convergence for Mach = .3, α = 3o

Figure 5.7 shows the stagnation pressure values for the final state and the averaged state. The figure

shows that for the instantaneous final state there is shedding at the trailing edge of the airfoil, and the

oscillations in the flow field are far stronger than those at the averaged state. Figure 5.8 shows the behavior

of the coefficient of lift and drag over different averaging windows. It is clear that increasing the averaging

window damps the oscillations and gives a more convergent behavior of the force coefficients, as the two

smaller windows show large oscillations, with the largest window showing negligible oscillations. Averaging

Draft of 8:26 pm, Wednesday, November 18, 2020 77

(a) Final State (b) Average State

Figure 5.7: Stagnation pressure for final state and average state for Mach = .3, α = 3o

(a) Lift Coefficient (b) Drag Coefficient (c) Residual

Figure 5.8: Behavior of primal problem for different averaging windows for Mach = .3, α = 3o

the force coefficients leads to well behaved values over long intervals, which is a common practice when

evaluating CFD results for engineering applications.

Figure 5.9 shows the convergence of the sensitivities back through pseudo-time on reversed x-axes when

computed by the pseudo-time accurate adjoint of the Runge-Kutta solver. It is clear that by increasing

the size of the objective functional averaging window, the magnitude of the sensitivities grows smaller. It

is also clear that the sensitivities provided by the pseudo-time accurate adjoint for an objective functional

averaged over a long window approach the final value after the adjoint integrates back through the averaging

window. In contrast, the adjoint for a smaller averaging window objective functional does not show this

behavior. It is clear that for the longer averaging window the oscillations in the sensitivities about this

fully pseudo-time integrated value are smaller. In order to evaluate the use of the computed sensitivities

for a gradient-based optimizer, it is helpful to evaluate the evolution of the angle between the partially

(backwards-in-time) integrated adjoint sensitivity vector to the fully integrated adjoint sensitivity vector as

the adjoint integrates back through pseudo-time. This is done to measure the feasibility of early termination

Draft of 8:26 pm, Wednesday, November 18, 2020 78

(a) 250 Iteration Window (b) 20000 Iteration Window

Figure 5.9: Pseudo-Time accurate adjoint sensitivities for varying objective windows for Mach = .3, α = 3o

of the time integration. In fact, for the longer window objective function, the angle between the partially

integrated versus the fully integrated adjoint-computed sensitivities is well behaved as is demonstrated in

Figure 5.10. The fully pseudo-time integrated adjoint sensitivities are used as the comparison point as they

represent the exact sensitivities and correspond to the complex-step finite-difference computed sensitivities.

By integration back through pseudo-time to roughly twice the averaging window, for well behaved cases, the

algorithm returns sensitivities that are very close to the exact sensitivities.

(a) 250 Iteration Window (b) 20000 Iteration Window

Figure 5.10: Angle between partially time-integrated and fully time-integrated sensitivities over iteration
space to final sensitivity for Mach = .3, α = 3o

It is then enlightening to compare how the pseudo-time accurate adjoint-computed sensitivities compare

to the values obtained by the steady state adjoint linearized about different states. The comparison is between

the pseudo-time accurate adjoint using the objective functional average over the last 20000 iterations and

Draft of 8:26 pm, Wednesday, November 18, 2020 79

Design Variable Steady State Value (Final State) Pseudo-Time Accurate Value Percent Difference

1 21.3443558908559 21.96809430870143 2.83%
2 9.15634414104837 10.26553487597339 10.8%
3 -2.88279274401136 1.239597303802120 332.56%

Table 5.2: Pseudo-Time accurate adjoint and steady state sensitivities computed at final state for non-
converging primal problem for Mach = .3, α = 3o

the steady state adjoint evaluation at both the final state and an averaged state produced by averaging the

conservative variables over the last 20000 iterations, the same window as the functional driving the pseudo-

time accurate adjoint. Figure 5.11 depicts the plots of the convergence of the two steady state adjoint

systems. It is good to note that it takes many iterations to converge these systems, as the adjoint linearized

about a partially converged state has been found to be hard to converge [33]. The pseudo-time accurate

adjoint does not suffer from this as it is the transpose linearization of the primal problem, and therefore does

not require more advanced solver technology than the primal problem itself and converges at the same rate.

(a) Final State (b) Average State

Figure 5.11: Steady state adjoint convergence for Mach = .3, α = 3o

Table 5.2 provides the computed sensitivity vectors and from this information the angle between the two

sensitivity vectors is evaluated. The first vector is computed by the steady state adjoint linearized about the

final state and the second is computed by the pseudo-time accurate adjoint. In this case the angle between

the two vectors is obtained with a value of θ = 10.167o. This is a significant angle difference, and could

cause problems for optimization with a gradient-based optimizer.

Table 5.3 compares two sensitivity vectors, calculated by the steady state adjoint linearized about the

averaged state and the pseudo-time accurate adjoint respectively. In this case, the angle between these

vectors is θ = 1.9396o. When the simulation has entered limit cycle oscillations, averaging the state greatly

improves the performance of the steady state adjoint. However, although the angle is relatively small in this

case the magnitudes of the individual sensitivities still differ substantially.

Draft of 8:26 pm, Wednesday, November 18, 2020 80

Design Variable Steady State Value (Avg State) Pseudo-Time Accurate Value Percent Difference

1 22.6224747115315 21.96809430870143 2.97%
2 10.5354461565917 10.26553487597339 2.63%
3 0.430506286872907 1.239597303802120 65.27%

Table 5.3: Pseudo-Time accurate adjoint and steady state sensitivities computed at averaged state for non-
converging primal problem for Mach = .3, α = 3o flow

5.2.2.2 Transonic Case

In this section the flow conditions are changed to Mach = .7, α = 2o. Figure 5.12 shows the convergence

of the residual, lift coefficient and drag coefficient, and the plots extend far into the limit-cycle oscillation

region.

Figure 5.12: Primal problem convergence for cut-off NACA0012 airfoil at Mach = .7, α = 2o

(a) Lift Coefficient (b) Drag Coefficient (c) Residual

Figure 5.13: Behavior of primal problem for different averaging windows for Mach = .7, α = 2o

Figure 5.13 shows the behavior of the residual and the coefficients of lift and drag over different averaging

windows. It is clear that the convergence behavior with averaging is better here than in the subsonic case, and

Draft of 8:26 pm, Wednesday, November 18, 2020 81

that for a 10000 iteration averaging window the average converges well. Figure 5.14 shows the convergence of

the sensitivities back through time on reversed x-axes when computed by the pseudo-time accurate adjoint.

As in the subsonic case, increasing the size of the averaging window for the objective functional gives

smaller magnitude sensitivities. Additionally, by extending the simulation far into the region of limit cycle

oscillations, very small oscillations in the values of the sensitivities are obtained. As before, it is helpful to

look to the angle behavior in order to get a better sense of how truncating the backwards-in-pseudo-time

integration may affect the line-search of a gradient-based optimizer.

(a) Final State (b) 250 Iteration Window (c) 20000 Iteration Window

Figure 5.14: Pseudo-Time accurate adjoint sensitivities for varying objective windows for Mach = .7, α = 2o

(a) Final State (b) 250 Iteration Window (c) 20000 Iteration Window

Figure 5.15: Angle convergence over iteration space to final sensitivity for Mach = .7, α = 2o

Figure 5.15 depicts the angle between the partially and fully integrated sensitivities for different objective

functional average windows. It is clear that by increasing the functional averaging window better angular

behavior is achieved when comparing the partially pseudo-time integrated sensitivity vector to the fully

pseudo-time integrated sensitivity vector. Looking at the angle between the partially pseudo-time integrated

and fully pseudo-time integrated sensitivity vectors as the algorithm integrates back through one and half

times the averaging window, the angles are on the order of .1o or .01o for the largest functional averaging

window.

It is then instructive to compare the pseudo-time accurate adjoint sensitivities to those provided by the

steady state adjoint. Figure 5.16 shows the convergence of the linear residual of the steady state adjoint

systems, linearized about the final state and averaged state respectively. These plots show, as before, that

Draft of 8:26 pm, Wednesday, November 18, 2020 82

computing these adjoint systems is very expensive, more expensive than the pseudo-time accurate adjoint

calculation.

Design Variable Steady State Value (Final State) Pseudo-Time Accurate Value Percent Difference

1 44.5805974889098 38.03996816573513 17.19%
2 14.0224144011606 17.92859539270058 21.79%
3 -1.27443407446669 0.2080948770865852 712.43%

Table 5.4: Pseudo-Time accurate adjoint and steady state sensitivities for non-converging primal problem
Mach = .7, α = 2o

As part of the comparison between the pseudo-time accurate adjoint-computed sensitivities and the

final state steady state adjoint-computed sensitivities, the angle between the vectors is computed from the

values in Table 5.4 and an angle of θ = 7.98972o is obtained. As before the sign of the sensitivity of the

third design variable in the steady state adjoint sensitivity vector is negative as opposed to the pseudo-time

accurate sensitivity vector which has positive sign. This being an undesirable result for optimization, it is

considered to be an unfeasible use of the steady state adjoint to linearize about the final state and it is

advisable to move onto the steady state adjoint linearized about the averaged state, created by averaging

the last 20000 iterations.

(a) Average State (b) Final State

Figure 5.16: Steady State adjoint convergence for Mach = .7, α = 2o

Design Variable Steady State Value (Avg State) Pseudo-Time Accurate Value Percent Difference

1 43.3642585762660 38.03996816573513 14.00%
2 16.9218981680917 17.92859539270058 5.62%
3 -9.717943674789181E-002 0.2080948770865852 146.70%

Table 5.5: Pseudo-Time accurate adjoint and steady state sensitivities for non-converging primal problem
for Mach = .7, α = 2o

Table 5.5 shows a comparison between the pseudo-time accurate adjoint-computed sensitivities and the

Draft of 8:26 pm, Wednesday, November 18, 2020 83

averaged state steady state adjoint-computed sensitivities. From these values a smaller angle of θ = 3.93855o

is obtained– which is less than half the previous angle from the final state steady state adjoint– but once

more the third design variable shows opposing signs for its sensitivity.

Given the significant magnitude differences and the angle between the steady state adjoint-computed

sensitivity vectors and the pseudo-time accurate adjoint-computed sensitivity vectors, it is desirable to seek

additional techniques for improving the accuracy of the partially integrated pseudo-time accurate adjoint.

Since Figure 5.14c shows the pseudo-time accurate adjoint provided sensitivities are well behaved except

for oscillations about the mean after the backwards-in-time integration is complete through the functional

averaging window, the effects of averaging the sensitivity values themselves for the pseudo-time accurate

adjoint problem when driven by a large functional averaging window are investigated.

Figure 5.17 depicts running averages of the sensitivities computed by the pseudo-time accurate adjoint

for the largest objective functional averaging window. The instantaneous values of the sensitivities can be

found for comparison in Figure 5.14c. The value of the running average of the sensitivity when the sensitivity

averaging window is outside the functional averaging window shows a dampening of the oscillations. In this

case, where the functional is averaged over the last 20000 iterations and the sensitivity over the last 10000,the

value 30000 iterations through the backwards-in-pseudo-time integration is compared to the final sensitivity

calculation for the non averaged – or instantaneous – sensitivities. It is clear that averaging over the largest

window damps out the oscillations, but for smaller windows it is not as effective, especially in the averaging of

the highly oscillatory third design variable sensitivity. Then comparing the partially integrated and averaged

sensitivity vector to the fully time integrated and instantaneous sensitivity vector in Table 5.6 gives an angle

of .34481o between the two vectors. This value is an order of magnitude smaller than the angle obtained when

comparing the fully time integrated pseudo-time accurate adjoint-computed sensitivities to the steady state

adjoint-computed sensitivities when linearized about the averaged state. Additionally, it is clear that the

magnitude differences are far smaller. Further research was done into smaller sensitivity averaging windows,

but these smaller windows led to more oscillatory average sensitivities. The results show that the use of a

sensitivity averaging window of approximately 50% of the functional averaging window is a reasonable choice

for these test cases.

(a) Design Variable 1 (b) Design Variable 2 (c) Design Variable 3

Figure 5.17: Effect of averaging sensitivities for pseudo-time accurate adjoint for Mach = .7, α = 2o

Draft of 8:26 pm, Wednesday, November 18, 2020 84

Design Variable 10000 Iteration Average Value Instantaneous Value Percent Difference

1 37.815963808090757 38.03996816573513 .5%
2 17.554182903957241 17.92859539270058 2%
3 .26808010969592244 0.2080948770865852 28%

Table 5.6: Comparison of partially integrated averaged pseudo-time accurate averaged sensitivities (com-
puted at iteration 30000) to fully backwards integrated instantaneous pseudo-time accurate sensitivities for
Mach = .7, α = 2o

5.3 Sensitivity as a Function of Accuracy of Approximation of

Fixed Point Linearization

This section shows the effect of an approximate linearization on the accuracy of the sensitivity compu-

tation. All cases were run at M = .7, α = 2o with an objective function of the form J = c2L + c2D. The first

set of results shows the impact of exactly linearizing the residual operator at every stage of a Runge-Kutta

scheme when the gradients are only computed at the first stage and then frozen throughout the sub-stage

iterations. The final two sets of results portray the effect of partial linear solves on the accuracy of the

identity of the differentiation of the inverse matrix (shown in equation (3.16)) in the sensitivity computation.

5.3.1 Results for Inexactly Linearized Explicit Runge-Kutta Solver

In this section an explicit Runge-Kutta solver is investigated. The solver, as expressed below, iterates

k through pseudo-time (which ∆t being a variable local time-step) and l through stages 1 to 5.

uk,l = uk,0 + CFLαl−1∆tR(uk,l−1) (5.7)

with the end of the sub-stage time-stepping being governed as follows.

uk,0 = uk−1,5 (5.8)

To check the effect of inexact linearization of the fixed point iterations for an explicit Runge-Kutta

solver there is inaccuracy introduced through selective freezing and computation of the flow gradients. The

flow gradients for the zero stage are calculated and and then held frozen through the fixed point iteration

that solves the primal problem. For the linearization of the fixed point iteration the gradients are calculated

at each stage and the Jacobian is computed and updated accordingly. This allows the Runge-Kutta scheme

to be viewed as some A operator depending on the flow state and design variables that multiplies the 0 stage

residual to get the final stage ∆u, where the linearization of A is inexact due to the inconsistent handling

of the gradients. The convergence of the flow sensitivities to their respective final values is shown in Figure

Draft of 8:26 pm, Wednesday, November 18, 2020 85

(a) Maximum Iterative Difference (b) Minimum Iterative Difference

Figure 5.18: Runge Kutta Sensitivity Convergence

(5.18). It is clear that they converge to their respective final values as the primal problem converges, as

expected.

The difference between the exact (complex) linearization and the approximate (tangent) linearization

portrayed in Figure (5.19) shows the expected behavior. The error due to the inexact linearization of the

Runge-Kutta scheme goes away at the rate of the primal problem convergence as derived in the proof section.

(a) Maximum Iterative Difference (b) Minimum Iterative Difference

Figure 5.19: Runge Kutta Sensitivity Difference

5.3.2 Results for an Exact Jacobian Augmented with a Mass Matrix

This section shows the results for an exact quasi-Newton solver with the tangent and adjoint lineariza-

tions being computed using the inverse identity method. Figure (5.20) shows that for the linear tolerance

1e−1 that the complex and tangent sensitivities converge to their final values at the same rate as the analysis

Draft of 8:26 pm, Wednesday, November 18, 2020 86

problem itself, which is expected based on the formulation. Figure (5.21) depicts the difference between the

complex and tangent sensitivities over the iteration history of the analysis solution process, and it is clear

that the maximum difference is of the order of the linear tolerance of the linear system. Furthermore, as

the analysis problem converges, so do the complex and tangent sensitivities to each other despite the inex-

act differentiation. At full convergence of the analysis problem, the tangent and complex-step sensitivities

correspond to each other to a high degree of precision and these also correspond to the steady state tangent

and adjoint computed sensitivities linearized about the converged analysis state.

(a) Design Variable 1 (b) Design Variable 2

Figure 5.20: Sensitivity convergence for linear tolerance in a Newton solver, 1e − 1: difference between
current and final sensitivity values

(a) Design Variable 1 (b) Design Variable 2

Figure 5.21: Iterative sensitivity difference for linear tolerance in a Newton solver, 1e− 1

Figure (5.22) contains the same information as Figure (5.20), and Figure (5.23) is the sister plot of Figure

(5.21); the latter two plots show results with a tighter linear system tolerance of 1e − 4. As in the looser

linear tolerance case, as the nonlinear problem converges so do the tangent and complex sensitivities to each

Draft of 8:26 pm, Wednesday, November 18, 2020 87

other, down to nearly machine precision correspondence. Furthermore, the maximum iterative difference is

again on the order of the linear system tolerance.

(a) Design Variable 1 (b) Design Variable 2

Figure 5.22: Sensitivity convergence for linear tolerance in a Newton solver, 1e − 4: difference between
current and final sensitivity values

(a) Design Variable 1 (b) Design Variable 2

Figure 5.23: Iterative sensitivity difference for linear tolerance in a Newton solver, 1e− 4

Having seen the impact of the tighter linear system tolerance on the maximum iterative difference

between the tangent and complex sensitivities, the analysis problem with linear system tolerances logarith-

mically spaced through the range 1e − 1 to 1e − 13 is simulated and the maximum iterative difference is

plotted in Figure (5.24). As the figure shows, the maximum iterative difference is directly related to the

linear system tolerance. This allows for good estimates of the maximum iterative error as a function of

the linear system tolerance. The minimum iterative difference shows similar behavior, and converges as the

product of the linear system tolerance and the normalized residual of the nonlinear problem.

Draft of 8:26 pm, Wednesday, November 18, 2020 88

(a) Maximum Iterative Difference (b) Minimum Iterative Difference

Figure 5.24: Iterative difference vs. linear tolerance in a Newton solver

5.3.3 Results for an Inexact Jacobian Augmented with a Mass Matrix

Here the results are presented for an inexact-quasi-Newton solver, having a left hand side which is the

first-order accurate linearization of the second-order accurate residual operator augmented with a suitable

mass matrix. The tangent and adjoint linearizations are computed using the inverse identity method.The

expectation is to obtain similar behavior to that seen in the previous section. The difference being, that rather

than have quadratic convergence in the primal problem and quadratic convergence of the inexact linearization

to the complex linearization, it is expected to see linear convergence between the two linearizations similar to

that of the analysis for the inexact Newton solver. To demonstrate this, sister plots to those of the previous

section – but for the inexact Newton runs – are shown. Figures (5.25, 5.26) show the behavior for a linear

tolerance of 1e− 1 and Figures (5.27, 5.28) show the behavior for a tolerance of 1e− 4. These are the same

tolerances portrayed in the previous section, and the same expected convergence of the inexactly linearized

tangent to the complex linearization is achieved. As before, and as hypothesized by the error bounds in

this work, the maximum iterative difference is again on the order of the linear system tolerance, and as

the analysis converges so do the tangent and complex sensitivities to each other, down to nearly machine

precision.

Having seen the impact of the tighter linear system tolerance on the maximum iterative difference

between the tangent and complex sensitivities, and seeing the expected behavior as shown in the theoretical

error bound and the previous section, the impact of linear tolerances is checked by simulating these tolerances

from 1e− 1 to 1e− 14. Figure (5.29) depicts the maximum iterative difference with the expected behavior

over that parameter sweep. This confirms the theoretical bound for a more general solver, one in which the

left hand side is not an exact linearization of the right hand side.

Draft of 8:26 pm, Wednesday, November 18, 2020 89

(a) Design Variable 1 (b) Design Variable 2

Figure 5.25: Sensitivity convergence for linear tolerance, 1e− 1: difference between current and final sensi-
tivity values

(a) Design Variable 1 (b) Design Variable 2

Figure 5.26: Iterative sensitivity difference for linear tolerance, 1e− 1

Draft of 8:26 pm, Wednesday, November 18, 2020 90

(a) Design Variable 1 (b) Design Variable 2

Figure 5.27: Sensitivity convergence for linear tolerance, 1e− 4: difference between current and final sensi-
tivity values

(a) Design Variable 1 (b) Design Variable 2

Figure 5.28: Iterative sensitivity difference for linear tolerance, 1e− 4

(a) Maximum Iterative Difference (b) Minimum Iterative Difference

Figure 5.29: Iterative difference vs. linear tolerance

Draft of 8:26 pm, Wednesday, November 18, 2020 91

5.4 Summary

This chapter discussed the pseudo-time accurate adjoint as a Green’s function and showed that the

adjoint problem integrated back in pseudo-time converges as the reverse of the primal problem. It was

then shown that by pseudo-time averaging the objective function that the sensitivities obtained through

the backwards-in-pseudo-time become well behaved as the averaging window is increased. The magnitude

and sign differences between the partially and fully integrated sensitivity vectors were studied as well as

the angles between the two vectors; for the long time averaging windows that damped out oscillations in

the objective function the oscillations in the sensitivities were damped out as well. The ability to get good

estimates of the final sensitivity vectors through a partial backwards-in-pseudo-time integration lends itself

to similar integration in the design process allowing for much cheaper optimizations. Finally, an investigation

was done into the behavior of the pseudo-time accurate tangent formulation for approximate linearization

of the fixed point solvers. One explicit and two implicit solvers were studied. Error in the explicit solver

was introduced by selective freezing and unfreezing of flow gradients in the analysis and not taking this into

account for the tangent, linearization error in the implicit solvers was introduced by using identities assuming

that the linear system was exactly solved while not doing so. The implicit solvers showed the expected error

behavior and sensitivity convergence, as well as the expected dependence of the error on the linear system

tolerance. All solvers showed decreased error as the nonlinear problem was solved as had been theorized and

proved earlier in this work.

Draft of 8:26 pm, Wednesday, November 18, 2020 92

Chapter 6

Optimization Results

Previous chapters were devoted to development and investigations of the sensitivity computation tech-

niques including quantifying the effect of varying averaging windows and the accuracy of various lineariza-

tions. This chapter applies these methods to aerodynamic shape optimization and the goal is to show better

final designs in optimizations driven by the PTA adjoint than those driven by a steady-state adjoint. All cases

in this chapter use an inexact-quasi-Newton-Krylov solver for the nonlinear problem and calculate the sen-

sitivities with the approximate adjoint linearization by use of the inverse identity adjoint linearization. The

optimization problem is solved using SNOPT [1], a limited-memory quasi-Newton solver for optimization,

which will drive the Hicks-Henne bump function design variables.

6.1 Optimization of Symmetric Airfoil with Detached Bow Shock

The case presented in this section is a NACA0012 airfoil shown in Figure (4.7) with 20 symmetric

Hicks-Henne design variables in M = 1.25 flow with α = 3o. The objective function here is an iteration

averaged composite objective function of lift, drag, and entropy, where m is the size of the averaging window

and m = 75.

L =

n∑
i=n−m

ωL(cL − CLT
)2
i + ωD(cD − CDT

)2
i + ωs(s− sT)2

i (6.1)

The targets for lift, drag, and entropy are denoted by CLT
, CDT

, and sT respectively. The target lift

coefficient is set to .211 which is the objective function value in this baseline simulation, the target drag

coefficient and entropy are set to 0. The respective weights are set to 1.0 for all terms. This objective function

will make the optimizer (SNopt) try to keep the lift constant, minimize the drag, and decrease the shock

strength. The limiter used here to prevent divergence is the modified limiter presented in the beginning of

this work in algorithm 2. The nonlinear convergence plot in Figure (6.1) shows that the convergence has

stalled; for this case, the linear system in the inexact-quasi-Newton-Krylov solver is converged 5 orders of

93

Draft of 8:26 pm, Wednesday, November 18, 2020 94

magnitude at each nonlinear iteration. Figure (6.2) shows the accumulation of the sensitivities by using the

Figure 6.1: Analysis convergence plot for detached bow shock case

inverse identity adjoint formulation through the backwards-in-pseudo-time integration; it is clear that these

sensitivities are very well behaved, as they do not change outside of the functional averaging window. This

indicates that partially backwards-in-pseudo-time integrations are possible; and that using these sensitivities

to drive an optimization is an attractive option. This assumption is used in this work, and the objective

function is averaged over the last 75 iterations and the backwards integration is performed only through that

averaging window to calculate the sensitivities. These assumptions were justified earlier in this work and

examined at great length in section 5.2.

Figure 6.2: Backwards-in-iteration-space integration of sensitivities for detached bow shock case

Draft of 8:26 pm, Wednesday, November 18, 2020 95

The summary of the design cycle is in Figure (6.3), which shows a rapid convergence of the objective

function and a convergence of the optimality condition to machine precision, this is despite the partial

backwards in pseudo-time integration of the sensitivities, which were only integrated back through the

function averaging window. This figure also shows that the optimized airfoil (in red) has shrunk at every

coordinate along the chord when compared to the baseline airfoil (in black). This accords with the physical

intuition for such a case. In this simulation (based off the Euler equations) the best way to decrease drag

and entropy is to weaken the shock strength by lowering the airfoil thickness.

(a) Design Cycle Convergence (b) Airfoil Comparison

Figure 6.3: Design cycle summary for detached bow shock

Figure (6.4) shows the density and Mach number fields; it is apparent that there is a lower flow accel-

eration on the back half of the suction side of the airfoil, this lowers the pressure differential and decreases

the drag.

It is illustrative to compare this adjoint based optimization to one that uses complex-step sensitivities

to drive the optimization. Since this formulation is based off computing the sensitivity of the process –

and the complex-step sensitivities are these sensitivities – it is enlightening to compare the results of the

optimizations using both the complex-step sensitivities (considered to be exact) and the adjoint sensitivities.

This provides an estimate of how much a researcher is penalized by the inaccuracy in the sensitivities by

using the approximation of the derivative of the linear system solve. The bounds refer to the minimum

and maximum values of the amplitudes of the Hicks-Henne bump functions in these optimizations; the wide

bounds are set to −1e−2 and 1e−2 respectively, the narrow bounds are set to −1e−3 and 1e−3 respectively.

Bounds Complex Optimality Adjoint Optimality Complex Objective Adjoint Objective

Narrow Bounds 2.9E-13 2.9E-13 7.7685583E-03 7.7685583E-03
Wide Bounds 2.6E-03 5.4E-03 2.9609739E-03 2.7440594E-03

Table 6.1: Comparison of adjoint and complex-step optimizations for detached bow shock case

Table (6.1) shows very close correspondence between the complex-step and adjoint optimizations; the

Draft of 8:26 pm, Wednesday, November 18, 2020 96

(a) Baseline Design Density (b) Optimized Design Density

(c) Baseline Design Mach Number (d) Optimized Design Mach Number

Figure 6.4: Flow field comparison for baseline and optimized detached bow shock case

difference between them shows the adjoint computed sensitivities returning a better final design. The natural

concern with the narrow bound optimization is that the optimality is only machine zero because all the design

variables are at the bounds; this is not the case. While the first 19 design variables are at the bounds, the

20th design variable (the aft-most one) is not at the bound but has a machine zero gradient; so the optimality

condition is satisfied. This case was also run using a steady state adjoint to provide the sensitivities, and

while the final designs were very similar, the optimizer stagnated for a long period of time before terminating

due to numerical difficulties. This can be attributed to the noise in the sensitivity vector that comes from

the steady state adjoint, even for this case which shows minimal unsteadiness in the solution output. One

caveat to these cases is that all cases were run with a linear tolerance of 1e−5 which is a far more restrictive

tolerance than what is typically required, especially for inexact Newton solvers.

Draft of 8:26 pm, Wednesday, November 18, 2020 97

6.1.1 Investigation of Linear Tolerance on Design Optimization

The next step is examining the results for an optimization as a function of the linear tolerance and

comparing these results to those of an optimization that uses the complex-step finite difference computed

sensitivities.

Tolerance Bounds Complex Optimality Adjoint Optimality Complex Objective Adjoint Objective

1e-2 Narrow 1.7E-12 2.9E-13 7.7685583E-03 7.7685533E-03
1e-3 Narrow 2.9E-12 3.0E-13 7.7685583E-03 7.7685583E-03
1e-4 Narrow 2.9E-13 7.8E-13 7.7685583E-03 7.7685533E-03

Table 6.2: Comparison of adjoint and complex-step optimizations for detached bow shock

Table (6.2) shows that the linear tolerance has little effect on the adjoint sensitivities, as the adjoint

sensitivity based optimizations were very similar to one another regardless of linear tolerance. This is an

encouraging result, that allows further investigation into additional optimization cases with confidence. The

overall behavior indicates that using the pseudo-time accurate adjoint-computed sensitivities is effective

even with a loose linear tolerance, and that use of a partial backwards in time integration to calculate the

sensitivities that drive the optimizer is feasible. The following results will show such optimizations.

6.2 Optimization of Symmetric Airfoil with Trailing Edge Un-

steadiness

This is a case with trailing edge unsteadiness in transonic flow. This case is unsteady because the

geometry is a NACA0012 with a truncated (at 97% of the chord) blunt trailing edge shown in Figure (6.5)

which causes small scale shedding at the trailing edge. This mesh went through 4 refinement cycles (using

the mesh refinement module developed for this work) to get sufficient fineness near the trailing edge and

shock location without expending too much computational expense elsewhere. The case presented in this

section is a NACA0012 airfoil with symmetric design variables in M = 0.8 flow with α = 3o. The objective

function here is a composite objective function of lift and drag averaged over the last 200 iterations:

L =

n∑
i=n−m

ωL(cL − CLT
)2
i + ωD(cD − CDT

)2
i (6.2)

where the targets for lift and drag are denoted by CLT
, and CDT

respectively. The target lift coefficient

is set to .6 which is the objective function value in this baseline simulation and the target drag coefficient

is set to 0. The respective weights are 2.0 for ωL and 1.0 for ωD. This objective function will make the

optimizer try to keep the lift constant while minimizing the drag. The design variables are 20 symmetric

Hick-Henne bump functions with the lower and upper bounds being −1e − 3 and 1e − 3 respectively. The

limiter used here to prevent divergence is the modified VK limiter presented in algorithm (2). Figure (6.6)

Draft of 8:26 pm, Wednesday, November 18, 2020 98

(a) Airfoil Mesh (b) Airfoil Trailing Edge

Figure 6.5: Mesh for NACA0012 truncated at 97% of the chord

shows the nonlinear convergence and that the convergence has stalled and has small scale oscillations with

negligible oscillations in the objective. The linear system from the Newton-Krylov solver is converged 4

orders of magnitude at each nonlinear iteration.

(a) Convergence History (b) Objective History

Figure 6.6: Analysis behavior for NACA0012 truncated at 97% of the chord in transonic flow

Looking at the design cycle summary, it is clear that the design has achieved a large decrease in the

functional even though the optimality condition – which measures the duality gap between a given iterate

and the approximation of the dual problem– is not satisfied to machine precision. Figure (6.7) shows that

the objective function is decreased to 1
6 of the baseline value and the airfoil shows interesting behavior. The

front 60% of the airfoil gets thinner, but the rear 37% gets thicker. It is hypothesized that this helps control

the drag and shock behavior as the increase in thickness in the rear of the airfoil is similar to the behavior

Draft of 8:26 pm, Wednesday, November 18, 2020 99

in the Aerodynamic Design Optimization Discussion Group (ADODG) NACA0012 case [62].

(a) Design Cycle Convergence (b) Airfoil Comparison

Figure 6.7: Design cycle summary for NACA0012 truncated at 97% of the chord in transonic flow

Figure (6.8) shows the density field plots at the final nonlinear iteration and compares the baseline to

the optimized. It is clear the shock has gotten much weaker and moved further back along the airfoil.

(a) Baseline Design (b) Optimized Design

Figure 6.8: Density field comparison for NACA0012 truncated at 97% of the chord in transonic flow

The change in shock strength and location becomes clearer when looking at the Mach field in Figure

(6.9). Although the streamlines and shedding appear to be stronger in the optimized case than the baseline

case, the optimization is based off the last 200 nonlinear iterations, and over that window, the objective

function average is far decreased, as in Figure (6.7).

Draft of 8:26 pm, Wednesday, November 18, 2020 100

(a) Baseline Design (b) Optimized Design

(c) Baseline Trailing Edge with Streamlines (d) Optimized Trailing Edge with Streamlines

Figure 6.9: Final state Mach field comparison for NACA0012 truncated at 97% of the chord in transonic
flow

6.3 Optimization of ADODG NACA0012 Airfoil with Trailing

Edge Unsteadiness

This case has a similar set up to the previous ADODG NACA0012 airfoil [62] again with a trailing

edge unsteadiness in transonic flow. This case begins with a NACA0012 (as in the previous case) with

a truncated (at 95% of the chord rather than 97% as in the previous case) blunt trailing edge shown in

Figure (6.10). This mesh went through 3 refinement cycles (using the same mesh refinement module) to

get sufficient fineness near the trailing edge while minimizing overall computational expense. This airfoil is

optimized with symmetric design variables in M = 0.85 flow with α = 0o flow.

Draft of 8:26 pm, Wednesday, November 18, 2020 101

(a) Airfoil Mesh (b) Airfoil Trailing Edge

Figure 6.10: Mesh for NACA0012 truncated at 95% of the chord

The objective function here is drag averaged over the last 200 iterations:

L =

n∑
i=n−m

cDi
(6.3)

This objective function will make the optimizer try to minimize the drag. On a symmetric structured mesh,

lift would be equal to zero, in an unstructured case this is only the case in the limit of an infinitely fine

mesh. The decision was made to not optimize with a target lift of 0 because that would ask the optimizer

to optimize based off the error. The design variables are 20 symmetric Hick-Henne bump functions with the

lower and upper bounds being −1e− 3 and 1e− 3 respectively. The limiter used here to prevent divergence

is again the modified VK limiter presented in algorithm (2). Figure (6.11) shows that convergence of the

nonlinear problem has ceased as the analysis is stalled in limit cycle oscillations. The linear system from the

Newton-Krylov solver is, as in previous cases, converged 4 orders of magnitude at each nonlinear iteration.

Figure (6.12) shows the design cycle summary and a large decrease in the functional even though the

optimality condition is still not satisfied to machine precision. The objective function is decreased to a value

of 1
10 of the baseline and the airfoil shows interesting behavior. The front 60% of the airfoil gets thinner,

but the rear 35% gets thicker, similar to the previous trailing edge unsteadiness case. It is hypothesized, as

before, that this helps control the drag and shock behavior.

Figure (6.13) shows the density field at the final nonlinear iteration and compares the baseline geometry

to the optimized one, which shows that the shock has again gotten much weaker and moved further back

along the airfoil as in the previous case.

The change in shock strength and location becomes clearer in the Mach field shown in Figure (6.14).

There is little difference in the streamlines and shedding between the optimized case and the baseline case,

and the shock – which is the primary driver of the drag – has nearly disappeared.

Draft of 8:26 pm, Wednesday, November 18, 2020 102

Figure 6.11: Analysis convergence plot for NACA0012 truncated at 95% of the chord in transonic flow

(a) Design Cycle Convergence (b) Airfoil Comparison

Figure 6.12: Design cycle summary for NACA0012 truncated at 95% of the chord in transonic flow

This is clearly an encouraging result, so it is then desirable to compare this to design optimization when

using a steady state adjoint to drive the design both using a final state objective function, and the objective

function averaged over the same window as was used above.

Figure 6.15 shows the comparison between the optimizations using the different adjoint-based sensi-

tivities. The steady state adjoint linearized about the final state has a final objective function that is

approximately twice as high as that of the pseudo-time accurate adjoint or the steady state adjoint with

an averaged objective function. Both steady state adjoint methods have trouble decreasing the optimality

value, and the pseudo-time accurate adjoint has a final optimality value that is smoother and approximately

half an order of magnitude lower than that provided by the design processes driven by the steady state

adjoint-computed gradients. It is also clear that the pseudo-time accurate adjoint converges quicker through

Draft of 8:26 pm, Wednesday, November 18, 2020 103

(a) Baseline Design (b) Optimized Design

Figure 6.13: Density field comparison for NACA0012 truncated at 95% of the chord in transonic flow

the optimization and obtains a lower final value of the objective function. Finally, by inspecting Figure 6.16,

it becomes clear that the final airfoil shapes are quite different, with the difference between the windowed

steady state adjoint case and the pseudo-time accurate adjoint being of particular interest as compared to

the steady state adjoint linearized about the final state. It is clear that the pseudo-time accurate adjoint

finds a thinner optimal design than the windowed steady state adjoint does with generally the same features;

while the steady state adjoint linearized about the final state shows a very different geometry from both of

them.

Draft of 8:26 pm, Wednesday, November 18, 2020 104

(a) Baseline Design (b) Optimized Design

(c) Baseline Trailing Edge with Streamlines (d) Optimized Trailing Edge with Streamlines

Figure 6.14: Mach field comparison for NACA0012 truncated at 95% of the chord in transonic flow

Draft of 8:26 pm, Wednesday, November 18, 2020 105

0 5 10 15
Iterations

0

0.01

0.02

0.03

0.04

0.05

O
b
je

ct
iv

e

PTA Adjoint

Final State Obj

Windowed Obj

Design Optimization History
Objective

(a) Objective Function Convergence (b) Optimality Convergence

Figure 6.15: Design cycle summary for NACA0012 truncated at 95% of the chord in transonic flow with
steady state adjoint results

Figure 6.16: Baseline and optimized airfoils for optimization of NACA0012 airfoil with blunt trailing edge

Draft of 8:26 pm, Wednesday, November 18, 2020 106

6.4 Optimization of Truncated NACA0012 Airfoil in High Angle

of Attack Flow

This case has a similar geometry to the previous case but with asymmetric design variables in M = 0.7

flow with α = 6o. The assumption is that due to the angled flow strong asymmetries in the final design would

develop. The objective function here is a composite objective function with lift and drag targets averaged

over the last 200 iterations:

L =

n∑
i=n−m

ωL(cL − CLT
)2
i + ωD(cD − CDT

)2
i (6.4)

where the targets for lift and drag are denoted by CLT
, and CDT

respectively as previously. The design

variables are 30 Hick-Henne bump functions equally spaced along the upper and lower surfaces with the lower

and upper bounds being −2.5e− 3 and 2.5e− 3 respectively.This case has some very interesting convergence

behavior that is worth noting before proceeding to look at the optimization results. Figure 6.17 shows that

while the baseline geometry has good convergence properties, once the baseline is perturbed the unsteadiness

forms at the trailing edge of the geometry and this hampers the optimization process for the steady state

adjoint.

(a) Baseline Nonlinear Convergence (b) Second Design Cycle Nonlinear Convergence

Figure 6.17: Analysis convergence plot for NACA0012 truncated at 95% of the chord in transonic flow with
high angle of attack

Figure (6.18) shows the design cycle summary with a large decrease in the functional even though the

optimality condition is still not satisfied to machine precision. The objective function gets decreased to a

value of 1
3 its baseline value and the airfoil shows interesting behavior. The bottom of the optimized airfoil

(in red) is made thicker than the baseline (in black) while the top is made thicker in the mid section and

thinner both fore and aft. It is hypothesized, as before, that this helps control the drag and shock behavior.

Figure (6.19) shows the density field at the final nonlinear iteration and compares the baseline shape to the

Draft of 8:26 pm, Wednesday, November 18, 2020 107

optimized one. It is clear that the shock has gotten much weaker and moved further back along the airfoil as

in the previous cases, and the airfoil has gotten highly asymmetric in order to deal with the flow conditions

of this case. The change in shock strength and location becomes clearer in the Mach field in Figure (6.20).

There is little difference in the streamlines and shedding between the optimized case and the baseline case,

and the shock – which is the primary driver of the drag – has nearly disappeared.

(a) Design Cycle Convergence (b) Airfoil Comparison

Figure 6.18: Design cycle summary for NACA0012 truncated at 95% of the chord in transonic flow with
high angle of attack

(a) Baseline Design (b) Optimized Design

Figure 6.19: Density field comparison for NACA0012 truncated at 95% of the chord in transonic flow with
high angle of attack

As before this is compared to design optimization when using steady state adjoint-computed sensitiv-

ities to drive the design both using a final state objective function, and the objective function averaged

over the same window as was used to drive the pseudo-time accurate adjoint. Figure 6.21 shows the com-

Draft of 8:26 pm, Wednesday, November 18, 2020 108

(a) Baseline Design (b) Optimized Design

(c) Baseline Trailing Edge with Streamlines (d) Optimized Trailing Edge with Streamlines

Figure 6.20: Mach field comparison for NACA0012 truncated at 95% of the chord in transonic flow with
high angle of attack

parison between the optimizations based off the different adjoint-based sensitivities. Both optimizations

using sensitivities computed from the steady state adjoint do not succeed in meaningfully optimizing the

airfoil, with the optimization driven by the steady state adjoint using the averaged objective function doing

only negligibly better. Both steady adjoint methods have trouble decreasing the optimality value, and the

pseudo-time accurate adjoint has a final optimality value that is smoother and approximately one and a half

orders of magnitude lower than that provided by the optimizations driven by the sensitivities computed by

the steady state adjoints. It is also clear that the pseudo-time accurate adjoint converges quicker through

the optimization and obtains a notably lower final value of the objective function. Finally, by inspecting

Figure 6.22, it becomes clear that the steady state adjoint shapes are nearly identical to the baseline with

Draft of 8:26 pm, Wednesday, November 18, 2020 109

the pseudo-time accurate adjoint finding a thicker final design than the baseline.

(a) Objective Function Convergence (b) Optimality Convergence

Figure 6.21: Design cycle summary for NACA0012 truncated at 95% of the chord in transonic flow with
high angle attack: comparison to steady state adjoint results

Figure 6.22: Baseline and optimized airfoils for high angle of attack optimization

6.5 Summary

This chapter presented design optimizations driven by the pseudo-time accurate adjoint-computed sensi-

tivities and a study of the effect of different linear tolerances and a comparison to design cycles driven by the

steady state adjoint-computed sensitivities. The first case presents the optimization of a NACA0012 airfoil

Draft of 8:26 pm, Wednesday, November 18, 2020 110

in supersonic flow with a detached bow shock. First, it is shown that for a case with minimal unsteadiness

that this case can satisfy the optimality condition of the optimizer. The second case shows a NACA0012

airfoil in transonic flow with a blunt trailing edge that was created by truncating the airfoil at 97% of the

chord. This case shows some small scale unsteadiness, and the optimization driven by the pseudo-time accu-

rate adjoint-computed sensitivities succeeds in meaningfully decreasing the objective function. The final two

cases use a similar geometry but for a NACA0012 airfoil truncated at 95% of the chord. The first of the two

cases is in transonic flow with no angle of incidence, similar to the ADODG benchmark case [62]. This shows

significant success for the optimization driven by the pseudo-time accurate adjoint-computed sensitivities

which succeeds in meaningfully decreasing the objective function. When compared to the designs based

off the steady state adjoint-computed sensitivities it shows meaningfully improved behavior and achieves a

noticeably geometrically different design. The final case is the same geometry in slower transonic flow with

a high angle of attack, and while the baseline nonlinear problem converges to machine zero, the nonlinear

problems on the perturbed airfoils do not and instead enter limit cycle oscillations. Both optimizations driven

by the steady state adjoint fail to noticeably decrease the objective function, while the one driven by the

pseudo-time accurate adjoint-computed sensitivities obtains a significant reduction in the objective function.

This chapter shows that the pseudo-time accurate adjoint can outperform the steady state adjoint in design

optimization contexts, especially in the presence of small scale unsteadiness, which is the type of case this

method was designed for. Improvements could be made to the optimization capabilities through employing

the windowing regularization techniques that have worked so well in design in Unsteady Reynold Averaged

Navier-Stokes (URANS) flows [63]. This could allow for quicker convergence of the objective function and

better behavior of the sensitivities for a smaller averaging window as the sensitivity of the averaged objective

function is not guaranteed to converge with a longer averaging window, unlike the windowing techniques

applied in such cases.

Chapter 7

Pseudo-time Accurate Approaches to

Error Estimation and Adaptive Mesh

Refinement

This chapter seeks to adapt the pseudo-time accurate adjoint approach from optimization to the field

of error estimation. To that end, it begins with an explanation of the dual-weighted residual method used in

steady-state problems and three commonly used algorithms in that context and then shows the derivation of

their analogues in the PTA adjoint context. These derivations are shown only for the inexact-quasi-Newton

nonlinear solver using the inverse identity approximation for the adjoint linearization with an analogue

for each of the three algorithms shown in the steady state context. Each nonlinear solver would have its

own analogue for each of the three algorithms presented in the steady state section. Finally this section

contains results for these methods for two different flow conditions demonstrating small-scale and large-scale

unsteadiness respectively.

7.1 A Review of the Dual-Weighted Residual

A straightforward approach to error estimation would be to get an estimate of the fine mesh solution

(uh) using the coarse mesh solution (uH), and calculate error based of the error in the solution. However,

for engineering purposes, the practitioner’s interest lies not in the actual values of the solution but instead

in the values of the outputs of engineering interest (lift, drag, moment, etc.). To this purpose the dual

weighted residual method was developed as it provides estimates of error in the output of interest and allows

for automatic error control of simulations [6].

The method begins by approximating the output of interest (Lh) evaluated on the fine (embedded)

111

Draft of 8:26 pm, Wednesday, November 18, 2020 112

mesh (h) using the fine mesh solution (uh) and performing a Taylor series expansion about it to calculate

the output of interest based off the solution on the coarse (working) mesh (H) interpolated onto the fine

mesh (ũh).

Lh(uh) ≈ Lh(ũh) +
∂Lh(ũh)

∂uh
(uh − ũh) (7.1)

This would indicate that to get a good estimate of the fine mesh output of interest it is necessary to solve both

the fine and coarse mesh problems, and take the difference between the coarse mesh solution prolongated

onto the fine mesh and the fine mesh solution to multiply the derivative of the output of interest. This of

course defeats the purpose of mesh refinement as it would require solution of the nonlinear problem on the

more expensive embedded mesh. Instead a Taylor series expansion about the fine grid is used to move from

the coarse grid onto the fine grid, which will have a nonzero residual for the coarse grid state interpolated

onto the fine grid.

Rh(uh) = 0 ≈ Rh(ũh) +
∂Rh(ũh)

∂uh
(uh − ũh) (7.2)

Combining the two equations returns the following.

Lh(uh) ≈ Lh(ũh) +
∂Lh(ũh)

∂uh

[
∂Rh(ũh)

∂uh

]−1

Rh(ũh) (7.3)

Defining the adjoint on the embedded mesh, ψh, as:[
∂Rh(ũh)

∂uh

]T
ψh =

∂Jh(ũh)

∂uh
(7.4)

and substituting in ψh returns the below.

Lh(uh) ≈ Lh(ũh) + ψThRh(ũh) (7.5)

This requires an adjoint solve on the embedded mesh, which is not desirable due to the expense. To avoid

computing the adjoint on the embedded mesh, the coarse mesh adjoint in reconstructed onto the embedded

mesh using the same combined bilinear and biquadratic approximation used to reconstruct the conservative

variables from the coarse mesh onto the fine mesh.

The first step is computing a bilinear approximation in each cell where f is the value of the variable of

interest in this reconstruction – in this work this is one of the conservative or adjoint variables.

f = c0 + c1x+ c2y + c3xy (7.6)

This is done by looping over the cells and reconstructing the conservative variables to each of the nodes

and averaging the reconstructed conservative variable and gradient values at each node from the cells that it

forms. Each cell then sets up an overconstrained linear least squares problem for each individual conservative

variable. Having averaged the variable values and gradients to compute values at each node of the mesh,

the values and gradients at each of the three nodes of the triangle are used to create a system with nine

constraints (f, fx, fy at each of the three nodes) and, as can be seen in the approximation above, only four

Draft of 8:26 pm, Wednesday, November 18, 2020 113

unknowns (c0, c1, c2, c3). These bilinear approximations are then used to populate the elements of the right

hand side corresponding to the conservative variables for the restricted biquadratic approximation.

f = c0 + c1x+ c2y + c3xy + c4x
2 + c5y

2 + c6x
2y + c7xy

2 (7.7)

This biquadratic approximation neglects the double quadratic term as it has been shown to add undesired

oscillations into the solution and would also provide the ninth unknown which would entail no longer being

an overconstrained system. The biquadratic approximation is then used to evaluate the conservative variable

values in each of the child cells for the embedded mesh. The two predominant error estimates are the classical

dual weighted residual and the dual weighted residual with computable correction. For the first method,

the error due to the spatial discretization is written as follows, where the biquadratic interpolation of the

adjoint is used as a proxy for the adjoint on the fine mesh.

ηH = |(ψ̃h)TRh(ũh)| (7.8)

A parent element error estimate vector can be calculated by looping over all the child elements of the

larger parent cell as follows.

ηH = |
∑

j∈Vparent

ψTBQRh(ũh)j | (7.9)

The second technique is the dual weighted residual with computable correction method. To compute

an adjoint-based computable correction it is necessary to split the adjoint into two terms. The approximate

adjoint, which multiplies the residual and provides the computable correction in the objective and the error

in the adjoint which will be dotted with the residual to obtain the error estimate.

Lh(uh) ≈ Lh(ũh)− (ψ̃h)TRh(ũh)− (ψh − ψ̃h)TRh(ũh) (7.10)

The first term is the adjoint correction to the functional, and the second is the remaining error which is

used to drive the mesh adaptation. In practice, again rather than computing the embedded mesh adjoint, a

biquadratic interpolation of the adjoint is used, and a bilinear interpolation is used for for the prolongated

coarse mesh adjoint (the approximate adjoint). Furthermore, the biquadratic interpolation (which is an

estimate of ψh) is used for the adjoint correction even though the adjoint correction term actually asks for

ψ̃h.

Lh(uh) ≈ Lh(ũh)− (ψBQ)TRh(ũh)− (ψBQ − ψBL)TRh(ũh) (7.11)

Others have dealt with the issue of solving the adjoint on the fine mesh by solving the adjoint on the coarse

mesh, and then using that as an initial guess for the linear solver of the fine mesh adjoint problem, they

then run a few smoothing passes to get a better approximation of the fine mesh adjoint at a low cost.

Draft of 8:26 pm, Wednesday, November 18, 2020 114

Implementation is achieved using the coarse adjoint prolongated onto the fine mesh as the approximate

adjoint and the smoothed adjoint on the fine mesh is used as the the exact adjoint [30].

7.1.1 Virtual Mesh Method

The virtual mesh method allows for an error estimate and refinement without needing to actually create

the embedded mesh. The virtual mesh uses differing order reconstructions of the conservative variables to

produce estimates of the conservative variable and gradient values at the centroids of the virtual child cells

and then uses those values to compute the residual lifted back to the coarse mesh.

The first step is computing a bilinear approximation of the conservative variables in each cell using the

node aggregation and interpolation step shown previously. The biquadratic approximation is then used to

evaluate the conservative variable values and gradients at each of the 3 exterior virtual children of the cell

in question. These values and gradients are then used to reconstruct to the cell edge, and the flux across the

child face (half of the original face) is computed.

Figure 7.1: Virtual Mesh Residual Diagram

As can be seen in Figure 7.1, no fluxes are computed across the interior edges into the central child

element of the virtual mesh as these fluxes will cancel out when they are lifted to the parent mesh. The

exterior edge fluxes will be added to the residual vector of the parent mesh and this vector will then multiply

the coarse mesh adjoint vector (this treats the coarse mesh adjoint as the fine mesh adjoint) to obtain a

cell-wise error estimate. If one instead uses the biquadratic approximate to extrapolate to the edges, this

could be viewed as calculating the fine mesh residual with a third order finite volume method with a non-

k-exact least-squares reconstruction and without curved geometry and then weighting that higher accuracy

residual with the coarse mesh adjoint. The virtual mesh method is only used for the error estimation without

functional correction. The cellwise error estimate is expressed below:

ηH = |(ψH)TRhH(ũh)| (7.12)

where ψH is the coarse mesh adjoint, RhH is the fine mesh residual lifted back to the coarse mesh through

use of the virtual mesh subroutines, and ũh is the coarse mesh conservative variables interpolated onto the

Draft of 8:26 pm, Wednesday, November 18, 2020 115

virtual fine mesh using the interpolation routines previously outlined.

7.2 Mesh Refinement

For uniform mesh refinement, which is used in the embedded mesh error estimation subroutine, the

driver simply marks all cells for a 4:1 refinement and all edges for a 2:1 refinement. It stores the parent

child maps for the cells and uses those for the interpolations and computations required for the adjoint based

error estimation. The residual is calculated on the fine mesh, and the adjoint is interpolated appropriately

to form an error estimate.

For adaptive mesh refinement, the driver (as shown in algorithm 9) is more complex as the refinement

is not uniform. The mesh refinement begins by ordering the elements by the magnitude of their respective

error estimates. The driver then creates a mask marking all cells in the top xx% (a user defined value)

for a 4:1 refinement that subdivides the triangular element into 4 similar elements –this is referred to as a

fixed fraction approach to refinement. The algorithm then enters a loop where it calls a subroutine (shown

in algorithm 10) which in turn passes over the edges marking and edge for refinement if it belongs to an

element that will be refined 4:1. It will also mark all cells with a single neighbor marked for 4:1 refinement

for a 2:1 refinement, and all cells with two or three neighbors marked for 4:1 refinement are marked for 4:1

refinement themselves. This subroutine is repeated until the algorithm ceases to tag new cells and edges for

refinement.

The driver then passes over the edges and refines the edges appropriately; then the driver passes over

the cells refining according to the tags calculated early on in the driver. This algorithm creates a mesh

without hanging nodes. After refining the cells and creating the new interior edges to refine the mesh, the

driver then recreates the cell-edge maps necessary for interpolation and residual computation on the refined

mesh. For adaptively refined meshes the interpolation is used to create restart files. The driver then calls a

boundary curvature correction based off a geometry parameterization.

Finally, for an adaptively refined mesh (the typical output of the AMR), the driver then loops over

the edges performing incircle predicates [64], and edge swapping if the two triangles it forms are not the

Delaunay triangulation, until every triangle in the mesh passes the incircle predicate test and the mesh is

Delaunay. This step can fail on meshes created by halving the quads from a Cartesian mesh, in which case

a non-swapped mesh is outputted.

The refinement module shown in this work, due to its hierarchical nature and inability to coarsen and

redistribute mesh points, is poorly suited for the refinement required in the cases presented in this work. As

such, the refinement module is used for uniform refinement in the error estimation algorithm to provide an

elementwise error estimate. This is then paired with the Refine code developed at NASA Langley [28] to

produce adaptively refined meshes through the refinement process. The Refine code uses a multiscale-metric

Draft of 8:26 pm, Wednesday, November 18, 2020 116

based refinement criteria where the metric at each node is defined by the error and the anisotropy of the mesh

is determined through the gradient of the Mach number. The metric (Me) at each node is area averaged

from the cells it comprises and it expressed as:

Me =

(
1

ηgηk

)ω
(7.13)

where ω is an under-relaxation parameter, and ηg and ηk are global and local error ratios. ηg is the integrated

error in the mesh divided by the median error multiplied by the number of cells in the mesh. ηk is the cellwise

ratio between the error in that cell and the median error in the mesh. This corresponds to targeting an error

value in each subsequent mesh that is based off the median error in the previous mesh [65].

Algorithm 9 Adaptive Mesh Refinement Driver

1: procedure Mesh Refinement
2: Sort cells by error estimate
3: Mark all cells in the top xx% with a 1 in mask, all others get 0
4: Tag edges and cells for refinement
5: Refine Edges
6: Refine cells according to their tag
7: Update edgelist
8: Compute correction to surface nodes based of CST parameterization
9: Compute mesh deformation due to surface perturbation

10: Delaunay swap till mesh is delaunay

Algorithm 10 Tag Cells and Edges for Mesh Refinement

1: procedure Tag Cells
2: tags = 0 and nprop = 0
3: repeat
4: for edgenum = 1, ..., nEdges do
5: if Mask(lefttri) = 1 .AND. Mask(righttri) = 0 then
6: Refine edge and tag(righttri) + +
7: else if Mask(righttri) = 1 .AND.Mask(lefttri) = 0 then
8: Refine edge and tag(lefttri) + +
9: else if Mask(lefttri) = 1 .AND. Mask(righttri) = 1 then

10: Refine edge

11: for cellnum = 1, ..., nCells do
12: if tags(cellnum) = 2 .OR. (tags(cellnum) = 3 .AND. mask(cellnum) = 0) then
13: mask(cellnum) = 1 .AND. nprop+ +

14: until nProp = 0

7.2.1 CST Parameterization and Boundary Curvature Correction

The Class-Shape function Transformation (CST), introduced by Brenda Kulfan [66] is commonly used

for aerodynamic shape optimization due to the smooth control of design points, and is instead used here to

parameterize the airfoil and provide surface node curvature corrections. The class function portion of the

Draft of 8:26 pm, Wednesday, November 18, 2020 117

parameterization is written as:

C = ψN1(1− ψ)N2 (7.14)

where ψ = x
ch is the normalized x coordinate of the surface being parameterized, where ch is the chord

length and the numbers N1, N2 are chosen by the user. The paper by Kulfan showed that the values of .5

and 1.0 work well for airfoils as they allow the shape function at the leading and trailing edges to correspond

to design criteria. The shape function is written as such:

S =

n∑
i=0

Ki,nAnψ
i(1− ψ)n−i (7.15)

where the An coefficients are the design variables. The shape functions when combined with the class

functions return S(0, A) = A0 =
√

2Rle

ch and S(1, A) = An = tanβ + ∆zte
ch where Rle is the leading edge

radius, β is the trailing edge boat tail angle and ∆te

ch is the trailing edge thickness. The y value at any

particular x-coordinate is given by:

ycst(ψ,A) = C(ψ)S(ψ,A) + ψ
∆zte
c

(7.16)

This allows the generation of an overconstrained least squares system that has one more unknown

than the desired CST order (because of the trailing edge thickness unknown), and as many constraints

as airfoil boundary nodes. For this system, the right hand side is the coarse airfoil surface coordinates,

the unknowns are the CST An coefficients and the trailing edge thickness, and the matrix consists of the

Bernstein polynomials multiplied by the class function evaluated at the normalized x-coordinate variables.

This least squares system is solved and used to compute the locations of the new nodes created on the surface

of the airfoil geometry. First, the new coordinate CST value is computed, this is done by looping over the

subdivided edges on the coarse mesh, finding the normalized x-coordinate of the new node and calculating

the CST value for that normalized x-coordinate on that given surface. The correction involves subtracting

from that value the value given by linearly interpolating between the CST values of the two nodes on the

coarse mesh that make the subdivided edge that created the node. Finally these corrections are fed into

the mesh deformation scheme which moves the interior nodes due to the perturbations of the new nodes;

this is done to prevent negative areas and increase mesh quality. This implementation will show a greater

correction where the curvature is high (oftentimes near the leading edge) and almost no correction where the

curvature is low (often near the trailing edge). Figure 7.2 shows a comparison of the initial mesh in red and

a uniformly refined mesh with curvature correction in blue. It shows the high curvature at the leading edge,

combined with the curvature correction and mesh motion, moves the points enough that the hierarchical

nature of the mesh is not clear at first glance for elements near the airfoil. For elements further away from

the geometry, the difference is negligible. Figure 7.3 shows the same comparison but away from the location

of max curvature; it shows that this curvature correction affects primarily the new child cells that share the

new node created by the subdivision of the edge on the geometry. Finally, Figure 7.4 shows almost no change

Draft of 8:26 pm, Wednesday, November 18, 2020 118

due to the correction as these nodes are located near the area of minimum curvature (near the trailing edge)

and the hierarchical nature of the mesh is readily clear.

Figure 7.2: Curvature along a NACA0012 leading edge: contrast between initial mesh (red) and refined
mesh with curvature correction(blue)

Figure 7.3: Curvature along a NACA0012 intermediate curvature: contrast between initial mesh (red) and
refined mesh with curvature correction(blue)

Draft of 8:26 pm, Wednesday, November 18, 2020 119

Figure 7.4: Curvature along a NACA0012 trailing edge: contrast between initial mesh (red) and refined
mesh with curvature correction(blue)

7.3 Development of the Pseudo-Time Accurate Dual-Weighted

Constraint

As stated before, the pseudo-time accurate adjoint method is drawn from the derivation of the unsteady

adjoint; the algorithm works backwards through pseudo-time to get the pseudo-time accurate adjoint so-

lution. This formulation seeks to find an estimate of how much of the error in the quantity of interest is

due to the spatial discretization for these unconverged and oscillatory flows. In this derivation the output

of interest is a pseudo-time averaged functional, averaged over the last m steps for a simulation that runs

through n pseudo-time steps. This gives an output of interest L as:

L = L(unh, u
n−1
h , ..., un−mh) (7.17)

where unh is the conservative variable vector at the final time step n on the fine mesh. A Taylor series

expansion about the fine mesh objective is then performed, where ũkh is the coarse (working) mesh (H)

solution at iteration k interpolated onto the embedded mesh:

L = L(unh, u
n−1
h , ..., un−mh) ≈ L(ũnh, ũ

n−1
h , ..., ũn−mh) +

∂L

∂ũnh
(unh − ũnh)

+
∂L

∂ũn−1
h

(un−1
h − ũn−1

h)

+ ...

+
∂L

∂ũn−mh

(un−mh − ũn−mh)

(7.18)

Unlike the typical adjoint and dual weighted residual method where the constraint that the residual is

Draft of 8:26 pm, Wednesday, November 18, 2020 120

zero is used, here this is impossible as this is not true at each pseudo-time step. Instead, a constraint is

selected based on the pseudo-time evolution of the solution, for which, the kth constraint will be referred to

as Gk. Because of the algorithm implementation it is clear that the constraint is dependent only on the old

time-step and the new time-step, expressed as follows.

Gk = Gk(uk, uk−1) = 0 (7.19)

Linearizing about the states gives:

Gk(ukh, u
k−1
h) = 0 ≈ Gk(ũkh, ũ

k−1
h) +

∂Gk

∂ũkh
(ukh − ũkh) +

∂Gk−1

∂ũk−1
h

(uk−1
h − ũk−1

h) (7.20)

by isolating for the error in the conservative variable reconstruction the below equation is obtained.

(uk−1
h − ũk−1

h) = −

[
∂Gk−1

∂ũk−1
h

]−1 [
Gk(ũkh, ũ

k−1
h) +

∂Gk

∂ũkh
(ukh − ũkh)

]
(7.21)

Substituting in the error in the conservative variables returns the below expression.

L(unh, u
n−1
h , ..., un−mh) = L(ũnh, ũ

n−1
h , ..., ũn−mh)

−
(
∂L

∂u

)
ũn
h

[
∂Gn

∂unh

]−1

un
h

[
G(ũnh, ũ

n−1
h) +

(
∂Gn

∂un−1
h

)
un−1
h

(un−1
h − ũn−1

h)

]

+

(
∂L

∂u

)
ũn−1
h

(un−1
h − ũn−1

h)

+ ...

+

(
∂L

∂u

)
ũn−m
h

(un−mh − ũn−mh)

(7.22)

Defining the equation for the final state adjoint, as in equation 3.53, returns the equation below:

ΛnT = −
(
∂L

∂u

)
ũn
h

[
∂Gn

∂unh

]−1

un
h

(7.23)

it is then necessary to substitute and separate terms to get the following expression.

L(unh, u
n−1
h , ..., un−mh) = L(ũnh, ũ

n−1
h , ..., ũn−mh)

+ ΛnT
[
G(ũnh, ũ

n−1
h)

]
+

[(
∂L

∂u

)
ũn−1
h

+ ΛnT
(
∂Gn

∂un−1
h

)
un−1
h

]
(un−1
h − ũn−1

h)

+ ...

+

(
∂L

∂u

)
ũn−m
h

(un−mh − ũn−mh)

(7.24)

Looking at the above equation, it is necessary to define the following adjoint equation, similar to the

recurrence relation in equation 3.44.

Λn−1T = −

[(
∂L

∂u

)
ũn−1
h

+ ΛnT
(
∂Gn

∂un−1
h

)
un−1
h

] [
∂Gn−1

∂un−1
h

]−1

un−1
h

(7.25)

Draft of 8:26 pm, Wednesday, November 18, 2020 121

Substituting in 7.25 to 7.24 returns the expression below.

L(unh, u
n−1
h , ..., un−mh) = L(ũnh, ũ

n−1
h , ..., ũn−mh)

+ ΛnT
[
G(ũnh, ũ

n−1
h)

]
+ Λn−1T

[
G(ũn−1

h , ũn−2
h)

]
+

[(
∂L

∂u

)
ũn−2
h

+ Λn−1T

(
∂Gn−1

∂un−2
h

)
un−2
h

]
(un−2
h − ũn−2

h)

+ ...

+

(
∂L

∂u

)
ũn−m
h

(un−mh − ũn−mh)

(7.26)

Working this recurrence relation m times back in pseudo-time out through the averaging window returns:

L(unh, u
n−1
h , ..., un−mh) = L(ũnh, ũ

n−1
h , ..., ũn−mh)

+ ΛnT
[
G(ũnh, ũ

n−1
h)

]
+ Λn−1T

[
G(ũn−1

h , ũn−2
h)

]
+ Λn−2T

[
G(ũn−2

h , ũn−3
h)

]
+ ...

+ Λn−mT
[
G(ũn−mh , ũ

n−(m+1)
h)

]
+ Λn−mT

(
∂Gn−m

∂u
n−(m+1)
h

)
(u
n−(m+1)
h − ũn−(m+1)

h)

(7.27)

When the backwards-in-pseudo-time integration exits the averaging window the recurrence relation loses the

source term from the linearization of the output of interest and simplifies to the below equation.

Λk−1T = −

ΛkT

(
∂Gk

∂uk−1
h

)
uk−1
h

[∂Gk−1

∂uk−1
h

]−1

uk−1
h

(7.28)

This returns a final expression for the averaged output of interest on the fine mesh as shown below.

L(unh, u
n−1
h , ..., un−mh) = L(ũnh, ũ

n−1
h , ..., ũn−mh)

+ ΛnT
[
G(ũnh, ũ

n−1
h)

]
+ Λn−1T

[
G(ũn−1

h , ũn−2
h)

]
+ ...

+ Λ1T
[
G(ũ1

h, ũ
0
h)
]

+ Λ1T

[
∂G1

∂u0
h

] (
u0
h − ũ0

h

)
(7.29)

Draft of 8:26 pm, Wednesday, November 18, 2020 122

Grouping the output of interest terms returns:

∆L(ũnh, ũ
n−1
h , ..., ũn−mh) ≈ ΛnT

[
G(ũnh, ũ

n−1
h)

]
+ Λn−1T

[
G(ũn−1

h , ũn−2
h)

]
+ ...

+ Λ1T
[
G(ũ1

h, ũ
0
h)
]

+ Λ1T

[
∂G1

∂u0
h

] (
u0
h − ũ0

h

)
(7.30)

This could be viewed as the error in the output of interest due to the spatial discretization for an

unconverged fixed point iteration with a correction included to compute the impact of the initial condition

on the fixed point. For a uniform flow there is no correction introduced from the initial condition, but for

a restart file the error in the solution reconstruction would lead to a nonzero value due to the nonuniform

initial flow. In an AMR case, this could theoretically allow for calculating the error introduced by a mesh

adaptation cycle, and then going all the way back through the adaptation chain back to the first mesh and

freestream flow. While this may be theoretically possible, this is untenable in practice. This does however

open up the door to only integrating partially back in iteration-space as was done in chapter 6 for sensitivities

in design cases. This error could be modeled through the subtraction of the bilinear reconstruction from the

biquadratic reconstruction and this could perhaps be sufficient as an correction to the error estimate.

7.3.1 Error Estimation for Newton’s Method

For this section the analogues of the error estimation methods shown in the steady-state section are

shown for Newton’s method using the approximate adjoint linearization with the inverse identity. To begin,

it is necessary to refer once again to equation (3.10):

uk = uk−1 − [Pk−1]
−1
R (7.31)

Taking the derivative of the shifted fixed-point iteration at each pseudo-time-step with respect to both states

returns the equation below.

∂Gk

∂ukh
= I

∂Gk

∂uk−1
h

= −I + [Pk−1]
−1

[
∂R(uk−1

h)

∂uk−1
h

]
2

+
∂ [Pk−1]

−1

∂uk−1
h

R(uk−1
h)

(7.32)

This work once again uses the differentiation of a matrix inverse first shown in equation 3.16 and reproduced

here.

d [K]
−1

dx
= − [K]

−1

[
dK

dx

]
[K]
−1

(7.33)

Draft of 8:26 pm, Wednesday, November 18, 2020 123

The derivative of the constraint term substituting in equation (7.33) is shown below.

∂Gk

∂ukh
= I

∂Gk

∂uk−1
h

= −I + [Pk−1]
−1

[
∂R(uk−1

h)

∂uk−1
h

]
2

− [Pk−1]
−1 ∂ [Pk−1]

∂uk−1
h

[Pk−1]
−1
R(uk−1

h)

(7.34)

Using the definition of the nonlinear solver increment, the above equation can be simplified as follows:

∂Gk

∂ukh
= I

∂Gk

∂uk−1
h

= −I + [Pk−1]
−1

[[
∂R(uk−1

h)

∂uk−1
h

]
2

− ∂ [Pk−1]

∂uk−1
h

∆uh

] (7.35)

As before these Hessian vector products can be computed using complex Frechét derivatives, rather than

hand differentiating the residual operator twice to obtain the Hessian operator. Using the equation for the

adjoint at the final pseudo-time step with the constraint derivatives returns the identity below.

[I] Λnh = −
[
∂L

∂unh

]T
(7.36)

Substituting in the constraint derivatives from equation (7.35) into equation (5.1) returns:

[I] Λk−1 = −

[
−I + [Pk−1]

−1

[[
∂R(uk−1

h)

∂uk−1
h

]
2

− ∂ [Pk−1]

∂uk−1
h

∆uh

]]T
Λkh (7.37)

This recurrence relation can be rewritten in delta form as below.

∆Λh = −

[
[Pk−1]

−1

[[
∂R(uk−1

h)

∂uk−1
h

]
2

− ∂ [Pk−1]

∂uk−1
h

∆uh

]]T
Λkh (7.38)

Distributing the transpose returns:

∆Λh = −

[[
∂R(uk−1

h)

∂uk−1
h

]
2

− ∂ [Pk−1]

∂uk−1
h

∆uh

]T
[Pk−1]

−T
Λkh (7.39)

which motivates the definition of a secondary adjoint variable for each recurrence relation.

[Pk−1]
T
ψkh = Λkh (7.40)

It is possible to rewrite again into the delta form of the adjoint recurrence relation as follows.

∆Λ = −

[[
∂R(uk−1

h)

∂uk−1
h

]
2

− ∂ [Pk−1]

∂uk−1
h

∆uh

]T
ψkh (7.41)

It is important to note that, as noted previously, exact dual correspondence here between the adjoint solver

and the forward one is not required. Additionally, all these operations are on the embedded mesh, which

makes this adjoint tremendously expensive, as it requires nearly the expense of a nonlinear solve on the

Draft of 8:26 pm, Wednesday, November 18, 2020 124

much finer embedded mesh. To make this more tractable, in this work the adjoint is calculated on the coarse

mesh, and then uses the same interpolants as in the steady state adjoint error estimate to get an estimate of

the adjoint on the embedded mesh. This means that convergence of the adjoint problem is guaranteed if the

dual solver of the analysis linear solver is used at each iteration. While this does make the process cheaper,

it is still necessary to interpolate the coarse mesh solution onto the fine mesh and compute the constraints on

the fine mesh, which is a nontrivial expense. Hence the interest in using the flow reconstruction correction

mentioned previously. The error equation can then be rendered as:

L = L(unh, u
n−1
h , ..., un−mh)− L(ũnh, ũ

n−1
h , ..., ũn−mh) ≈ −εc − εa (7.42)

where εc (or the functional correction) is calculated similarly to the method in the steady state adjoint and

is shown below.

εc = ΛnBQ
TGn(ũnh, ũ

n−1
h)

+ Λn−1
BQ

T
Gn−1(ũn−1

h , ũn−2
h)

+ ...

+ Λ1
BQ

T
G1(ũ1

h, ũ
0
h)

+ Λ1
BQ

T
[
∂G1

∂ũ0
h

]
(u0
BQ − u0

BL)

(7.43)

εa (or the remaining error) is calculated again using the adjoint error correction similar to in the steady state

adjoint:

εa = (ΛnBQ − ΛnBL)TGn(ũnh, ũ
n−1
h)

+ (Λn−1
BQ − Λn−1

BL)TGn−1(ũn−1
h , ũn−2

h)

+ ...

+ (Λ1
BQ − Λ1

BL)TG1(ũ1
h, ũ

0
h)

+ (Λ1
BQ − Λ1

BL)T
[
∂G1

∂ũ0
h

]
(u0
BQ − u0

BL)

(7.44)

The flow reconstruction correction at iteration k, given by (ΛkBQ − ΛkBL)T
[
∂Gk

∂ũk−1
h

]
(uk−1
BQ − u

k−1
BL) is imple-

mented by differentiating the fixed point iteration on the fine mesh.

∂Gkh
∂uh

=

[
−I + [Pk−1]

−1
h

∂Pk−1

∂uk−1
h

[Pk−1]
−1
h Rh(ũk−1

h)− [Pk−1]
−1
h

∂Rh
∂uk−1

]
(7.45)

7.3.1.1 Error Estimation on Virtual Mesh

For the virtual mesh method, the fine mesh fixed point iteration is done through using the residual

evaluations on the virtual fine mesh as shown in 7.1.1, with the coarse mesh preconditioner matrix. This is

expressed mathematically as:

Gk(uk, uk−1)hH = ukH − uk−1
H − [Pk−1]H R(uk−1

h)hH (7.46)

Draft of 8:26 pm, Wednesday, November 18, 2020 125

where R(ũ
(k−1)
h)hH is the fine mesh residual calculated on the virtual mesh from the interpolated flow solution

ũk−1
h and lifted back to the coarse mesh. A parallel ∆uhH is defined that corresponds to the fine mesh ∆u

lifted back to the coarse mesh, and the error estimation derivation proceeds.

∆uhH = − [Pk−1]H R(ũk−1
h)hH (7.47)

Alternatively, the preconditioner matrix used could also be the fine mesh preconditioner matrix lifted

back to the coarse mesh, in which case the fine mesh fixed point iteration becomes:

Gk(uk, uk−1)h = ukH − uk−1
H − [Pk−1]

h
H R(uk−1

h)hH (7.48)

where [Pk−1]
h
H uses the gradient reconstructed values to the face on the virtual fine mesh to form the

preconditioner on the coarse mesh. In such a case the lifted ∆u becomes:

∆uhH = − [Pk−1]
h
H R(ũk−1

h)hH (7.49)

While this method showed promise it did not meaningfully affect the results and so the cheaper method that

uses the virtual mesh for the fine mesh residual evaluation only was used. The computation of the adjoint

is unaffected, but the computation of the error becomes:

dηkH = |ΛkTH Gk(uk, uk−1)hH | (7.50)

where:

ηH =

n∑
k=1

dηkH (7.51)

The analogue of the flow reconstruction correction shown in the embedded mesh methods on the virtual

mesh uses the derivative of the fixed point on the virtual fine mesh and could be expressed as:

∂Gkh
∂uk−1

=

[
−I + [Pk−1]

−1
H

∂Pk−1

∂uk−1 H
[Pk−1]H R(ũk−1

h)hH − [Pk−1]
−1
H

∂R

∂uk−1

]
(7.52)

where the flow reconstruction error is computed on the virtual mesh and lifted back to the coarse mesh

following the same procedure for the virtual mesh lifted residual. This is done to avoid linearization of the

interpolation processes, so that the flow Jacobian can be computed off the coarse mesh values, however this

correction returned poor results, and so the correction is neglected for the virtual mesh method, and the

error estimate is kept to the expressions shown in equations 7.50 and 7.51.

7.4 Mesh Refinement Results

The test cases in this section show the results of a supersonic case and a transonic case. They will be

examined on the following criteria: consistency of the error estimate, convergence of the error estimate, and

the mesh quality itself. The consistency of the error estimate means that as the error estimate is calculated

Draft of 8:26 pm, Wednesday, November 18, 2020 126

on successively finer meshes, not only does the magnitude of the error estimate shrink, but the cells with the

highest error estimates are refined; i.e. that the highest magnitude error estimates are targeted first. This

is the most important factor in our analysis, as we expect to see oscillations or lack of convergence in the

objective due to the averaging windows used in this analysis. This method computes the error due to the

spatial discretization, not due to the averaging window and oscillatory behavior of the function. There are two

caveats to keep mind for the results shown here as the adjoint correction formulation assumes smoothness of

the fixed-point iteration and use of the fine mesh adjoint vector. First, the functional correction is computed

using a biquadratic interpolation of the coarse mesh adjoint, this was done to decrease expense, but it

also decreases accuracy of the functional correction, which becomes small rapidly with refinement. Second,

these algorithms make heavy use of gradient reconstruction, which becomes highly inaccurate on stretched

meshes [67].

7.4.1 Detached Bow Shock Error Estimation

The supersonic error estimation case is similar to the supersonic design case, it is a NACA0012 airfoil

in M = 1.25 flow, but with no angle of incidence. This case shows small scale unsteadiness due to lack of

convergence due to the limiter behavior. The initial mesh is very coarse as shown in Figure 7.5, and does

not resolve the flow features well. On the coarse mesh the detached bow shock is not well resolved and the

trailing edge fishtail shock that will appear as the mesh refines is not present except as a general smeared

high Mach region near the trailing edge. The mesh was then refined by the three different algorithms

for pseudo-temporal error estimation presented previously: virtual mesh error estimate, embedded mesh

error estimate, and the embedded mesh error estimate with functional correction, with the results of these

refinements presented in the following sections. The output of interest for these cases is a sum of lift, drag,

and entropy, J = cL + cD + s. The choice of entropy is used to illustrate the fineness of the refinement of

the shock as it passes to the edges of the domain as the mesh is refined. For this case, the objective function

was calculated at the final converged state for the first five meshes, at which point the mesh was fine enough

that simulations would no longer converge and the objective became the pseudo-time averaged objective

function calculated over the final 75 iterations. The mesh refinement was held isotropic for the first eleven

meshes, at which point the mesh refinement used the Mach gradient to determine anisotropy, and the flow

reconstruction correction with partial backwards in time integration to reduce cost. The behavior on the

fine mesh in Figure 7.6 shows a very ill-converged flow with an oscillatory objective function that looks to

have oscillations with an amplitude of approximately 2% of the average value.

Draft of 8:26 pm, Wednesday, November 18, 2020 127

(a) Coarse Mesh Density (b) Coarse Mesh Mach Number

Figure 7.5: Coarse mesh for detached bow shock error estimation case

(a) Fine Mesh Convergence (b) Fine Mesh Objective

Figure 7.6: Objective and convergence behavior on a fine mesh

7.4.1.1 Virtual Mesh Error Estimation

The mesh from the tenth adaptation cycle shows good behavior in the refinement pattern as shown

in Figure 7.7. The detached bow shock is resolved well and is carried all the way to the outer boundary,

where it reflects off the boundary and crosses through the refined fishtail shock coming off the trailing edge.

The reflection happens because the characteristic boundary condition used at the outer boundary is not a

non-reflecting boundary condition. There also looks to be the beginning of a refinement of a line of increased

entropy coming off the trailing edge of the airfoil. This is an effective and efficient refinement pattern, as

shown by the heavy coarsening in front of the bow shock.

Figure 7.8 shows the final adapted anisotropic mesh. The final mesh shows a great deal of refinement

Draft of 8:26 pm, Wednesday, November 18, 2020 128

(a) Density with mesh (b) Mach number with mesh

(c) Mesh in full domain (d) Mach number in full domain

Figure 7.7: Tenth adaptation cycle for detached bow shock with error estimation (final isotropic mesh)

Draft of 8:26 pm, Wednesday, November 18, 2020 129

(a) Density with mesh (b) Mach number with mesh

(c) Mesh in full domain (d) Mach number in full domain

Figure 7.8: 18th and final adaptation cycle for detached bow shock with error estimation

along the bow shock and the reflection off the boundary, the fishtail shock, and the lines of increased entropy

coming off the shocks. It also shows a high degree of refinement coming off the trailing edge forward to an

intersection with the bow shock, enveloping the airfoil in an area of high refinement. The line of increased

entropy has seen increased refinement as well. The Mach number plot shows the high degree of detail for

the physical flow features, the sharpness of the shocks is specifically notable and occurs because by including

entropy in the objective function the error estimation criteria drives the AMR to capture the entropy behind

the shocks.

Having investigated the behavior of the mesh refinement, the next concern is the consistency of the error

estimate. For the purposes of this analysis, this is the most important thing, as we should see consistency

from mesh to mesh to have an accurate error estimate. It is expected that there will be oscillations in the

Draft of 8:26 pm, Wednesday, November 18, 2020 130

(a) Baseline to seventh adaptation cycle (b) Tenth to 15th adaptation cycle

Figure 7.9: Error histograms for detached bow shock case

(a) Coarse mesh functional with error bars (b) Error convergence

Figure 7.10: Functional and error estimate convergence for supersonic detached bow shock

functional output from mesh to mesh as the output is oscillatory on any given mesh, as such the consistency

of the error estimate is our primary concern. The histograms of the error estimates shown in Figure 7.9 show

the cells sorted into bins according to the log2(ηH), where the y-axis is the number of elements in a given bin.

The expected behavior is that the highest error elements are consistently refined and that the mean steadily

moves to the left – signifying decreasing error. The histogram showing the early adaptation behavior shows

good consistency, whereas the histogram with the finer mesh error values shows less consistency, indicating

a possible issue with this approach.

Figure 7.10 shows the convergence of the functional with red error bars in the left plot and the logarithmic

behavior of the error indicator on the right. The functional convergence looks to converge within a bound

acceptable for an oscillatory function like the ones examined in this work. The error convergence is well

behaved until the finer meshes, where as was shown in the histograms, consistency and uniform decrease of

error is lost.

Draft of 8:26 pm, Wednesday, November 18, 2020 131

(a) Density with mesh (b) Mach number with mesh

(c) Mesh in full domain (d) Mach number in full domain

Figure 7.11: Tenth adaptation cycle for detached bow shock with error estimation (final isotropic mesh)

7.4.1.2 Embedded Mesh Error Estimation

Figure 7.11 shows the tenth adapted mesh, the last isotropic mesh, for the embedded mesh error estima-

tion technique. This shows, as in the virtual mesh error estimation technique, refinement along the detached

bow shock, the fish tail shock, and the area of increased entropy behind the trailing edge of the airfoil. The

mesh is refined well enough along both shocks to carry the bow shock and the fishtail shock all the way to

the boundary and captures the reflecting shock interaction –even though it is fainter than on the final mesh.

This case shows more refinement near the airfoil leading edge than that shown in Figure 7.11 for the virtual

mesh refinement.

Figure 7.12 shows the final adapted anisotropic mesh; both shocks are more heavily refined and the

Draft of 8:26 pm, Wednesday, November 18, 2020 132

(a) Density with mesh (b) Mach number with mesh

(c) Mesh in full domain (d) Mach number in full domain

Figure 7.12: 18th and final adaptation cycle for detached bow shock with error estimation

shock reflection and interaction is well captured. The mesh is heavily coarsened in front of the bow shock,

and tightly refined all along areas of increased entropy due to the shock interactions and reflections. The

lines of increased refinement post fishtail shock correspond well to the areas of slightly higher Mach number

due to the shock reflections and entropy creation due to the flux function. The high level of refinement

along these lines of increased entropy points to the importance of the behavior of the flux functions on the

embedded mesh when it comes to entropy creation, as these lines were nearly absent for the virtual mesh

refinement.

Figure 7.13 shows the histograms for the same refinement cycles as in Figure 7.9, but using the embedded

mesh error estimate. In this case, the error estimates show the expected consistency even on the fine meshes.

Figure 7.14 shows the expected functional convergence with the exception of the penultimate mesh.

Draft of 8:26 pm, Wednesday, November 18, 2020 133

(a) Baseline to seventh adaptation cycle (b) Tenth to 15th adaptation cycle

Figure 7.13: Error histograms for detached bow shock case

(a) Coarse mesh functional with error bars (b) Error convergence

Figure 7.14: Functional and error estimate convergence for supersonic detached bow shock

Similarly, the error convergence decreases and then stagnates, with the exception being a spike at that same

mesh. Examining that mesh shows that the issue is due to the stagnation of the nonlinear problem at a

non-physical flow state markedly different from that on every other mesh, and the error estimate increases

significantly. If the fine mesh pseudo-temporal adjoint were utilized then the adjoint based error estimate

would be more likely to pick up such errors, but the biquadratic reconstruction of the adjoint is only a good

approximation for smooth flows; additionally the adjoint-based functional correction assumes smoothness of

the fixed-point itself

7.4.1.3 Embedded Mesh Error Estimation and Functional Correction

This case has similar behavior as that exhibited by the previous two methods, carrying the shocks to

the domain boundaries and capturing the shock reflection, as captured in Figure 7.15. This method showed

less refinement along the leading edge and the high entropy line coming off the trailing edge. This can be

attributed to the use of the functional correction.

The final adapted mesh in Figure 7.16 shows high refinement along the shocks and the shock reflection

Draft of 8:26 pm, Wednesday, November 18, 2020 134

(a) Density with mesh (b) Mach number with mesh

(c) Mesh in full domain (d) Mach number in full domain

Figure 7.15: Tenth adaptation cycle for detached bow shock with error estimation and functional correction

Draft of 8:26 pm, Wednesday, November 18, 2020 135

(a) Density with mesh (b) Mach number with mesh

(c) Mesh in full domain (d) Mach number in full domain

Figure 7.16: 18th and final adaptation cycle for detached bow shock with error estimation and functional
correction

as well as some refinement from the trailing edge forward to the detached bow shock. There is also refinement

along the high entropy line coming off the trailing edge, but there is not a high degree of refinement in other

places due to these areas of higher entropy. This again can be attributed to the functional correction.

Figure 7.17 shows consistency in the error estimate as desired with distinct peaks for each mesh, moving

towards the left with decreasing error.

Figure 7.18 shows the expected functional and error convergence, with stagnation of the error at ap-

proximately 1e− 4. The one outlier is the behavior at the 15th adapted mesh; this can again be attributed

to pathological behavior in the flow field, reflected by an outlier in the objective function and a spike in the

error.

Draft of 8:26 pm, Wednesday, November 18, 2020 136

(a) Baseline mesh to seventh adaptation cycle (b) 10th to 15th adaptation cycle

Figure 7.17: Error histograms for detached bow shock case with functional correction

(a) Corrected functional with error bars (b) Error convergence

Figure 7.18: Corrected functional and error estimate convergence for detached bow shock case

Draft of 8:26 pm, Wednesday, November 18, 2020 137

7.4.2 Transonic Airfoil With Blunt Trailing Edge Error Estimation

Having shown good behavior on a case with very small trailing edge unsteadiness, it is necessary to look

at a case with stronger unsteadiness. This transonic error estimation case is similar to the transonic design

case; it is a NACA0012 airfoil truncated at 93% of the chord in M = .75, α = 5o flow. This case shows

small scale unsteadiness due to lack of convergence at the trailing edge, where the flow enters noticeable

limit cycle oscillations. The initial mesh is very coarse as shown in Figure 7.19, and does not resolve the flow

features well, including allowing the flow to converge. On the coarse mesh the upper surface shock is not

well resolved and the trailing edge unsteadiness is not present and the flow converges. It was then refined by

the same three algorithms as in the detached bow shock simulation. The output of interest for these cases is

a sum of lift and drag, J = cL + cD. The first 6 meshes are refined isotropically, at which point anisotropic

refinement is invoked.

(a) Coarse Mesh Density (b) Coarse Mesh Mach Number

Figure 7.19: Coarse mesh for transonic blunt trailing edge error estimation case

The behavior on the fine mesh shows a very ill-converged flow with an oscillatory objective function that

looks to have oscillations with an amplitude of approximately 5% of the average value. This shows much

more oscillatory behavior than the detached bow shock case, which can be attributed to the blunt trailing

edge. The functional behavior with the refined meshes reflect this oscillatory behavior.

Draft of 8:26 pm, Wednesday, November 18, 2020 138

(a) Fine Mesh Convergence (b) Fine Mesh Objective

Figure 7.20: Objective and convergence behavior on a fine mesh

7.4.2.1 Virtual Mesh Error Estimation

The sixth adapted mesh is the final isotropic mesh and shows noticeable refinement along the shock and

the streamline, as is expected. The flow variables show noticeable unsteadiness at the trailing edge as can

be seen in Figure 7.21.

The final mesh and flow shown in Figure 7.22 shows poor behavior. The mesh shows minimal refinement

along the shock which will poorly capture the drag and lift. The streamline Mach number plot shows very

strong unsteadiness which is expected in this case.

Figure 7.23 shows poor error estimate consistency on the coarse meshes, whereas before the virtual mesh

error estimate was consistent on the coarse meshes but lost consistency as the meshes got finer. Here, the

finer meshes show almost no consistency in the virtual mesh error estimate, and consistency of the error

estimate is lost early on.

Figure 7.24 explains the loss of consistency; the error estimate spikes on later meshes. The reason for this

has to do with calculating the residual on the virtual fine mesh. The virtual fine mesh appears to have highly

inaccurate residual computation for the flow states when the flow expands around the trailing edge. The lack

of limiters on the virtual fine mesh combined with the anisotropy of the mesh leads to unphysical or nearly

unphysical states with very large residuals, which destroys the ability of this method to provide reliable or

consistent error estimates. Investment in better interpolation and gradient reconstruction techniques could

solve this problem. It is also hypothesized that a move to FEM codes, which do not require interpolation

onto the embedded mesh and have better mechanics for dealing with high p-order residual evaluations, might

not suffer from this problem.

Draft of 8:26 pm, Wednesday, November 18, 2020 139

(a) Mach number without mesh (b) Mach number with mesh

(c) Mach number at trailing edge (d) Mach number with streamlines

Figure 7.21: Sixth adaptation cycle for transonic blunt trailing edge with error estimation (final isotropic
mesh)

Draft of 8:26 pm, Wednesday, November 18, 2020 140

(a) Mach number without mesh (b) Mach number with mesh

(c) Mach number at trailing edge (d) Mach number with streamlines

Figure 7.22: 16th and final adaptation cycle for transonic blunt trailing edge with error estimation

(a) Baseline to 7th adaptation cycle (b) Tenth to 15th adaptation cycle

Figure 7.23: Error histograms for transonic blunt trailing edge case

Draft of 8:26 pm, Wednesday, November 18, 2020 141

(a) Coarse mesh functional with error bars (b) Error convergence

Figure 7.24: Functional and error estimate convergence for transonic blunt trailing edge

7.4.2.2 Embedded Mesh Error Estimation

As in the virtual mesh adaptation the sixth mesh, the final isotropic mesh, shows good refinement

patterns which accord with expected results as shown in Figure 7.25. The mesh is adapted along the trailing

edge unsteadiness, the leading edge and along the shock, and the flow also shows noticeable unsteadiness as

expected.

The final adapted mesh is refined well along the lower portion of the shock as well as showing good

refinement along the forward streamline portion of the flow and the trailing edge as shown in Figure 7.26.

The flow field at the trailing edge shows noticeable unsteadiness, which explains the oscillatory nature of the

flow as was expected.

Figure 7.27 shows the histograms of the error, and it shows good consistency with the exception of the

seventh adapted mesh; the seventh adapted mesh appears to have higher mean error than the baseline mesh.

The error distribution on the finer meshes regains consistency as shown in the finer mesh histogram in Figure

7.27b.

Figure 7.28 explains why the seventh adapted mesh loses the consistency. The seventh and ninth

adapted meshes sees spikes in the error for the same reason observed in the virtual mesh error estimation.

The functional convergence is reasonable for such an oscillatory case.

Draft of 8:26 pm, Wednesday, November 18, 2020 142

(a) Mach number without mesh (b) Mach number with mesh

(c) Mach number at trailing edge (d) Mach number with streamlines

Figure 7.25: Sixth adaptation cycle for transonic blunt trailing edge with error estimation (final isotropic
mesh)

Draft of 8:26 pm, Wednesday, November 18, 2020 143

(a) Mach number without mesh (b) Mach number with mesh

(c) Mach number at trailing edge (d) Mach number with streamlines

Figure 7.26: 16th and final adaptation cycle for transonic blunt trailing edge with error estimation

(a) Baseline to 7th adaptation cycle (b) Tenth to 15th adaptation cycle

Figure 7.27: Error histograms for transonic blunt trailing edge case

Draft of 8:26 pm, Wednesday, November 18, 2020 144

(a) Coarse mesh functional with error bars (b) Error convergence

Figure 7.28: Functional and error estimate convergence for transonic blunt trailing edge

7.4.2.3 Embedded Mesh Error Estimation and Functional Correction

This is the final error estimation case and it shows excellent refinement behavior on the sixth adapted

mesh shown in Figure 7.29. The shock is well refined, and the leading and trailing edges show refinement.

The final adapted mesh shown in Figure 7.30 shows good refinement along the shock as well as along the

leading and trailing edge flows. This pattern is very similar to what is seen in steady state adjoint refinement

for converged flows. This mesh does show greater refinement along the latter half of the airfoil than is typical

due to the impact of the trailing edge unsteadiness along the rear section of the airfoil. In contrast with the

previous error estimate, the method with the functional correction does not refine the forward half of the

airfoil or the incoming flow region as heavily. This could be because the functional correction can calculate

the error in that smooth flow region, and so the refinement gets focused more heavily on the shock and the

unsteadiness at the trailing edge which are less smooth. The Mach number plots show the high degree of

unsteadiness at the trailing edge, as is expected.

The error histograms shown in 7.31 show good consistency of the error estimate with the mean error

steadily decreasing even on the finer meshes.

Figure 7.32 shows mostly the expected behavior for an oscillatory flow such as this, with mostly good

behavior in the corrected functional and convergence in the error estimate until stagnation. The third

adapted mesh has a very large error estimate and its corrected functional is a large outlier – this is due

to the interpolation issues highlighted previously. While the interpolation becomes less important for the

embedded mesh methods as they use limiters on the fine mesh, it can still lead to non physical states,

especially for the highly non-smooth iterations that occur early on in the solution process in the highly

transient domain.

Draft of 8:26 pm, Wednesday, November 18, 2020 145

(a) Mach number without mesh (b) Mach number with mesh

(c) Mach number at trailing edge (d) Mach number with streamlines

Figure 7.29: Sixth adaptation cycle for transonic blunt trailing edge with error estimation and functional
correction (final isotropic adaptation)

Draft of 8:26 pm, Wednesday, November 18, 2020 146

(a) Mach number without mesh (b) Mach number with mesh

(c) Mach number at trailing edge (d) Mach number with streamlines

Figure 7.30: 16th and final adaptation cycle for transonic blunt trailing edge with error estimation and
functional correction

(a) Baseline mesh to seventh adaptation cycle (b) Tenth to 17th adaptation cycle

Figure 7.31: Error histograms for transonic blunt trailing edge case with functional correction

Draft of 8:26 pm, Wednesday, November 18, 2020 147

(a) Corrected functional with error bars (b) Error Convergence

Figure 7.32: Corrected functional and error estimate convergence for transonic blunt trailing edge case

7.5 Summary

All three error estimation methods perform well on the detached bow shock with smaller scale unsteadi-

ness. The virtual mesh error estimate loses consistency on the finer meshes when measured by the mean on

the error histogram, but the embedded mesh methods maintain consistency even on the finer meshes. All

methods show decreasing error and converging objective functions in the presence of small scale oscillations.

The virtual mesh method and the functional correction method do best in terms of refinement patterns due

to their lack of refinement on the lines of increased entropy. The virtual mesh method does not refine in

these places because it cannot detect them, whereas the functional correction method corrects for the error

in those smoother areas without having to refine in them.

In the transient blunt trailing edge case, the virtual mesh method, which had previously shown promise

is shown to be unworkable. It loses consistency of the error estimate on the coarser meshes and on the

fine meshes its high dependence on the interpolation functions leads to issues in the computation of the

error estimate as it integrates back in pseudo-time on the anisotropic meshes. The embedded mesh error

estimate performs much better –it still has some interpolation related issues with the error estimation, but

these show up with less frequency. Additionally, it keeps consistency of the error estimate until stagnation of

the convergence of the error estimate. The best results come from the functional correction method, it has

only one non-convergent error estimate due to the interpolation and keeps consistency of the error estimate

throughout the finer meshes. The final adapted mesh shows nice adaptation patterns of the shock, the

incoming flow, and the trailing edge unsteadiness; with the functional correction preventing over-refinement

in smooth regions of the flow.

This method is tempting due to the high quality mesh refinement patterns and the consistent error

estimates even in nonconvergent cases – showing approximately two to three orders of magnitude reduction

Draft of 8:26 pm, Wednesday, November 18, 2020 148

in the error, with consistent error estimates for even the very low error cells with error values of approximately

1e− 11 even for these cases where the residual is not converging more than half an order. However it shows

some undesirable pathologies due to the heavy reliance on many different assumptions to limit the expense

and the high reliance on gradient reconstruction and interpolation, methods that can be highly inaccurate

on anisotropic meshes. In some of the finer meshes used, the inaccuracy of the gradient reconstruction leads

to near divergence of the residual operator in some of the less smooth time-steps in the transient dominated

portion of these flows. As such, for these meshes the error estimates and functional corrections are very

inaccurate and dominated by the pathological residual evaluations. In order for this method to work more

consistently in flows with high-scale unsteadiness – such as the blunt trailing edge case – an investment

in better interpolation mechanics and gradient reconstruction is necessary, high order limiting techniques

may also be useful. Barycentric interpolation methods, which were designed for triangles and unstructured

interpolation, could assist with interpolation for these non-smooth flows on highly anisotropic meshes. An

interpolation related improvement could be handling of the adjoint reconstruction on the boundaries, for

which currently the gradient in those cells is set to zero, and this impacts the nodal aggregation portion of the

combined bilinear and biquadratic interpolation. It should be noted that the virtual mesh method will work

only for smooth solutions and is limited in that regard and the embedded mesh methods should work better

on the non-smooth solutions that are shown and investigated in this work. Alternatively, application of this

method to an FEM method, where the error estimate can be performed with a higher-order discretization

without having to deal with the effect of gradient reconstruction and other methods that struggle with the

anisotropy that naturally arises in adaptive mesh refinement. A final improvement that could generally assist

with the utility of this method would be the windowing regularization methods mentioned in the optimization

chapter and investigated by Krakos et al. [35] and Schotthofer et al. [63]. These regularization methods have

been shown to be effective for optimization methods and could assist with the functional convergence as the

mesh is refined.

Chapter 8

Conclusions and Future Work

8.1 Summary

This work was targeted at addressing a long-standing area of concern in the field of CFD regarding the

accuracy of tangent and adjoint sensitivities in partially converged flows and their utility in driving opti-

mizations and adaptive mesh refinement. This work developed and demonstrated new adjoint and tangent

formulations for use in partially converged flows for the purposes of optimization and output-based mesh

refinement. These were developed through beginning from exact linearizations of the varying nonlinear solu-

tion algorithms and then introducing varying approximations. The end results are families of linearizations

in both the tangent and adjoint modes that allow for varying degrees of fidelity in the sensitivity and error

calculation that allow for design and error estimation in cases that were previously intractible.

This work began with the derivation of tangent and adjoint formulations for a variety of different

nonlinear solution methods (both explicit and implicit), through introducing different approximations the

linearization of the Newton type solver resulted in a series of tangent and adjoint linearizations of increasing

fidelity and accuracy. The new formulations were proven to work first by computing sensitivities in arbitrary

partially converged simulations and then by comparing the tangent and adjoint computed sensitivities to

those provided by complex-step finite differentiation; this also functioned as proof of proper implementation.

This work then presented an analysis of the sensitivity behavior in both the tangent and adjoint modes,

first showing that for problems that enter limit cycle oscillations averaging of the objective function is of

utmost importance to obtain useful sensitivities, and that a partial backwards-in-pseudo-time integration

is possible with only minor effects on the sensitivities to be used for optimization. When comparing the

pseudo-time accurate adjoint to the steady-state adjoint it is clear that the sensitivity vectors have different

magnitudes and different directions in the design space; this leads to an assumption of stagnation issues in

optimizations driven by the steady state adjoint and this is borne out in the later section on optimization.

Furthermore, the steady-state adjoint linearized about these unconverged states are expensive to solve as

149

Draft of 8:26 pm, Wednesday, November 18, 2020 150

shown in previous works.

This work then showed investigations of the various approximate linearizations and their behaviors;

during this investigation two points of significant interest were the discovered. The first was that accuracy

as compared to the complex-step method is improved by further convergence of the nonlinear problem for

all approximate linearizations of the fixed-point iteration. The second was that for Newton-type solvers

a practitioner can increase the accuracy of the sensitivities obtained by solving the linear system at each

nonlinear step more accurately; the tradeoff being the increased cost of this linear system. Taken together, the

accuracy in the sensitivities is determined by both the tolerance of the linear system and the convergence

of the nonlinear problem, allowing practitioners a degree of control over the accuracy of their sensitivity

calculations. The same is hypothesized to be true for error estimation due to the similarity of the respective

derivations.

These partial backwards-in-time integrated sensitivities with approximate linearization of the pseudo-

temporal discretization were then used to drive the optimization for analyses which do not converge and

obtain better final designs as compared to the typical steady-state adjoint or a pseudo-time averaged objective

function with a steady-state adjoint. This method has shown efficacy specifically for shocked flows, where

the location of the shock is very important for the value of the objective function. For such transonic or

supersonic flows the unsteadiness at the trailing edge not only explicitly affects the objective function, but

it can also affect the shock location which will have a much larger impact on the objective function.

Finally this work showed the pseudo-time accurate adjoint applied to error estimation and mesh refine-

ment. These error estimation and refinement techniques showed good behavior for unconverged cases with

small scale limit cycle oscillations. These methods had issues with larger scale unsteadiness that can be

traced to issues with interpolation and residual evaluation on the fine mesh. In order to make these methods

cheaper, some techniques were developed to ameliorate the expense of computing the fixed-point iteration

on the embedded mesh at each nonlinear iteration.

8.2 Contributions to the Field

This work showed the development and application of an adjoint and tangent formulation that can

be guaranteed to converge even in conditions where the typical steady-state adjoint becomes very stiff and

highly inaccurate. It also showed better results for optimizations that were previously intractable or sub-

optimal due to the small scale oscillations in the residual and objective functions. This work also proved

mathematically and demonstrated numerically that this method can be applied to compute the steady state

adjoint sensitivities without exact linearization of the fixed point iteration, thus allowing for computation

of the steady state adjoint only by solving less stiff systems with guaranteed convergence. Additionally,

to be able to attempt the supersonic test cases and optimizations in this work, a new more robust limiter

Draft of 8:26 pm, Wednesday, November 18, 2020 151

technology was developed that enforces realizability as part of the limiter. Finally, three different adjoint

based error estimation techniques were developed for the pseudo-time accurate adjoint formulations that

are parallel to three existing steady-state output-based error estimation techniques. The embedded mesh

techniques developed in this work showed good accuracy and mesh refinement qualities in unconverged cases

although further improvements are still possible.

8.3 Future Work

The investigations in this thesis are very encouraging and motivate further investigations and appli-

cations of the pseudo-time accurate linearizations to enhance CFD capabilities. Some possible regions of

interest are outlined below:

• Mean pseudo-temporal flow decomposition and linearization Another method of interest that

would be a nice addition to this field would be taking the mean flow to satisfy the average discretized

shifted fixed-point iteration, i.e. R(u)/= 0, u−G(u) = 0, averaging the flow states in pseudo-time

and then linearizing the fixed point iteration about the averaged flow state. This could allow for

simpler tangent and adjoint systems in partially converged flows. Investigations into the eigenvalues

and convergence of these modified linear operators would be informative as to whether this would

be preferable not only from a sensitivity accuracy standpoint but also from a linear system stiffness

standpoint.

• Windowing regularization This method currently uses a simple averaging approach to computation

of the objective function and the sensitivities. Windowing regularization techniques seem to be useful

to allow for smaller averaging windows and therefore less expensive analysis problems and sensitivity

evaluations, or for more stable objective function values as the mesh is refined.

• Improvement of error estimation routines The error estimates for this work, while showing

promise, had some suboptimal choices of interpolation routines and gradient reconstruction techniques.

It could be helpful to use more robust interpolation and gradient reconstruction techniques in the more

challenging problems this methodology to which could be extended.

• Application to viscous flows Extending this to RANS problems is the next logical step and no

major issues are expected in doing so.

• Three-dimensional problems Similarly, extension to three-dimensional problems is straightforward

and while increased expense is anticipated, it should scale with the primal as was shown for these

two-dimensional cases.

• Unsteady flows This work presents only steady cases. Time accurate cases like the ones shown by

Mishra et al. [36] in the introduction are an important future area of inquiry. Another point of interest

Draft of 8:26 pm, Wednesday, November 18, 2020 152

could be applications to space-time solvers as this would be easier in terms of implementation. Rather

than storing many nonlinear iterations at many time steps, the unsteady problem is solved as a steady

problem and the extension from steady to unsteady would require the same effort as moving from

two-dimensional flows to three-dimensional ones.

References

[1] Gill, P. E., Murray, W., and Saunders, M. A., “Users Guide for SNOPT Version 7: Software for Large-

Scale Nonlinear Programming,” .

[2] Gill, P. E., Murray, W., and Saunders, M. A., “SNOPT: An SQP algorithm for large-scale constrained

optimization,” SIAM review , Vol. 47, No. 1, 2005, pp. 99–131.

[3] Adams, B., Bauman, L., Bohnhoff, W., and et al., “Dakota, A Multilevel Parallel Object-Oriented

Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity

Analysis: Version 6.0 Users Manual,” 2015.

[4] Martins, J. R. R. A., Sturdza, P., and Alonso, J. J., “The Complex-Step Derivative Approximation,”

ACM Trans. Math. Softw., Vol. 29, No. 3, Sept. 2003, pp. 245262.

[5] Nadarajah, S. K., The Discrete Adjoint Approach to Aerodynamic Shape Optimization, Ph.D. Disser-

tation, Department of Aeronautics and Astronautics, Stanford University, USA, 2003.

[6] Nemec, M. and Aftosmis, M. J., “Toward Automatic Verification of Goal-Oriented Flow Simulations,”

Tech. Rep. Tech. Rep. TM-2014-218386, NASA Ames Research Center, August 2014.

[7] Venditti, D. A. and Darmofal, D. L., “Anisotropic Grid Adaptation for Functional Outputs: Application

to Two-Dimensional Viscous Flows,” J. Comput. Phys., Vol. 187, No. 1, May 2003, pp. 2246.

[8] Lighthill, M. J., “The hodograph transformation in trans-sonic flow. I. Symmetrical channels,” Proceed-

ings of the Royal Society of London. Series A. Mathematical and Physical Sciences, Vol. 191, No. 1026,

1947, pp. 323–341.

[9] McFadden, G. B., “An artificial viscosity method for the design of supercritical airfoils,” Tech. Rep.

Tech. Rep. NASA-CR-158840, New York Univ.; Courant Mathematics and Computing Lab.; New York,

NY, United States, July 1979.

[10] Murman, E. M. and Cole, J. D., “Calculation of plane steady transonic flows,” AIAA Journal , Vol. 9,

No. 1, 1971, pp. 114–121.

153

Draft of 8:26 pm, Wednesday, November 18, 2020 154

[11] Jameson, A., Caughey, D. A., Newman, P. A., and Davis, R. M., “A brief description of the Jameson-

Caughey NYU transonic swept-wing computer program: FLO 22,” Tech. Rep. Tech. Rep. NASA-TM-

X-73996, NASA Langley Research Center; Hampton, VA, United States, December 1976.

[12] Jameson, A., Schmidt, W., and Turkel, E., “Numerical solution of the Euler equations by finite volume

methods using Runge Kutta time stepping schemes,” 14th Fluid and Plasma Dynamics Conference,

AIAA Paper 1981-1259, Palo Alto, CA. June 1981. https://doi.org/10.2514/6.1981-1259.

[13] Jameson, A. and Baker, T., “Solution of the Euler equations for complex configurations,”

6th Computational Fluid Dynamics Conference, AIAA 1983-1929, Danvers, MA. July 1983,

https://arc.aiaa.org/doi/abs/10.2514/6.1983-1929.

[14] Lions, J. L., Optimal Control of Systems Governed by Partial Differential Equations, Springer, 1971.

[15] Pironneau, O., Optimal shape design for elliptic systems, Springer Berlin Heidelberg, Berlin, Heidelberg,

1982, pp. 42–66.

[16] Jameson, A., “Aerodynamic Design via Control Theory,” Tech. Rep. Tech. Rep. NASA-CR-181749,

ICASE, NASA Langley Research Center; Hampton, VA, United States, November 1988.

[17] Hicks, R. M. and Henne, P. A., “Wing Design by Numerical Optimization,” Journal of Aircraft , Vol. 15,

No. 7, 1978, pp. 407–412.

[18] Mani, K. and Mavriplis, D. J., “Unsteady Discrete Adjoint Formulation for Two-Dimensional Flow

Problems with Deforming Meshes,” AIAA Journal , Vol. 46, No. 6, 2008, pp. 1351–1364.

[19] Zhang, Z. J. and Zingg, D. W., “Efficient Monolithic Solution Algorithm for High-Fidelity Aerostructural

Analysis and Optimization,” AIAA Journal , Vol. 56, No. 3, 2018, pp. 1251–1265.

[20] Mavriplis, D. J., Fabiano, E., and Anderson, E., “Recent Advances in High-Fidelity Multidisciplinary

Adjoint-Based Optimization with the NSU3D Flow Solver Framework,” 55th AIAA Aerospace Sciences

Meeting, AIAA Paper 2017-1669, Grapvine, TX. https://arc.aiaa.org/doi/abs/10.2514/6.2017-1669.

[21] Anderson, E. M., Bhuiyan, F. H., Mavriplis, D. J., and Fertig, R. S., “Adjoint-Based High-Fidelity

Aeroelastic Optimization of Wind Turbine Blade for Load Stress Minimization,” 2018 Wind Energy

Symposium, AIAA Paper 2018-1241, Kissimmee, FL. https://arc.aiaa.org/doi/abs/10.2514/6.2018-

1241.

[22] Kamali, S., Mavriplis, D. J., and Anderson, E. M., “Sensitivity Analysis for Aero-Thermo-Elastic Prob-

lems Using the Discrete Adjoint Approach,” 59th AIAA Aerospace Sciences Meeting, AIAA Paper

2020-3138, Virtual Event, June 2020. https://doi.org/10.2514/6.2020-3138.

Draft of 8:26 pm, Wednesday, November 18, 2020 155

[23] Berger, M. J., Adaptive mesh refinement for hyperbolic partial differential equations, Ph.D. Dissertation,

Department of Computer Science, Stanford University, USA, 1982.

[24] Berger, M. J. and Jameson, A., “Automatic adaptive grid refinement for the Euler equations,” AIAA

Journal , Vol. 23, No. 4, 1985, pp. 561–568.

[25] Berger, M. and Leveque, R., “An adaptive Cartesian mesh algorithm for the Euler equations in arbitrary

geometries,” 9th Computational Fluid Dynamics Conference, AIAA Paper 1989-1930, Buffalo, NY.

https://arc.aiaa.org/doi/abs/10.2514/6.1989-1930.

[26] Lohner, R., “An adaptive finite element scheme for transient problems in CFD,” Computer Methods in

Applied Mechanics and Engineering , Vol. 61, No. 3, 1987, pp. 323 – 338.

[27] “Cart3D Web Page,” https://www.nas.nasa.gov/publications/software/docs/cart3d/pages/

cart3Dhome.html, Accessed: 2020-06-08.

[28] “Refine Repository,” https://github.com/nasa/refine, Accessed: 2020-06-08.

[29] Kirby, A. C., Brazell, M. J., Yang, Z., Roy, R., Ahrabi, B. R., Stoellinger, M. K., Sitaraman, J., and

Mavriplis, D. J., “Wind farm simulations using an overset hp-adaptive approach with blade-resolved

turbine models,” The International Journal of High Performance Computing Applications, Vol. 33,

No. 5, 2019, pp. 897–923.

[30] Burgess, N. and Mavriplis, D., “An hp-Adaptive Discontinuous Galerkin Solver for Aerodynamic flows

on Mixed-Element Meshes,” AIAA Paper 2011-490, AIAA Aerospace Sciences Meeting, Orlando, FL,

January 2011, https://doi.org/10.2514/6.2011-490.

[31] Becker, R. and Rannacher, R., “An optimal control approach to a posteriori error estimation in finite

element methods,” Acta numerica, Vol. 10, 2001, pp. 1–102.

[32] Mani, K. and Mavriplis, D., “Error Estimation and Adaptation for Functional Outputs in Time-

Dependent Flow Problems,” AIAA Paper 2009-1495, AIAA Aerospace Sciences Meeting, Orlando, FL,

January 2009, https://doi.org/10.2514/6.2009-1495.

[33] Krakos, J. A. and Darmofal, D. L., “Effect of Small-Scale Output Unsteadiness on Adjoint-Based

Sensitivity,” AIAA Journal , Vol. 48, No. 11, 2010, pp. 2611–2623.

[34] Padway, E. and Mavriplis, D. J., “Toward a Pseudo-Time Accurate Formulation of the Adjoint and

Tangent Systems,” 57th AIAA Aerospace Sciences Meeting, AIAA Paper 2019-0699, San Diego CA,

January 2019. https://doi.org/10.2514/6.2019-0699.

[35] Krakos, J. A., Wang, Q., Hall, S. R., and Darmofal, D. L., “Sensitivity analysis of limit cycle oscilla-

tions,” Journal of Computational Physics, Vol. 231, No. 8, 2012, pp. 3228 – 3245.

https://www.nas.nasa.gov/publications/software/docs/cart3d/pages/cart3Dhome.html
https://www.nas.nasa.gov/publications/software/docs/cart3d/pages/cart3Dhome.html
https://github.com/nasa/refine

Draft of 8:26 pm, Wednesday, November 18, 2020 156

[36] Mishra, A., Mavriplis, D. J., and Sitaraman, J., “Multipoint Time-Dependent Aero-elastic Adjoint-

based Aerodynamic Shape Optimization of Helicopter Rotors,” May 2015, pp. 828 – 844, AHS Forum

71,Virginia Beach VA, May 2015, pp 828 - 844.

[37] Luers, M., Sagebaum, M., Mann, S., Backhaus, J., Grossmann, D., and Gauger, N. R., “Adjoint-based

Volumetric Shape Optimization of Turbine Blades,” AIAA Paper 2018-3638, 2018 Multidisciplinary

Analysis and Optimization Conference, Atlanta, GA, June 2018, https://doi.org/10.2514/6.2018-3638.

[38] Brown, D. A. and Nadarajah, S., “An Adaptive Constraint Tolerance Method for Optimization Al-

gorithms Based on the Discrete Adjoint Method,” 2018 AIAA/ASCE/AHS/ASC Structures, Struc-

tural Dynamics, and Materials Conference, AIAA SciTech Forum, AIAA Paper 2018-0414, Kissimmee,

Florida, 01/2018, https://doi.org/10.2514/6.2018-0414.

[39] Padway, E. and Mavriplis, D. J., “Advances in the Pseudo-Time Accurate Formulation of the Adjoint

and Tangent Systems for Sensitivity Computation and Design,” 59th AIAA Aerospace Sciences Meeting,

AIAA Paper 2020-3136, Virtual Event, June 2020. https://doi.org/10.2514/6.2020-3136.

[40] Burgess, N. K., An Adaptive Discontinuous Galerkin Solver for Aerodynamic Flows, Ph.D. Dissertation,

Department of Mechanical Engineering, University of Wyoming, USA, 2011.

[41] LeVeque, R. J., Numerical Methods for Conservation Laws, Vol. 3, Springer, 1992.

[42] van Leer, B., “Flux-vector splitting for the Euler equations,” Eighth International Conference on Numer-

ical Methods in Fluid Dynamics, edited by E. Krause, Springer Berlin Heidelberg, Berlin, Heidelberg,

1982, pp. 507–512.

[43] Roe, P., “Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes,” Journal of Com-

putational Physics, Vol. 135, No. 2, 1997, pp. 250 – 258.

[44] Hirsch, C., Numerical Computation of Internal and External Flows, Volume 2: Computational Methods

for Inviscid and Viscous Flows, Elsevier Science, 2019.

[45] Mavriplis, D., “Revisiting the Least-Squares Procedure for Gradient Reconstruction on Unstructured

Meshes,” 16th AIAA Computational Fluid Dynamics Conference, Fluid Dynamics and Co-located Con-

ferences, AIAA Paper 2003-3986, Orlando, Florida, 06/2003. https://doi.org/10.2514/6.2003-3986.

[46] Anderson, W. K., Newman, J. C., and Karman, S. L., “Stabilized finite elements in FUN3D,” Journal

of Aircraft , Vol. 55, No. 2, 2018, pp. 696–714.

[47] van der Vorst, H. A., “Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution

of Nonsymmetric Linear Systems,” SIAM Journal on Scientific and Statistical Computing , Vol. 13, No. 2,

1992, pp. 631–644.

Draft of 8:26 pm, Wednesday, November 18, 2020 157

[48] Saad, Y., Iterative methods for sparse linear systems, Vol. 82, Society for Industrial and Applied Math-

ematics, 2003.

[49] Mavriplis, D. J., “Discrete Adjoint-Based Approach for Optimization Problems on Three-Dimensional

Unstructured Meshes,” AIAA Journal , Vol. 45, No. 4, 2007, pp. 741–750.

[50] Batina, J., “Unsteady Euler airfoil solutions using unstructured dynamic meshes,” 27th Aerospace

Sciences Meeting, AIAA Paper 1989-115, Reno, NV. https://arc.aiaa.org/doi/abs/10.2514/6.1989-115.

[51] Luke, E., Collins, E., and Blades, E., “A fast mesh deformation method using explicit interpolation,”

J. Comput. Physics, Vol. 231, 01 2012, pp. 586–601.

[52] Kedward, L., Allen, C. B., and Rendall, T. C. S., “Comparing Matrix-based and Matrix-free Discrete

Adjoint Approaches to the Euler Equations,” AIAA Scitech 2020 Forum, AIAA Paper 2020-1294, Or-

lando FL, January 2020, https://arc.aiaa.org/doi/abs/10.2514/6.2020-1294.

[53] Mavriplis, D. J., “VKI Lecture Series: 38th Advanced Computational Fluid Dynamics. Adjoint methods

and their application in CFD, Time Dependent Adjoint Methods for Single and Multi-disciplinary

Problems,” Sep 2015.

[54] Anderson, W. K. and Bonhaus, D. L., “Airfoil Design on Unstructured Grids for Turbulent Flows,”

AIAA Journal , Vol. 37, No. 2, 1999, pp. 185–191.

[55] Giuliani, A. and Krivodonova, L., “Edge coloring in unstructured CFD codes,” ArXiv ,

Vol. abs/1601.07613, 2016.

[56] Günther, S., Gauger, N. R., and Wang, Q., “Simultaneous single-step one-shot optimization with un-

steady PDEs,” J. Comput. Appl. Math., Vol. 294, 2016, pp. 12–22.

[57] Nielsen, E., Lu, J., Park, M., and Darmofal, D., “An Exact Dual Adjoint Solution Method for Turbu-

lent Flows on Unstructured Grids,” 41st Aerospace Sciences Meeting and Exhibit, Aerospace Sciences

Meetings, AIAA Paper 2003-272, Reno, Nevada, 01/2009. https://doi.org/10.2514/6.2003-272.

[58] Mavriplis, D. J., “Multigrid Solution of the Discrete Adjoint for Optimization Problems on Unstructured

Meshes,” AIAA Journal , Vol. 44, No. 1, 2006, pp. 42–50.

[59] Nambu, T., Mavriplis, D. J., and Mani, K., “Adjoint-based Shape Optimization of High-lift Airfoil

using the NSU2D Unstructured Mesh Solver,” 52nd Aerospace Sciences Meeting, AIAA Paper 2014-

0554, National Harbor MD, January 2014. https://doi.org/10.2514/6.2014-0554.

[60] “UMESH2D,” https://server.scientific-sims.com/cfdlab/scientific-sims/nsu2d.html, Ac-

cessed: 2020-11-18.

https://server.scientific-sims.com/cfdlab/scientific-sims/nsu2d.html

Draft of 8:26 pm, Wednesday, November 18, 2020 158

[61] Anderson, G. R., Nemec, M., and Aftosmis, M. J., “Aerodynamic Shape Optimization Benchmarks

with Error Control and Automatic Parameterization,” 53rd AIAA Aerospace Sciences Meeting, AIAA

Paper 2015-1719, Kissimee, FL. January 2015. https://doi.org/10.2514/6.2015-1719.

[62] Bisson, F. and Nadarajah, S., “Adjoint-Based Aerodynamic Optimization of Benchmark Problems,”

AIAA Paper 2015-1948, 53rd AIAA Aerospace Sciences Meeting, Kissimmee, FL, January 2015,

https://doi.org/10.2514/6.2015-1948.

[63] Schotthofer, S., Zhou, B. Y., Albring, T. A., and Gauger, N. R., “Windowing Regularization Techniques

for Unsteady Aerodynamic Shape Optimization,” AIAA Aviation 2020 Forum, AIAA Paper 2020-3130,

Virtual Conference, June 2020, https://arc.aiaa.org/doi/abs/10.2514/6.2020-3130.

[64] “Adaptive Precision Floating-Point Arithmetic and Fast Robust Predicates for Computational Geome-

try,” https://www.cs.cmu.edu/~quake/robust.html, Accessed: 2020-08-17.

[65] Venditti, D. A., Grid Adaptation for Functional Outputs of Compressible Flow Simulations, Ph.D.

Dissertation, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, USA,

2002.

[66] Kulfan, B. M., “Universal parametric geometry representation method,” Journal of aircraft , Vol. 45,

No. 1, 2008, pp. 142–158.

[67] Diskin, B. and Thomas, J., “Accuracy of Gradient Reconstruction on Grids with High Aspect Ratio,”

01 2009.

https://www.cs.cmu.edu/~quake/robust.html

	List of Figures
	List of Tables
	Acknowledgments
	Chapter Background and Motivation
	Chapter Implementation Details: Aerodynamic Analysis, Sensitivities, and Parallelism
	Governing Equations
	Boundary Conditions
	No Penetration Boundary Condition (Slip Wall)
	Characteristic Boundary Condition (Inflow/Outflow Boundary)

	Spatial Discretization
	Numerical Flux
	Extension to Second-Order Spatial Accuracy
	Limiting Algorithm
	Smooth Function Implementations

	Nonlinear Solvers
	Linear Solvers
	The Design Problem
	Design Variables
	Mesh Deformation

	Sensitivity Computation Methods
	Finite Differences
	Tangent Formulation
	Discrete Adjoint Formulation

	Parallelism

	Chapter Pseudo-time Accurate Approaches for Design for the Tangent and Adjoint Problems for Simulations at Partial Convergence
	Pseudo-time Accurate Tangent Problem for Design Optimization
	Explicit Solve (Forward Euler)
	Low Storage Explicit Runge-Kutta (LSERK45) Solver
	Newton Solver
	General Sensitivity Convergence Proof for Approximate Tangent Linearization of the Fixed Point Iteration

	Pseudo-time Accurate Adjoint Problem for Design Optimization
	Explicit Solver (forward Euler)
	Low Storage Explicit Runge-Kutta Solver
	Newton Solver
	General Sensitivity Convergence Proof for Approximate Adjoint Linearization of the Fixed Point Iteration

	Chapter Verification of Implementation
	Verification of Analysis Order of Accuracy and Steady State Tangent and Adjoint Sensitivity Computation
	Verification of the Pseudo-Time Accurate Tangent and Adjoint Sensitivities
	Pseudo-time Accurate Tangent Verification
	Pseudo-time Accurate Adjoint Verification

	Summary

	Chapter Investigation into Tangent and Adjoint Computed Sensitivities
	The Pseudo-Time Adjoint as a Green's Function
	Sensitivity Behavior as a Function of Backwards-In-Iteration-Space Integration
	Application of the Pseudo-Time Accurate Adjoint to a Truncated Simulation
	Application of the Pseudo-Time Accurate Adjoint to Non-converging Primal Problem

	Sensitivity as a Function of Accuracy of Approximation of Fixed Point Linearization
	Results for Inexactly Linearized Explicit Runge-Kutta Solver
	Results for an Exact Jacobian Augmented with a Mass Matrix
	Results for an Inexact Jacobian Augmented with a Mass Matrix

	Summary

	Chapter Optimization Results
	Optimization of Symmetric Airfoil with Detached Bow Shock
	Investigation of Linear Tolerance on Design Optimization

	Optimization of Symmetric Airfoil with Trailing Edge Unsteadiness
	Optimization of ADODG NACA0012 Airfoil with Trailing Edge Unsteadiness
	Optimization of Truncated NACA0012 Airfoil in High Angle of Attack Flow
	Summary

	Chapter Pseudo-time Accurate Approaches to Error Estimation and Adaptive Mesh Refinement
	A Review of the Dual-Weighted Residual
	Virtual Mesh Method

	Mesh Refinement
	CST Parameterization and Boundary Curvature Correction

	Development of the Pseudo-Time Accurate Dual-Weighted Constraint
	Error Estimation for Newton's Method

	Mesh Refinement Results
	Detached Bow Shock Error Estimation
	Transonic Airfoil With Blunt Trailing Edge Error Estimation

	Summary

	Chapter Conclusions and Future Work
	Summary
	Contributions to the Field
	Future Work

