
Tangent and Adjoint Problems in Partially

Converged Flows

Emmett Padway

September 11th, 2020

University of Wyoming CFD Lab



Outline

• Introduction

• Motivation and approach

• Pseudo-time accurate formulation of tangent and adjoint systems

• Error due to approximate linearization of the fixed point

• Effect of averaging the objective function on the sensitivity behavior

• Application of pseudo-time accurate approach to aerodynamic shape

optimization

• Application of dual weighted constraint/fixed-point method

• Conclusions/future work

1



Outline

• Introduction

• Motivation and approach

• Pseudo-time accurate formulation of tangent and adjoint systems

• Error due to approximate linearization of the fixed point

• Effect of averaging the objective function on the sensitivity behavior

• Application of pseudo-time accurate approach to aerodynamic shape

optimization

• Application of dual weighted constraint/fixed-point method

• Conclusions/future work

1



Outline

• Introduction

• Motivation and approach

• Pseudo-time accurate formulation of tangent and adjoint systems

• Error due to approximate linearization of the fixed point

• Effect of averaging the objective function on the sensitivity behavior

• Application of pseudo-time accurate approach to aerodynamic shape

optimization

• Application of dual weighted constraint/fixed-point method

• Conclusions/future work

1



Outline

• Introduction

• Motivation and approach

• Pseudo-time accurate formulation of tangent and adjoint systems

• Error due to approximate linearization of the fixed point

• Effect of averaging the objective function on the sensitivity behavior

• Application of pseudo-time accurate approach to aerodynamic shape

optimization

• Application of dual weighted constraint/fixed-point method

• Conclusions/future work

1



Outline

• Introduction

• Motivation and approach

• Pseudo-time accurate formulation of tangent and adjoint systems

• Error due to approximate linearization of the fixed point

• Effect of averaging the objective function on the sensitivity behavior

• Application of pseudo-time accurate approach to aerodynamic shape

optimization

• Application of dual weighted constraint/fixed-point method

• Conclusions/future work

1



Outline

• Introduction

• Motivation and approach

• Pseudo-time accurate formulation of tangent and adjoint systems

• Error due to approximate linearization of the fixed point

• Effect of averaging the objective function on the sensitivity behavior

• Application of pseudo-time accurate approach to aerodynamic shape

optimization

• Application of dual weighted constraint/fixed-point method

• Conclusions/future work

1



Outline

• Introduction

• Motivation and approach

• Pseudo-time accurate formulation of tangent and adjoint systems

• Error due to approximate linearization of the fixed point

• Effect of averaging the objective function on the sensitivity behavior

• Application of pseudo-time accurate approach to aerodynamic shape

optimization

• Application of dual weighted constraint/fixed-point method

• Conclusions/future work

1



Outline

• Introduction

• Motivation and approach

• Pseudo-time accurate formulation of tangent and adjoint systems

• Error due to approximate linearization of the fixed point

• Effect of averaging the objective function on the sensitivity behavior

• Application of pseudo-time accurate approach to aerodynamic shape

optimization

• Application of dual weighted constraint/fixed-point method

• Conclusions/future work

1



Introduction



Introduction: CFD and Optimization

• CFD has become more widespread and practical as it has become

more automated.

• This has lead to a focus on automated design, mostly with gradient

based approaches.

• With an increased role in design has come greater coupling between

analysis and optimization codes.

• Due to decades of engineering we can assume the baseline design

will be optimized to the global minimum.

2



Introduction: CFD and Optimization

• CFD has become more widespread and practical as it has become

more automated.

• This has lead to a focus on automated design, mostly with gradient

based approaches.

• With an increased role in design has come greater coupling between

analysis and optimization codes.

• Due to decades of engineering we can assume the baseline design

will be optimized to the global minimum.

2



Introduction: CFD and Optimization

• CFD has become more widespread and practical as it has become

more automated.

• This has lead to a focus on automated design, mostly with gradient

based approaches.

• With an increased role in design has come greater coupling between

analysis and optimization codes.

• Due to decades of engineering we can assume the baseline design

will be optimized to the global minimum.

2



Introduction: CFD and Optimization

• CFD has become more widespread and practical as it has become

more automated.

• This has lead to a focus on automated design, mostly with gradient

based approaches.

• With an increased role in design has come greater coupling between

analysis and optimization codes.

• Due to decades of engineering we can assume the baseline design

will be optimized to the global minimum.

2



Introduction: the Design Problem

L = L(U(xv (xs(D))), xv (xs(D))) (1)

where:

• L is the objective function to be optimized

• u is the conservative variable vector

• xv is the volume mesh coordinate vector

• xs is the surface mesh coordinate vector

• D is the design variable vector

3



Introduction: the Design Problem

L = L(U(xv (xs(D))), xv (xs(D))) (1)

where:

• L is the objective function to be optimized

• u is the conservative variable vector

• xv is the volume mesh coordinate vector

• xs is the surface mesh coordinate vector

• D is the design variable vector

3



Introduction: the Design Problem

L = L(U(xv (xs(D))), xv (xs(D))) (1)

where:

• L is the objective function to be optimized

• u is the conservative variable vector

• xv is the volume mesh coordinate vector

• xs is the surface mesh coordinate vector

• D is the design variable vector

3



Introduction: the Design Problem

L = L(U(xv (xs(D))), xv (xs(D))) (1)

where:

• L is the objective function to be optimized

• u is the conservative variable vector

• xv is the volume mesh coordinate vector

• xs is the surface mesh coordinate vector

• D is the design variable vector

3



Introduction: the Design Problem

L = L(U(xv (xs(D))), xv (xs(D))) (1)

where:

• L is the objective function to be optimized

• u is the conservative variable vector

• xv is the volume mesh coordinate vector

• xs is the surface mesh coordinate vector

• D is the design variable vector

3



Introduction: the Design Problem

D

Solve
Primal

Problem

Compute
Objective & 
Sensitivities

Compute
Surface

Geometry

Compute
Volume
Mesh

Xs Converged?Xv U 𝐿,
𝑑𝐿

𝑑𝐷

No

Yes

Success!

Xv

Design Process Flow Chart

4



Introduction: Tangent/Forward Linearization

dL

dD
=

∂L

∂xv

dxv
dxs

dxs
dD

+
∂L

∂u

du

dxv

dxv
dxs

dxs
dD

(2)

5



Introduction: Tangent/Forward Linearization

For a converged flow the discretized form of the governing equations is

satisfied – R = 0 – and therefore the total derivative is equal to zero as

well: [
∂R

∂xv

]
dxv
dxs

dxs
dD

+

[
∂R

∂u

]
du

dxv

dxv
dxs

dxs
dD

= 0 (3)

Isolating the right-hand side:[
∂R

∂u

]
du

dxv

dxv
dxs

dxs
dD

= −
[
∂R

∂xv

]
dxv
dxs

dxs
dD

(4)

6



Introduction: Tangent/Forward Linearization

For a converged flow the discretized form of the governing equations is

satisfied – R = 0 – and therefore the total derivative is equal to zero as

well: [
∂R

∂xv

]
dxv
dxs

dxs
dD

+

[
∂R

∂u

]
du

dxv

dxv
dxs

dxs
dD

= 0 (3)

Isolating the right-hand side:[
∂R

∂u

]
du

dxv

dxv
dxs

dxs
dD

= −
[
∂R

∂xv

]
dxv
dxs

dxs
dD

(4)

6



Introduction: Tangent/Forward Linearization

We could solve for du
dxv

by dividing both sides by dxv
dxs

dxs
dD .[

∂R

∂u

]
du

dxv
= −

[
∂R

∂xv

]
(5)

but this would scale with the mesh, and so we don’t divide both sides

and rewrite the equation in simplified notation as below:[
∂R

∂u

]
du

dD
= −

[
∂R

∂x

]
dx

dD
(6)

7



Introduction: Tangent/Forward Linearization

We could solve for du
dxv

by dividing both sides by dxv
dxs

dxs
dD .[

∂R

∂u

]
du

dxv
= −

[
∂R

∂xv

]
(5)

but this would scale with the mesh, and so we don’t divide both sides

and rewrite the equation in simplified notation as below:[
∂R

∂u

]
du

dD
= −

[
∂R

∂x

]
dx

dD
(6)

7



Introduction: Tangent/Forward Linearization

The sensitivity equation becomes in reduced notation:

dL

dD
=
∂L

∂x

dx

dD
− ∂L

∂u

[
∂R

∂u

]−1 [
∂R

∂x

]
dx

dD
(7)

8



Introduction: Adjoint/Reverse Linearization

The adjoint equation begins from the objective function augmented with

a Lagrangian vector and constraint equal to zero:

J = L(U(xv (xs(D))), xv (xs(D))) + ΛTR(U(xv (xs(D))), xv (xs(D))) (8)

Taking the total derivative:

dJ

dD
=

(
∂L

∂xv
+
∂L

∂u

du

dxv

)
dxv
dxs

dxs
dD

+ΛT

[(
∂R

∂xv
+
∂R

∂u

du

dxv

)
dxv
dxs

dxs
dD

]
(9)

9



Introduction: Adjoint/Reverse Linearization

The adjoint equation begins from the objective function augmented with

a Lagrangian vector and constraint equal to zero:

J = L(U(xv (xs(D))), xv (xs(D))) + ΛTR(U(xv (xs(D))), xv (xs(D))) (8)

Taking the total derivative:

dJ

dD
=

(
∂L

∂xv
+
∂L

∂u

du

dxv

)
dxv
dxs

dxs
dD

+ΛT

[(
∂R

∂xv
+
∂R

∂u

du

dxv

)
dxv
dxs

dxs
dD

]
(9)

9



Introduction: Adjoint/Reverse Linearization

By grouping like terms we can obtain the below expression:

dJ

dD
=

(
∂L

∂xv
+ ΛT ∂R

∂xv

)
dxv
dxs

dxs
dD

+

(
∂L

∂u
+ ΛT ∂R

∂u

)
du

dxv

dxv
dxs

dxs
dD

(10)

To avoid computing du
dxv

dxv
dxs

dxs
dD we define an adjoint equation:[
∂R

∂u

]T
Λ = −

[
∂L

∂u

]T
(11)

10



Introduction: Adjoint/Reverse Linearization

By grouping like terms we can obtain the below expression:

dJ

dD
=

(
∂L

∂xv
+ ΛT ∂R

∂xv

)
dxv
dxs

dxs
dD

+

(
∂L

∂u
+ ΛT ∂R

∂u

)
du

dxv

dxv
dxs

dxs
dD

(10)

To avoid computing du
dxv

dxv
dxs

dxs
dD we define an adjoint equation:[
∂R

∂u

]T
Λ = −

[
∂L

∂u

]T
(11)

10



Introduction: Adjoint/Reverse Linearization

This gives the following expression for the sensitivities

dL

dD
=

(
∂L

∂xv
+ ΛT ∂R

∂xv

)
dxv
dxs

dxs
dD

(12)

We then define a mesh adjoint:

dL

dD
= ΛT

xs

dxs
dD

(13)

For simplicity, the sensitivity equation used is written as:

dL

dD
=

∂L

∂D
+ ΛT ∂R

∂D
(14)

11



Introduction: Adjoint/Reverse Linearization

This gives the following expression for the sensitivities

dL

dD
=

(
∂L

∂xv
+ ΛT ∂R

∂xv

)
dxv
dxs

dxs
dD

(12)

We then define a mesh adjoint:

dL

dD
= ΛT

xs

dxs
dD

(13)

For simplicity, the sensitivity equation used is written as:

dL

dD
=

∂L

∂D
+ ΛT ∂R

∂D
(14)

11



Introduction: Adjoint/Reverse Linearization

This gives the following expression for the sensitivities

dL

dD
=

(
∂L

∂xv
+ ΛT ∂R

∂xv

)
dxv
dxs

dxs
dD

(12)

We then define a mesh adjoint:

dL

dD
= ΛT

xs

dxs
dD

(13)

For simplicity, the sensitivity equation used is written as:

dL

dD
=

∂L

∂D
+ ΛT ∂R

∂D
(14)

11



Introduction: Tangent and Adjoint Method Summary

• The tangent is called the forward linearization because it begins with

a perturbation to the design variables and is propagated through to

the objective.

• In contrast, the adjoint begins with the perturbation to the objective

function and back propagates through the objective function

evaluation to the design variables.

• Both also require solution of a linear system to provide sensitivities.

• The tangent system has as many right hand-sides as design variables.

• The adjoint system scales with objective functions (or quantities of

interest).

• Both methods require that the discretized governing equations be

satisfied.

12



Introduction: Tangent and Adjoint Method Summary

• The tangent is called the forward linearization because it begins with

a perturbation to the design variables and is propagated through to

the objective.

• In contrast, the adjoint begins with the perturbation to the objective

function and back propagates through the objective function

evaluation to the design variables.

• Both also require solution of a linear system to provide sensitivities.

• The tangent system has as many right hand-sides as design variables.

• The adjoint system scales with objective functions (or quantities of

interest).

• Both methods require that the discretized governing equations be

satisfied.

12



Introduction: Tangent and Adjoint Method Summary

• The tangent is called the forward linearization because it begins with

a perturbation to the design variables and is propagated through to

the objective.

• In contrast, the adjoint begins with the perturbation to the objective

function and back propagates through the objective function

evaluation to the design variables.

• Both also require solution of a linear system to provide sensitivities.

• The tangent system has as many right hand-sides as design variables.

• The adjoint system scales with objective functions (or quantities of

interest).

• Both methods require that the discretized governing equations be

satisfied.

12



Introduction: Tangent and Adjoint Method Summary

• The tangent is called the forward linearization because it begins with

a perturbation to the design variables and is propagated through to

the objective.

• In contrast, the adjoint begins with the perturbation to the objective

function and back propagates through the objective function

evaluation to the design variables.

• Both also require solution of a linear system to provide sensitivities.

• The tangent system has as many right hand-sides as design variables.

• The adjoint system scales with objective functions (or quantities of

interest).

• Both methods require that the discretized governing equations be

satisfied.

12



Introduction: Tangent and Adjoint Method Summary

• The tangent is called the forward linearization because it begins with

a perturbation to the design variables and is propagated through to

the objective.

• In contrast, the adjoint begins with the perturbation to the objective

function and back propagates through the objective function

evaluation to the design variables.

• Both also require solution of a linear system to provide sensitivities.

• The tangent system has as many right hand-sides as design variables.

• The adjoint system scales with objective functions (or quantities of

interest).

• Both methods require that the discretized governing equations be

satisfied.

12



Introduction: Tangent and Adjoint Method Summary

• The tangent is called the forward linearization because it begins with

a perturbation to the design variables and is propagated through to

the objective.

• In contrast, the adjoint begins with the perturbation to the objective

function and back propagates through the objective function

evaluation to the design variables.

• Both also require solution of a linear system to provide sensitivities.

• The tangent system has as many right hand-sides as design variables.

• The adjoint system scales with objective functions (or quantities of

interest).

• Both methods require that the discretized governing equations be

satisfied.

12



Motivation and Approach



Motivation: Non-Zero Residual?

As the field has moved to higher order and more complex geometries

convergence issues have become more common. A simple example is that

of the truncated NACA0012 airfoil:

(a) Full Airfoil (b) Trailing Edge with Streamlines

Non-converging simulation for NACA0012 airfoil with blunt trailing edge

13



Motivation: Non-Zero Residual?

The lack of convergence shows itself in oscillatory behavior of the

nonlinear problem and this figure shows good convergence for the early

meshes and poor behavior on the finer meshes that are less dissipative

Convergence history for adaptive simulation with Cart3D

14



Motivation: Non-Zero Residual?

If we run for many iterations on the first non-convergent mesh we can see

the behavior of these limit cycle oscillations:

(a) Residual (b) Functional

Limit cycle oscillations for first non-convergent mesh (10th mesh)

15



Motivation: Non-Zero Residual?

When we compare the adjoint fields between the mean residual state and

the minimum residual state we see notable differences:

(a) Mean Residual State (b) Minimum Residual State

Adjoint linearized about states in limit cycle oscillations

16



Motivation: Non-Zero Residual?

If small scale unsteadiness leads to that sort of challenge, imagine more

complex geometries with large scale unsteadiness.

17



Motivation: Krakos and Darmofal 2012

• Steady-state problems mimicking physical unsteadiness can lead to

non-physical results.

• The adjoint system is difficult to solve and the results are sensitive

to when the simulation is terminated.

• This is an issue, as when a simulation mimics the physical

unsteadiness by entering limit-cycle oscillations, no state is more

valid than another.

• The time accurate approach is the proper way to view these problems

as the steady-state converged problem is unphysical and provides

very different sensitivities than the time-accurate averaged case.

18



Motivation: Krakos and Darmofal 2012

• Steady-state problems mimicking physical unsteadiness can lead to

non-physical results.

• The adjoint system is difficult to solve and the results are sensitive

to when the simulation is terminated.

• This is an issue, as when a simulation mimics the physical

unsteadiness by entering limit-cycle oscillations, no state is more

valid than another.

• The time accurate approach is the proper way to view these problems

as the steady-state converged problem is unphysical and provides

very different sensitivities than the time-accurate averaged case.

18



Motivation: Krakos and Darmofal 2012

• Steady-state problems mimicking physical unsteadiness can lead to

non-physical results.

• The adjoint system is difficult to solve and the results are sensitive

to when the simulation is terminated.

• This is an issue, as when a simulation mimics the physical

unsteadiness by entering limit-cycle oscillations, no state is more

valid than another.

• The time accurate approach is the proper way to view these problems

as the steady-state converged problem is unphysical and provides

very different sensitivities than the time-accurate averaged case.

18



Motivation: Krakos and Darmofal 2012

• Steady-state problems mimicking physical unsteadiness can lead to

non-physical results.

• The adjoint system is difficult to solve and the results are sensitive

to when the simulation is terminated.

• This is an issue, as when a simulation mimics the physical

unsteadiness by entering limit-cycle oscillations, no state is more

valid than another.

• The time accurate approach is the proper way to view these problems

as the steady-state converged problem is unphysical and provides

very different sensitivities than the time-accurate averaged case.

18



Motivation: Mishra et al. 2015

(a) Relative Error (b) Absolute Error

Complex vs. adjoint sensitivities for partially converged unsteady rotorcraft

flows

Mishra et al. show that for time-dependent rotorcraft optimization,

partial convergence of the implicit system at each time-step leads to

growing adjoint sensitivity error. 19



Motivation: Mishra et al. 2015

When taken in combination with Krakos and Darmofal, this shows that a

time accurate approach is appropriate, but when we move to the time

accurate approach, the cost of deep convergence is generally prohibitive.

20



Motivation: Luers et al. 2018

Steady-state volumetric optimization of a CRESCENDO turbine with

objective function and constraint:

• Simulation is run through a four order of magnitude residual

decrease, and seemingly converged objective function and constraint

values.

• They show close qualitative agreement between adjoint and

finite-difference computed sensitivities.

• They obtain a better final design from finite-difference computed

sensitivities than the adjoint-computed ones.

21



Motivation: Luers et al. 2018

Steady-state volumetric optimization of a CRESCENDO turbine with

objective function and constraint:

• Simulation is run through a four order of magnitude residual

decrease, and seemingly converged objective function and constraint

values.

• They show close qualitative agreement between adjoint and

finite-difference computed sensitivities.

• They obtain a better final design from finite-difference computed

sensitivities than the adjoint-computed ones.

21



Motivation: Luers et al. 2018

Steady-state volumetric optimization of a CRESCENDO turbine with

objective function and constraint:

• Simulation is run through a four order of magnitude residual

decrease, and seemingly converged objective function and constraint

values.

• They show close qualitative agreement between adjoint and

finite-difference computed sensitivities.

• They obtain a better final design from finite-difference computed

sensitivities than the adjoint-computed ones.

21



Motivation: Luers et al. 2018

Steady-state volumetric optimization of a CRESCENDO turbine with

objective function and constraint:

• Simulation is run through a four order of magnitude residual

decrease, and seemingly converged objective function and constraint

values.

• They show close qualitative agreement between adjoint and

finite-difference computed sensitivities.

• They obtain a better final design from finite-difference computed

sensitivities than the adjoint-computed ones.

21



Approach: Pseudo-Time Accurate Approach

• We employ a pseudo-time accurate approach that applies the

unsteady adjoint to the steady state problem.

• This can also be seen as an extension of the discrete adjoint

approach (discretize, solve, linearize solution process).

• In the tangent problem we take the derivative of every step used to

solve the analysis to march forward in pseudo-time.

• In the adjoint problem, we transpose those derivatives to march back

in pseudo-time.

• This approach will correspond exactly to the complex-step

finite-difference computed sensitivities and is developed for use in

unconverged flows.

• This assumes that the complex-step finite-difference computed

sensitivities, which are the sensitivities of the solution process, are

the appropriate sensitivities to use for optimization.

22



Approach: Pseudo-Time Accurate Approach

• We employ a pseudo-time accurate approach that applies the

unsteady adjoint to the steady state problem.

• This can also be seen as an extension of the discrete adjoint

approach (discretize, solve, linearize solution process).

• In the tangent problem we take the derivative of every step used to

solve the analysis to march forward in pseudo-time.

• In the adjoint problem, we transpose those derivatives to march back

in pseudo-time.

• This approach will correspond exactly to the complex-step

finite-difference computed sensitivities and is developed for use in

unconverged flows.

• This assumes that the complex-step finite-difference computed

sensitivities, which are the sensitivities of the solution process, are

the appropriate sensitivities to use for optimization.

22



Approach: Pseudo-Time Accurate Approach

• We employ a pseudo-time accurate approach that applies the

unsteady adjoint to the steady state problem.

• This can also be seen as an extension of the discrete adjoint

approach (discretize, solve, linearize solution process).

• In the tangent problem we take the derivative of every step used to

solve the analysis to march forward in pseudo-time.

• In the adjoint problem, we transpose those derivatives to march back

in pseudo-time.

• This approach will correspond exactly to the complex-step

finite-difference computed sensitivities and is developed for use in

unconverged flows.

• This assumes that the complex-step finite-difference computed

sensitivities, which are the sensitivities of the solution process, are

the appropriate sensitivities to use for optimization.

22



Approach: Pseudo-Time Accurate Approach

• We employ a pseudo-time accurate approach that applies the

unsteady adjoint to the steady state problem.

• This can also be seen as an extension of the discrete adjoint

approach (discretize, solve, linearize solution process).

• In the tangent problem we take the derivative of every step used to

solve the analysis to march forward in pseudo-time.

• In the adjoint problem, we transpose those derivatives to march back

in pseudo-time.

• This approach will correspond exactly to the complex-step

finite-difference computed sensitivities and is developed for use in

unconverged flows.

• This assumes that the complex-step finite-difference computed

sensitivities, which are the sensitivities of the solution process, are

the appropriate sensitivities to use for optimization.

22



Approach: Pseudo-Time Accurate Approach

• We employ a pseudo-time accurate approach that applies the

unsteady adjoint to the steady state problem.

• This can also be seen as an extension of the discrete adjoint

approach (discretize, solve, linearize solution process).

• In the tangent problem we take the derivative of every step used to

solve the analysis to march forward in pseudo-time.

• In the adjoint problem, we transpose those derivatives to march back

in pseudo-time.

• This approach will correspond exactly to the complex-step

finite-difference computed sensitivities and is developed for use in

unconverged flows.

• This assumes that the complex-step finite-difference computed

sensitivities, which are the sensitivities of the solution process, are

the appropriate sensitivities to use for optimization.

22



Approach: Pseudo-Time Accurate Approach

• We employ a pseudo-time accurate approach that applies the

unsteady adjoint to the steady state problem.

• This can also be seen as an extension of the discrete adjoint

approach (discretize, solve, linearize solution process).

• In the tangent problem we take the derivative of every step used to

solve the analysis to march forward in pseudo-time.

• In the adjoint problem, we transpose those derivatives to march back

in pseudo-time.

• This approach will correspond exactly to the complex-step

finite-difference computed sensitivities and is developed for use in

unconverged flows.

• This assumes that the complex-step finite-difference computed

sensitivities, which are the sensitivities of the solution process, are

the appropriate sensitivities to use for optimization.

22



Code Overview/Capabilities

• steady-state Euler code

• second-order spatially accurate using gradient reconstruction

• van-leer flux splitting used predominantly

• Venkatakrishnan (VK) limiter with stagnation fix and temporary first

order realizability check

• explicit and implicit solvers

• GMRES or BiCGStab Krylov linear solvers preconditioned with point

implicit Jacobi or Gauss-Seidel

• line-search and CFL controller to assist implicit solver

• tangent, discrete adjoint and complex sensitivities for steady state

sensitivity computation

• pseudo-time accurate tangent and adjoint capabilities for all solver

schemes

23



Derivation for PTA Tangent and

Adjoint Formulation



Derivation for PTA Tangent and Adjoint Formulation

• PTA tangent and adjoint derivations for a general fixed point

iteration

• PTA tangent derivation and adjoint formulation for forward Euler

(simplest explicit solver)

• PTA tangent derivation and adjoint formulation for

inexact-quasi-Newton method (workhorse implicit solver)

24



Derivation for PTA Tangent and Adjoint Formulation

• PTA tangent and adjoint derivations for a general fixed point

iteration

• PTA tangent derivation and adjoint formulation for forward Euler

(simplest explicit solver)

• PTA tangent derivation and adjoint formulation for

inexact-quasi-Newton method (workhorse implicit solver)

24



Derivation for PTA Tangent and Adjoint Formulation

• PTA tangent and adjoint derivations for a general fixed point

iteration

• PTA tangent derivation and adjoint formulation for forward Euler

(simplest explicit solver)

• PTA tangent derivation and adjoint formulation for

inexact-quasi-Newton method (workhorse implicit solver)

24



PTA Tangent System for General Fixed-Point Iteration

For a general fixed point iteration:

uk+1 = uk + H(uk(D),D) (15)

the tangent sensitivity equation is:

duk+1

dD
=

duk

dD
+

dH

dD
(16)

25



PTA Tangent System for General Fixed-Point Iteration

For an objective functional dependent on the last m states for a

simulation that runs n time steps:

L = L(un, un−1, ..., un−m,D) (17)

the sensitivity equation is defined as below.

dL

dD
=
∂L

∂x

dx

dD
+

∂L

∂un
dun

dD
+

∂L

∂un−1

dun−1

dD
+ ...+

∂L

∂un−m

dun−m

dD
(18)

We can substitute the pseudo-time accurate tangent provided values for
duk

dD .

26



PTA Tangent System for General Fixed-Point Iteration

For an objective functional dependent on the last m states for a

simulation that runs n time steps:

L = L(un, un−1, ..., un−m,D) (17)

the sensitivity equation is defined as below.

dL

dD
=
∂L

∂x

dx

dD
+

∂L

∂un
dun

dD
+

∂L

∂un−1

dun−1

dD
+ ...+

∂L

∂un−m

dun−m

dD
(18)

We can substitute the pseudo-time accurate tangent provided values for
duk

dD .

26



PTA Adjoint System for General Fixed-Point Iteration

Here we begin with an objective functional dependent on the last m

states for a simulation that runs n time steps:

L = L(un, un−1, ..., un−m,D) (19)

with the pseudo-time constraint resulting from shifting the fixed-point

iteration by its output.

G k(uk(D), uk−1(D),D) = uk − uk−1 − H(uk−1(D),D) = 0 (20)

We then form our augmented objective functional with the above

constraint and a corresponding adjoint for each pseudo-time step.

J(D, un, un−1, ...,Λn,Λn−1, ...) = L(un, un−1, ..., un−m,D)

+ ΛnTG n(un(D), un−1(D),D)

+ Λn−1TG n−1(un−1(D), un−2(D),D)

+ ...

+ Λ1TG 1(u1(D), u0(D),D)

(21)

27



PTA Adjoint System for General Fixed-Point Iteration

Here we begin with an objective functional dependent on the last m

states for a simulation that runs n time steps:

L = L(un, un−1, ..., un−m,D) (19)

with the pseudo-time constraint resulting from shifting the fixed-point

iteration by its output.

G k(uk(D), uk−1(D),D) = uk − uk−1 − H(uk−1(D),D) = 0 (20)

We then form our augmented objective functional with the above

constraint and a corresponding adjoint for each pseudo-time step.

J(D, un, un−1, ...,Λn,Λn−1, ...) = L(un, un−1, ..., un−m,D)

+ ΛnTG n(un(D), un−1(D),D)

+ Λn−1TG n−1(un−1(D), un−2(D),D)

+ ...

+ Λ1TG 1(u1(D), u0(D),D)

(21)

27



PTA Adjoint System for General Fixed-Point Iteration

Here we begin with an objective functional dependent on the last m

states for a simulation that runs n time steps:

L = L(un, un−1, ..., un−m,D) (19)

with the pseudo-time constraint resulting from shifting the fixed-point

iteration by its output.

G k(uk(D), uk−1(D),D) = uk − uk−1 − H(uk−1(D),D) = 0 (20)

We then form our augmented objective functional with the above

constraint and a corresponding adjoint for each pseudo-time step.

J(D, un, un−1, ...,Λn,Λn−1, ...) = L(un, un−1, ..., un−m,D)

+ ΛnTG n(un(D), un−1(D),D)

+ Λn−1TG n−1(un−1(D), un−2(D),D)

+ ...

+ Λ1TG 1(u1(D), u0(D),D)

(21)
27



PTA Adjoint System for General Fixed-Point Iteration

Taking the derivative of the augmented objective functional yields:

dJ

dD
=
∂L

∂x

dx

dD
+

∂L

∂un
dun

dD
+

∂L

∂un−1

dun−1

dD
+ ...+

∂L

∂un−m

dun−m

dD

+ ΛnT

(
∂G n

∂x

dx

dD
+
∂G n

∂un
dun

dD
+

∂G n

∂un−1

dun−1

dD

)
+ Λn−1T

(
∂G n−1

∂x

dx

dD
+
∂G n−1

∂un−1

dun−1

dD
+
∂G n−1

∂un−2

dun−2

dD

)
+ ...

+ Λ1T

(
∂G 1

∂x

dx

dD
+
∂G 1

∂u1

du1

dD
+
∂G 1

∂u0

du0

dD

)
(22)

28



PTA Adjoint System for General Fixed-Point Iteration

As in the steady-state adjoint we choose the adjoint variable such that

we do not have to calculate duk

dD , which returns a series of adjoint

recurrence relations:

∂L

∂uk−1
+ ΛkT ∂G k

∂uk−1
+ Λk−1T ∂G

k−1

∂uk−1
= 0 (23)

with Λn+1T = 0.

The recurrence relation marches back in pseudo-time:

Λk−1T ∂G
k−1

∂uk−1
= ΛkT ∂G k

∂uk−1
− ∂L

∂uk−1
(24)

which returns the below sensitivity equation.

dJ

dD
=

∂L

∂D
+ ΛnT ∂G

n

∂D
+ Λn−1T ∂G

n−1

∂D
+ Λn−2T ∂G

n−2

∂D
+ ... (25)

29



PTA Adjoint System for General Fixed-Point Iteration

As in the steady-state adjoint we choose the adjoint variable such that

we do not have to calculate duk

dD , which returns a series of adjoint

recurrence relations:

∂L

∂uk−1
+ ΛkT ∂G k

∂uk−1
+ Λk−1T ∂G

k−1

∂uk−1
= 0 (23)

with Λn+1T = 0. The recurrence relation marches back in pseudo-time:

Λk−1T ∂G
k−1

∂uk−1
= ΛkT ∂G k

∂uk−1
− ∂L

∂uk−1
(24)

which returns the below sensitivity equation.

dJ

dD
=

∂L

∂D
+ ΛnT ∂G

n

∂D
+ Λn−1T ∂G

n−1

∂D
+ Λn−2T ∂G

n−2

∂D
+ ... (25)

29



PTA Adjoint System for General Fixed-Point Iteration

As in the steady-state adjoint we choose the adjoint variable such that

we do not have to calculate duk

dD , which returns a series of adjoint

recurrence relations:

∂L

∂uk−1
+ ΛkT ∂G k

∂uk−1
+ Λk−1T ∂G

k−1

∂uk−1
= 0 (23)

with Λn+1T = 0. The recurrence relation marches back in pseudo-time:

Λk−1T ∂G
k−1

∂uk−1
= ΛkT ∂G k

∂uk−1
− ∂L

∂uk−1
(24)

which returns the below sensitivity equation.

dJ

dD
=

∂L

∂D
+ ΛnT ∂G

n

∂D
+ Λn−1T ∂G

n−1

∂D
+ Λn−2T ∂G

n−2

∂D
+ ... (25)

29



PTA Tangent System for Forward Euler (Derivation)

We look at our pseudo-time evolution equation:

H(uk ,D) = CFL∆tR (26)

where CFL is a parameter and ∆t is a local time step.

30



PTA Tangent System for Forward Euler (Derivation)

uk = uk−1 + CFL∆t(uk−1(D), x(D))R(uk−1(D), x(D)) (27)

We take the derivative and obtain a pseudo-time evolution equation:

duk

dD
=

duk−1

dD
+ CFL∆t

[
∂R

∂x

dx

dD
+

[
∂R(uk−1)

∂uk−1

]
2

du

dD

k−1
]

+ CFL

[
∂∆t

∂x

dx

dD
+

∂∆t

∂uk−1

duk−1

dD

]
R(uk−1)

(28)

By running this relation through pseudo-time we can obtain the exact

sensitivities at every pseudo-time step.

31



PTA Tangent System for Forward Euler (Derivation)

uk = uk−1 + CFL∆t(uk−1(D), x(D))R(uk−1(D), x(D)) (27)

We take the derivative and obtain a pseudo-time evolution equation:

duk

dD
=

duk−1

dD
+ CFL∆t

[
∂R

∂x

dx

dD
+

[
∂R(uk−1)

∂uk−1

]
2

du

dD

k−1
]

+ CFL

[
∂∆t

∂x

dx

dD
+

∂∆t

∂uk−1

duk−1

dD

]
R(uk−1)

(28)

By running this relation through pseudo-time we can obtain the exact

sensitivities at every pseudo-time step.

31



PTA Adjoint System for Forward Euler

Adjoint and sensitivity increment equations for forward Euler:

∆Λk−1 =

[
∂H

∂uk−1

]T
Λk − ∂L

∂uk−1
(29)

∆Λk−1 = −
[
CFL∆tk−1

[
∂R(uk−1)

∂uk−1

]
2

+ CFL
∂∆t

∂uk−1
R

]T
Λk − ∂L

∂uk−1

(30)

∆
dJ

dD

k

= ΛkT

[
∂H

∂D

]
− ∂L

∂D

k−1

(31)

∆
dJ

dD

k

= −ΛkT

[
CFL∆tk−1 ∂R(uk−1)

∂D
+ CFL

∂∆tk−1

∂D
R

]
− ∂L

∂D

k−1

(32)

32



PTA Adjoint System for Forward Euler

Adjoint and sensitivity increment equations for forward Euler:

∆Λk−1 =

[
∂H

∂uk−1

]T
Λk − ∂L

∂uk−1
(29)

∆Λk−1 = −
[
CFL∆tk−1

[
∂R(uk−1)

∂uk−1

]
2

+ CFL
∂∆t

∂uk−1
R

]T
Λk − ∂L

∂uk−1

(30)

∆
dJ

dD

k

= ΛkT

[
∂H

∂D

]
− ∂L

∂D

k−1

(31)

∆
dJ

dD

k

= −ΛkT

[
CFL∆tk−1 ∂R(uk−1)

∂D
+ CFL

∂∆tk−1

∂D
R

]
− ∂L

∂D

k−1

(32)

32



PTA Adjoint System for Forward Euler

Adjoint and sensitivity increment equations for forward Euler:

∆Λk−1 =

[
∂H

∂uk−1

]T
Λk − ∂L

∂uk−1
(29)

∆Λk−1 = −
[
CFL∆tk−1

[
∂R(uk−1)

∂uk−1

]
2

+ CFL
∂∆t

∂uk−1
R

]T
Λk − ∂L

∂uk−1

(30)

∆
dJ

dD

k

= ΛkT

[
∂H

∂D

]
− ∂L

∂D

k−1

(31)

∆
dJ

dD

k

= −ΛkT

[
CFL∆tk−1 ∂R(uk−1)

∂D
+ CFL

∂∆tk−1

∂D
R

]
− ∂L

∂D

k−1

(32)

32



PTA Adjoint System for Forward Euler

Adjoint and sensitivity increment equations for forward Euler:

∆Λk−1 =

[
∂H

∂uk−1

]T
Λk − ∂L

∂uk−1
(29)

∆Λk−1 = −
[
CFL∆tk−1

[
∂R(uk−1)

∂uk−1

]
2

+ CFL
∂∆t

∂uk−1
R

]T
Λk − ∂L

∂uk−1

(30)

∆
dJ

dD

k

= ΛkT

[
∂H

∂D

]
− ∂L

∂D

k−1

(31)

∆
dJ

dD

k

= −ΛkT

[
CFL∆tk−1 ∂R(uk−1)

∂D
+ CFL

∂∆tk−1

∂D
R

]
− ∂L

∂D

k−1

(32)

32



Nonlinear Solver: Newton’s Method

To solve the nonlinear problem we use a quasi-Newton method using

pseudo-transient continuation (PTC) in a BDF1 pseudo temporal

discretization scheme. The pseudo-time stepping procedure being:

uk = uk−1 + ∆uk−1 (33)

where ∆u is calculated by solving the linear system below.

[Pk−1] ∆uk−1 = R(uk−1(D),X (D)) (34)

33



Nonlinear Solver: Newton’s Method

The preconditioner matrix Pk is:

Pk =

[
∂R

∂u

]
1

+ M (35)

and
[
∂R
∂u

]
1

is an first order approximation to the Jacobian and M is a

suitable mass matrix.

M =
vol

CFL∆t
(36)

• ∆t is the local time step.

• We have added a combined line-search and CFL controller to assist

with stability and non-linear convergence.

34



Nonlinear Solver: Newton’s Method

The preconditioner matrix Pk is:

Pk =

[
∂R

∂u

]
1

+ M (35)

and
[
∂R
∂u

]
1

is an first order approximation to the Jacobian and M is a

suitable mass matrix.

M =
vol

CFL∆t
(36)

• ∆t is the local time step.

• We have added a combined line-search and CFL controller to assist

with stability and non-linear convergence.

34



Nonlinear Solver: Newton’s Method

The preconditioner matrix Pk is:

Pk =

[
∂R

∂u

]
1

+ M (35)

and
[
∂R
∂u

]
1

is an first order approximation to the Jacobian and M is a

suitable mass matrix.

M =
vol

CFL∆t
(36)

• ∆t is the local time step.

• We have added a combined line-search and CFL controller to assist

with stability and non-linear convergence.

34



PTA Tangent system for Newton’s Method

Taking the derivative of the nonlinear solver gives the following

expression.
duk

dD
=

duk−1

dD
+

d [Pk−1]−1 R(uk−1,D)

dD
(37)

If you expand the derivative:

duk

dD
=

duk−1

dD
+ [Pk−1]−1

[
dR(uk−1,D)

dD

]
+

d [Pk−1]−1

dD
R(uk−1,D)

(38)

35



PTA Tangent system for Newton’s Method

Taking the derivative of the nonlinear solver gives the following

expression.
duk

dD
=

duk−1

dD
+

d [Pk−1]−1 R(uk−1,D)

dD
(37)

If you expand the derivative:

duk

dD
=

duk−1

dD
+ [Pk−1]−1

[
dR(uk−1,D)

dD

]
+

d [Pk−1]−1

dD
R(uk−1,D)

(38)

35



PTA Tangent system for Newton’s Method

• Fully linearizing the matrix inverse is not feasible, especially for more

complicated linear solvers, e.g. GMRES.

• There are two ways to tackle the linearization of the matrix inverse.

1. Use complex perturbations in the conservative variable and the nodal

coordinate vectors to obtain the Frechét derivative of the linear

system solve.

2. Identity for the derivative of the matrix inverse, this will not be exact

except in the limit of machine zero linear system tolerance, but it is

less expensive and simpler: dA−1

dx
= −A−1 dA

dx
A−1.

36



PTA Tangent system for Newton’s Method

• Fully linearizing the matrix inverse is not feasible, especially for more

complicated linear solvers, e.g. GMRES.

• There are two ways to tackle the linearization of the matrix inverse.

1. Use complex perturbations in the conservative variable and the nodal

coordinate vectors to obtain the Frechét derivative of the linear

system solve.

2. Identity for the derivative of the matrix inverse, this will not be exact

except in the limit of machine zero linear system tolerance, but it is

less expensive and simpler: dA−1

dx
= −A−1 dA

dx
A−1.

36



PTA Tangent system for Newton’s Method

• Fully linearizing the matrix inverse is not feasible, especially for more

complicated linear solvers, e.g. GMRES.

• There are two ways to tackle the linearization of the matrix inverse.

1. Use complex perturbations in the conservative variable and the nodal

coordinate vectors to obtain the Frechét derivative of the linear

system solve.

2. Identity for the derivative of the matrix inverse, this will not be exact

except in the limit of machine zero linear system tolerance, but it is

less expensive and simpler: dA−1

dx
= −A−1 dA

dx
A−1.

36



PTA Tangent system for Newton’s Method

• Fully linearizing the matrix inverse is not feasible, especially for more

complicated linear solvers, e.g. GMRES.

• There are two ways to tackle the linearization of the matrix inverse.

1. Use complex perturbations in the conservative variable and the nodal

coordinate vectors to obtain the Frechét derivative of the linear

system solve.

2. Identity for the derivative of the matrix inverse, this will not be exact

except in the limit of machine zero linear system tolerance, but it is

less expensive and simpler: dA−1

dx
= −A−1 dA

dx
A−1.

36



PTA Tangent system for Newton’s Method

Starting from the nonlinear solver:

uk = uk−1 + ∆u = uk−1 + [Pk−1]−1R (39)

We can take the derivative and substitute in with the inverse identity:

37



PTA Tangent system for Newton’s Method

Starting from the nonlinear solver:

uk = uk−1 + ∆u = uk−1 + [Pk−1]−1R (39)

We can take the derivative and substitute in with the inverse identity:

duk

dD
=

duk−1

dD
+ [Pk−1]−1

[[
∂R(uk−1)

∂uk−1

]
2

duk−1

dD
+

[
∂R

∂x

]
dx

dD

]
− [Pk−1]−1 d [Pk−1]

dD
[Pk−1]−1R(uk−1,D)

(40)

37



PTA Tangent system for Newton’s Method

Starting from the nonlinear solver:

uk = uk−1 + ∆u = uk−1 + [Pk−1]−1R (39)

We can take the derivative and substitute in with the inverse identity:

duk

dD
=

duk−1

dD
+ [Pk−1]−1

[[
∂R(uk−1)

∂uk−1

]
2

duk−1

dD
+

[
∂R

∂x

]
dx

dD

]
− [Pk−1]−1

[
∂Pk−1

∂uk−1

duk−1

dD
+
∂Pk−1

∂x

dx

dD

]
∆u

(40)

37



PTA Tangent system for Newton’s Method

Pseudo-time evolution equation of conservative variable sensitivities:

duk

dD
=

duk−1

dD
+ ∆

(
duk−1

dD

)
(41)

[Pk−1]∆

(
duk−1

dD

)
=

[[
∂R

∂uk−1

]
2

duk−1

dD
+

[
∂R

∂x

]
dx

dD

]
−
[
∂Pk−1

∂uk−1

duk−1

dD
+
∂Pk−1

∂x

dx

dD

]
∆u

(42)

38



PTA Tangent system for Newton’s Method

Pseudo-time evolution equation of conservative variable sensitivities:

duk

dD
=

duk−1

dD
+ ∆

(
duk−1

dD

)
(41)

[Pk−1]∆

(
duk−1

dD

)
=

[[
∂R

∂uk−1

]
2

duk−1

dD
+

[
∂R

∂x

]
dx

dD

]
−
[
∂Pk−1

∂uk−1

duk−1

dD
+
∂Pk−1

∂x

dx

dD

]
∆u

(42)

38



PTA Adjoint System for Newton’s Method

Define a secondary adjoint variable:

[Pk−1]Tψk = Λk (43)

Adjoint and sensitivity increment equations:

∆Λk−1 =

[[
∂R(uk−1)

∂uk−1

]
2

− ∂Pk−1

∂uk−1
∆u

]T
ψk −

[
∂L

∂uk−1

]T
(44)

∆
dJ

dD

k

= −ψkT

[
∂R(uk−1)

∂D
− ∂ [Pk−1]

∂D
∆uk−1

]
− ∂L

∂D

k−1

(45)

39



PTA Adjoint System for Newton’s Method

Define a secondary adjoint variable:

[Pk−1]Tψk = Λk (43)

Adjoint and sensitivity increment equations:

∆Λk−1 =

[[
∂R(uk−1)

∂uk−1

]
2

− ∂Pk−1

∂uk−1
∆u

]T
ψk −

[
∂L

∂uk−1

]T
(44)

∆
dJ

dD

k

= −ψkT

[
∂R(uk−1)

∂D
− ∂ [Pk−1]

∂D
∆uk−1

]
− ∂L

∂D

k−1

(45)

39



Notes on the PTA Formulations for Newton’s Method

Some things to note:

• The linear system solved for each tangent or adjoint system has the

same (or transposed) LHS as in the analysis simulation at the given

non-linear iteration.

• Therefore, if the tangent uses the same iterative solver as the

analysis and the adjoint uses the dual of the analysis solver we can

guarantee convergence.

• This formulation requires the second order accurate Jacobian, but

depending on choice of non-linear solver won’t require the

approximate inversion of that matrix.

• The right hand side has derivatives of the preconditioner matrix, but

in the context of matrix vector products. In this work they are

computed with complex Frechét differentiation.

• These formulations are exact for machine-zero convergence of the

linear system.

40



Notes on the PTA Formulations for Newton’s Method

Some things to note:

• The linear system solved for each tangent or adjoint system has the

same (or transposed) LHS as in the analysis simulation at the given

non-linear iteration.

• Therefore, if the tangent uses the same iterative solver as the

analysis and the adjoint uses the dual of the analysis solver we can

guarantee convergence.

• This formulation requires the second order accurate Jacobian, but

depending on choice of non-linear solver won’t require the

approximate inversion of that matrix.

• The right hand side has derivatives of the preconditioner matrix, but

in the context of matrix vector products. In this work they are

computed with complex Frechét differentiation.

• These formulations are exact for machine-zero convergence of the

linear system.

40



Notes on the PTA Formulations for Newton’s Method

Some things to note:

• The linear system solved for each tangent or adjoint system has the

same (or transposed) LHS as in the analysis simulation at the given

non-linear iteration.

• Therefore, if the tangent uses the same iterative solver as the

analysis and the adjoint uses the dual of the analysis solver we can

guarantee convergence.

• This formulation requires the second order accurate Jacobian, but

depending on choice of non-linear solver won’t require the

approximate inversion of that matrix.

• The right hand side has derivatives of the preconditioner matrix, but

in the context of matrix vector products. In this work they are

computed with complex Frechét differentiation.

• These formulations are exact for machine-zero convergence of the

linear system.

40



Notes on the PTA Formulations for Newton’s Method

Some things to note:

• The linear system solved for each tangent or adjoint system has the

same (or transposed) LHS as in the analysis simulation at the given

non-linear iteration.

• Therefore, if the tangent uses the same iterative solver as the

analysis and the adjoint uses the dual of the analysis solver we can

guarantee convergence.

• This formulation requires the second order accurate Jacobian, but

depending on choice of non-linear solver won’t require the

approximate inversion of that matrix.

• The right hand side has derivatives of the preconditioner matrix, but

in the context of matrix vector products. In this work they are

computed with complex Frechét differentiation.

• These formulations are exact for machine-zero convergence of the

linear system.

40



Notes on the PTA Formulations for Newton’s Method

Some things to note:

• The linear system solved for each tangent or adjoint system has the

same (or transposed) LHS as in the analysis simulation at the given

non-linear iteration.

• Therefore, if the tangent uses the same iterative solver as the

analysis and the adjoint uses the dual of the analysis solver we can

guarantee convergence.

• This formulation requires the second order accurate Jacobian, but

depending on choice of non-linear solver won’t require the

approximate inversion of that matrix.

• The right hand side has derivatives of the preconditioner matrix, but

in the context of matrix vector products. In this work they are

computed with complex Frechét differentiation.

• These formulations are exact for machine-zero convergence of the

linear system.

40



Error Due to Approximate

Linearization of the Fixed-Point



Sensitivity Convergence for Inexact Newton: 1e-1

(a) Design Variable 1 (b) Design Variable 2

Sensitivity convergence for linear tolerance, 1e − 1: difference between current

and final sensitivity values

41



Sensitivity Difference for Inexact Newton: 1e-1

(a) Design Variable 1 (b) Design Variable 2

Iterative sensitivity difference for linear tolerance, 1e − 1

42



Sensitivity Convergence for Inexact Newton: 1e-4

(a) Design Variable 1 (b) Design Variable 2

Sensitivity convergence for linear tolerance, 1e − 4: difference between current

and final sensitivity values

43



Sensitivity Difference for Inexact Newton: 1e-4

(a) Design Variable 1 (b) Design Variable 2

Iterative sensitivity difference for linear tolerance, 1e − 4

44



Max Sensitivity Difference for Inexact Newton

(a) Maximum Iterative Difference (b) Minimum Iterative Difference

Iterative difference vs. linear tolerance

45



Error Due to Approximate Linearization of the Fixed-Point

For a general fixed point iteration to solve the equation R = 0:

uk+1 = N(uk ,D) = uk + H(uk ,D) = uk + A(uk ,D)R(uk ,D) (46)

The exact linearization of the solution process:

duk+1

dD
=

dN(uk)

dD
=

duk

dD
+

dA

dD
R + A

dR

dD
(47)

46



Error Due to Approximate Linearization of the Fixed-Point

For a general fixed point iteration to solve the equation R = 0:

uk+1 = N(uk ,D) = uk + H(uk ,D) = uk + A(uk ,D)R(uk ,D) (46)

The exact linearization of the solution process:

duk+1

dD
=

dN(uk)

dD
=

duk

dD
+

dA

dD
R + A

dR

dD
(47)

46



Error Due to Approximate Linearization of the Fixed-Point

For an inexact linearization of the fixed point, only A is inexactly

linearized. The computed linearization of the fixed point iteration with

the approximate linearization of A is below:

d̃uk+1

dD
=

d̃N(uk)

dD
=

d̃uk

dD
+

d̃A

dD
R + A

d̃R

dD
(48)

The error in the total derivative of the residual is due to the

multiplication by an inexact linearization:

d̃R

dD
=
∂R

∂D
+
∂R

∂u

d̃u

dD
(49)

47



Error Due to Approximate Linearization of the Fixed-Point

For an inexact linearization of the fixed point, only A is inexactly

linearized. The computed linearization of the fixed point iteration with

the approximate linearization of A is below:

d̃uk+1

dD
=

d̃N(uk)

dD
=

d̃uk

dD
+

d̃A

dD
R + A

d̃R

dD
(48)

The error in the total derivative of the residual is due to the

multiplication by an inexact linearization:

d̃R

dD
=
∂R

∂D
+
∂R

∂u

d̃u

dD
(49)

47



Error Due to Approximate Linearization of the Fixed-Point

To get the error in the conservative variable linearization it is necessary to

subtract the two expressions from one another:

duk+1

dD
− d̃uk+1

dD
=

duk

dD
− d̃uk

dD
+

dA

dD
R − d̃A

dD
R + A

dR

dD
− A

d̃R

dD
(50)

48



Error Due to Approximate Linearization of the Fixed-Point

dε
dD is defined as the error in du

dD and used to group like terms:

dεk+1

dD
=

dεk

dD
+

[
dA

dD
− d̃A

dD

]
R + A

[
dR

dD
− d̃R

dD

]
(51)

49



Error Due to Approximate Linearization of the Fixed-Point

By grouping like terms and rearranging we obtain this form of the

expression for the error in the sensitivities:

dεk+1

dD
=

[
dεk

dD
+ A

[
∂R

∂uk
dεk

dD

]
+
∂A

∂uk
dεk

dD
R

]
+

[(
∂A

∂D
− ∂̃A

∂D

)
+

(
∂A

∂u
− ∂̃A

∂u

)
duk

dD

]
R

(52)

50



Error Due to Approximate Linearization of the Fixed-Point

We know that the second bracketed term goes to zero as the residual

does, but we don’t know why this occurs for the first term, so we use the

Cauchy-Schwarz inequality to return the inequality below.∥∥∥∥dεkdD
+ A

∂R

∂uk
dεk

dD
+
∂A

∂uk
dεk

dD
R

∥∥∥∥ < ∥∥∥∥I + A
∂R

∂uk
+
∂A

∂uk
R

∥∥∥∥∥∥∥∥dεkdD

∥∥∥∥ (53)

We can define B = I + A ∂R
∂uk + ∂A

∂uk R and we realize that B = ∂N
∂u , since

N is the contractive fixed point iteration, ‖B‖ < 1, and this explains why

both terms go to zero as the nonlinear problem does

∥∥∥∥dεk+1

dD

∥∥∥∥ < ‖B‖ ∥∥∥∥dεkdD

∥∥∥∥+

∥∥∥∥∥
[
dA

dD
− d̃A

dD

]
R

∥∥∥∥∥ (54)

51



Error Due to Approximate Linearization of the Fixed-Point

We know that the second bracketed term goes to zero as the residual

does, but we don’t know why this occurs for the first term, so we use the

Cauchy-Schwarz inequality to return the inequality below.∥∥∥∥dεkdD
+ A

∂R

∂uk
dεk

dD
+
∂A

∂uk
dεk

dD
R

∥∥∥∥ < ∥∥∥∥I + A
∂R

∂uk
+
∂A

∂uk
R

∥∥∥∥∥∥∥∥dεkdD

∥∥∥∥ (53)

We can define B = I + A ∂R
∂uk + ∂A

∂uk R and we realize that B = ∂N
∂u , since

N is the contractive fixed point iteration, ‖B‖ < 1, and this explains why

both terms go to zero as the nonlinear problem does

∥∥∥∥dεk+1

dD

∥∥∥∥ < ‖B‖ ∥∥∥∥dεkdD

∥∥∥∥+

∥∥∥∥∥
[
dA

dD
− d̃A

dD

]
R

∥∥∥∥∥ (54)

51



Error Due to Approximate Linearization of the Fixed-Point

We know that the second bracketed term goes to zero as the residual

does, but we don’t know why this occurs for the first term, so we use the

Cauchy-Schwarz inequality to return the inequality below.∥∥∥∥dεkdD
+ A

∂R

∂uk
dεk

dD
+
∂A

∂uk
dεk

dD
R

∥∥∥∥ < ∥∥∥∥I + A
∂R

∂uk
+
∂A

∂uk
R

∥∥∥∥∥∥∥∥dεkdD

∥∥∥∥ (53)

We can define B = I + A ∂R
∂uk + ∂A

∂uk R and we realize that B = ∂N
∂u , since

N is the contractive fixed point iteration, ‖B‖ < 1, and this explains why

both terms go to zero as the nonlinear problem does

∥∥∥∥dεk+1

dD

∥∥∥∥ < ‖B‖ ∥∥∥∥dεkdD

∥∥∥∥+

∥∥∥∥∥
[
dA

dD
− d̃A

dD

]
R

∥∥∥∥∥ (54)

51



Low Storage Explicit Runge-Kutta Formulation

uk,l = uk,0 + CFLαl−1∆tR(uk,l−1) (55)

uk+1 = uk + A(uk(D),D)R(uk ,D) (56)

duk,l+1

dD
=

duk,0

dD
+ CFLαl

(
∂∆t

∂uk,0
duk,0

dD
+
∂∆t

∂D

)
R(uk,l)

+ CFLαl∆t

(
∂R

∂D
+

[
∂R(uk,l)

∂uk,l

]
2

duk,l

dD

) (57)

52



Low Storage Explicit Runge-Kutta Formulation

uk,l = uk,0 + CFLαl−1∆tR(uk,l−1) (55)

uk+1 = uk + A(uk(D),D)R(uk ,D) (56)

duk,l+1

dD
=

duk,0

dD
+ CFLαl

(
∂∆t

∂uk,0
duk,0

dD
+
∂∆t

∂D

)
R(uk,l)

+ CFLαl∆t

(
∂R

∂D
+

[
∂R(uk,l)

∂uk,l

]
2

duk,l

dD

) (57)

52



Low Storage Explicit Runge-Kutta Formulation

uk,l = uk,0 + CFLαl−1∆tR(uk,l−1) (55)

uk+1 = uk + A(uk(D),D)R(uk ,D) (56)

duk,l+1

dD
=

duk,0

dD
+ CFLαl

(
∂∆t

∂uk,0
duk,0

dD
+
∂∆t

∂D

)
R(uk,l)

+ CFLαl∆t

(
∂R

∂D
+

[
∂R(uk,l)

∂uk,l

]
2

duk,l

dD

) (57)

52



Sensitivity Convergence for Non-Robust LSERK5

(a) Design Variable 1 (b) Design Variable 2

Runge Kutta Sensitivity Convergence

53



Sensitivity Difference for Non-Robust LSERK45

(a) Design Variable 1 (b) Design Variable 2

Runge Kutta Sensitivity Difference

54



Inexact Linearization of Fixed-Point Iteration: Summary

• Convergence of the nonlinear problem converges the inexact

linearization to the exact linearization, with the convergence

occurring in the asymptotic convergence region primarily.

• We were able to extend this proof to multistage schemes by looking

at the effect of all the stages as an operator acting on the initial

stage residual evaluation.

• Transitioning between exact and inexact linearizations would prevent

the early error accumulation while still obtaining the asymptotic

convergence of the Newton method (i.e. going from preconditioned

RK to Newton with an RK smoothed residual for harder problems)

55



Inexact Linearization of Fixed-Point Iteration: Summary

• Convergence of the nonlinear problem converges the inexact

linearization to the exact linearization, with the convergence

occurring in the asymptotic convergence region primarily.

• We were able to extend this proof to multistage schemes by looking

at the effect of all the stages as an operator acting on the initial

stage residual evaluation.

• Transitioning between exact and inexact linearizations would prevent

the early error accumulation while still obtaining the asymptotic

convergence of the Newton method (i.e. going from preconditioned

RK to Newton with an RK smoothed residual for harder problems)

55



Inexact Linearization of Fixed-Point Iteration: Summary

• Convergence of the nonlinear problem converges the inexact

linearization to the exact linearization, with the convergence

occurring in the asymptotic convergence region primarily.

• We were able to extend this proof to multistage schemes by looking

at the effect of all the stages as an operator acting on the initial

stage residual evaluation.

• Transitioning between exact and inexact linearizations would prevent

the early error accumulation while still obtaining the asymptotic

convergence of the Newton method (i.e. going from preconditioned

RK to Newton with an RK smoothed residual for harder problems)

55



Effect of Averaging of the

Objective Function on Sensitivity

Behavior



Non-Converging Transonic Case Introduction

(a) Mesh (b) Trailing Edge

Fine mesh for NACA0012 airfoil cut off at 97% chord length

• Design variables are three Hicks-Henne bump functions.

• Mach = .7, α = 2o

• Explicit inverse distance weighting used for mesh motion and mesh

sensitivities

• LSERK5 solver
56



Primal Behavior of Non-Converging Transonic Simulation

Primal convergence for cut-off NACA0012 airfoil at Mach = .7, α = 2o

57



Running Average of Force Coefficients

(a) CL over different averaging windows (b) CD over different averaging win-

dows

Force coefficient averaging over different windows

58



Why is Angle Important?

• The important thing about the sensitivity vector is the direction.

• If the direction is off, then the optimizer takes a suboptimal path

and this leads to greater expense and possibly suboptimal designs

• If the magnitude is off, then through the line search maybe the step

isn’t as large, but that’s not a large issue for an optimizer

The angle θ is calculated as follows, with u and v being the sensitivity

vectors:

a =
u · v
‖u‖ ‖v‖

(58)

θ = arccos(a), θ ≤ 180

θ = 360− arccos(a), θ > 180
(59)

59



Sensitivities for Final State Objective Functional

(a) Sensitivities (b) Angle Convergence

Pseudo-Time accurate adjoint sensitivities for objective functional calculated at

the final state at Mach = .7, α = 2o

60



Sensitivities for 250 Iteration Window Averaged Objective Func-

tional

(a) Sensitivities (b) Angle Convergence

Pseudo-Time accurate adjoint sensitivities for 250 iteration average objective

functional at Mach = .7, α = 2o

61



Sensitivities for 20000 Iteration Window Averaged Objective

Functional

(a) Sensitivities (b) Angle Convergence

Pseudo-Time accurate adjoint sensitivities for 20000 iteration average objective

functional at Mach = .7, α = 2o

62



Sensitivity Vector Comparison of Final State Steady State Ad-

joint to PTA Adjoint

Design Variable Steady-State Value (Final State) Pseudo-Time Accurate Value Percent Difference

1 44.5805974889098 38.03996816573513 17.19%

2 14.0224144011606 17.92859539270058 21.79%

3 -1.27443407446669 0.2080948770865852 712.43%

Pseudo-Time accurate adjoint for 20000 iteration averaging window for

objective functional and steady-state sensitivities

The angle between the two sensitivity vectors is θ = 7.98972o

63



Sensitivity Vector Comparison of Final State Steady State Ad-

joint to PTA Adjoint

Design Variable Steady-State Value (Final State) Pseudo-Time Accurate Value Percent Difference

1 44.5805974889098 38.03996816573513 17.19%

2 14.0224144011606 17.92859539270058 21.79%

3 -1.27443407446669 0.2080948770865852 712.43%

Pseudo-Time accurate adjoint for 20000 iteration averaging window for

objective functional and steady-state sensitivities

The angle between the two sensitivity vectors is θ = 7.98972o

63



Sensitivity Vector Comparison of Averaged State Steady State

Adjoint to PTA Adjoint

Design Variable Steady-State Value (Avg State) Pseudo-Time Accurate Value Percent Difference

1 43.3642585762660 38.03996816573513 14.00%

2 16.9218981680917 17.92859539270058 5.62%

3 -9.717943674789181E-002 0.2080948770865852 146.70%

Pseudo-Time accurate adjoint for 20000 iteration averaging window for

objective functional and steady-state sensitivities

The angle between the two sensitivity vectors is θ = 3.93855o

64



Sensitivity Vector Comparison of Averaged State Steady State

Adjoint to PTA Adjoint

Design Variable Steady-State Value (Avg State) Pseudo-Time Accurate Value Percent Difference

1 43.3642585762660 38.03996816573513 14.00%

2 16.9218981680917 17.92859539270058 5.62%

3 -9.717943674789181E-002 0.2080948770865852 146.70%

Pseudo-Time accurate adjoint for 20000 iteration averaging window for

objective functional and steady-state sensitivities

The angle between the two sensitivity vectors is θ = 3.93855o

64



Averaging of Objective Function: Summary

• Without averaging the objective function in pseudo-time the

sensitivities are too dependent on the number of iterations and the

initial conditions.

• Averaging the objective removes these dependencies and allows for

partial backwards-in-pseudo-time integration.

• The steady-state adjoint sensitivities are notably different than the

PTA adjoint ones in magnitude, direction, and sign.

65



Averaging of Objective Function: Summary

• Without averaging the objective function in pseudo-time the

sensitivities are too dependent on the number of iterations and the

initial conditions.

• Averaging the objective removes these dependencies and allows for

partial backwards-in-pseudo-time integration.

• The steady-state adjoint sensitivities are notably different than the

PTA adjoint ones in magnitude, direction, and sign.

65



Averaging of Objective Function: Summary

• Without averaging the objective function in pseudo-time the

sensitivities are too dependent on the number of iterations and the

initial conditions.

• Averaging the objective removes these dependencies and allows for

partial backwards-in-pseudo-time integration.

• The steady-state adjoint sensitivities are notably different than the

PTA adjoint ones in magnitude, direction, and sign.

65



Aerodynamic Shape

Optimizations



Aerodynamic Shape Optimization Overview

• NACA0012 with detached bow shock and composite objective

function of lift, drag and entropy (symmetric)

• NACA0012 with blunt trailing edge in transonic flow with large

angle of incidence with composite objective function of lift and drag

(asymmetric)

• inverse distance weighting (with rotation term) for mesh motion and

sensitivities

• objective function calculated over an averaging window and the

sensitivities are integrated only back through that window

66



Aerodynamic Shape Optimization Overview

• NACA0012 with detached bow shock and composite objective

function of lift, drag and entropy (symmetric)

• NACA0012 with blunt trailing edge in transonic flow with large

angle of incidence with composite objective function of lift and drag

(asymmetric)

• inverse distance weighting (with rotation term) for mesh motion and

sensitivities

• objective function calculated over an averaging window and the

sensitivities are integrated only back through that window

66



Aerodynamic Shape Optimization Overview

• NACA0012 with detached bow shock and composite objective

function of lift, drag and entropy (symmetric)

• NACA0012 with blunt trailing edge in transonic flow with large

angle of incidence with composite objective function of lift and drag

(asymmetric)

• inverse distance weighting (with rotation term) for mesh motion and

sensitivities

• objective function calculated over an averaging window and the

sensitivities are integrated only back through that window

66



Aerodynamic Shape Optimization Overview

• NACA0012 with detached bow shock and composite objective

function of lift, drag and entropy (symmetric)

• NACA0012 with blunt trailing edge in transonic flow with large

angle of incidence with composite objective function of lift and drag

(asymmetric)

• inverse distance weighting (with rotation term) for mesh motion and

sensitivities

• objective function calculated over an averaging window and the

sensitivities are integrated only back through that window

66



NACA0012 with Detached Bow Shock

Analysis convergence plot

• Mach = 1.25, α = 3o

• objective function penalty method to keep lift constant and

minimize drag and entropy

• analysis code has stalled due to limiter behavior near the shock

67



Optimization of NACA0012 with Detached Bow Shock: Sum-

mary

(a) Design Cycle Convergence (b) Airfoil Comparison

Design cycle summary

68



Optimization of NACA0012 with Detached Bow Shock: Den-

sity

(a) Baseline Design (b) Optimized Design

Density field comparison

69



Optimization of NACA0012 with Detached Bow Shock: Mach

(a) Baseline Design (b) Optimized Design

Mach field comparison

70



Optimization of NACA0012 Airfoil with Trailing Edge Unsteadi-

ness: Mesh

(a) Airfoil Mesh (b) Airfoil Trailing Edge

Computational mesh

71



Optimization of NACA0012 Airfoil in High Angle of Attack

(a) Baseline Nonlinear Convergence (b) Perturbed Nonlinear Convergence

Comparison of analysis convergence plot for NACA0012 with a blunt trailing

edge in transonic flow with high angle of attack

• Mach = .75, α = 6.0o

• objective function penalty method with target lift and drag

• analysis code has stalled due to trailing edge unsteadiness
72



Optimization of NACA0012 Airfoil in High Angle of Attack:

Summary

(a) Design Cycle Convergence (b) Airfoil Comparison

Design cycle summary

73



Optimization of NACA0012 Airfoil in High Angle of Attack:

Density

(a) Baseline Design (b) Optimized Design

Density field comparison

74



Optimization of NACA0012 Airfoil in High Angle of Attack:

Mach

(a) Baseline Design (b) Optimized Design

Mach field comparison

75



Optimization of NACA0012 Airfoil in High Angle of Attack:

Trailing Edge

(a) Baseline Trailing Edge with Stream-

lines

(b) Optimized Trailing Edge with Stream-

lines

Mach field comparison with streamlines

76



Optimization of NACA0012 Airfoil in High Angle of Attack:

Comparison of Design Cycle to Steady-State Adjoint

(a) Objective Function Convergence (b) Optimality Convergence

Design cycle summary for NACA0012 truncated at 95% of the chord in

transonic flow with high angle attack: comparison to steady state adjoint

results

77



Optimization of NACA0012 Airfoil in High Angle of Attack:

Comparison of Airfoil Geometry

Baseline and optimized airfoils for high angle of attack optimization

78



Optimization of Non-Converging Problems using PTA Adjoint:

Summary

• We perform optimizations using sensitivities of averaged objective

functions through inexactly linearizing the fixed-point iterations.

• The small-scale unsteadiness optimization driven by the PTA adjoint

computed sensitivities satisfies the optimality condition.

• The PTA adjoint optimization is far more successful than the steady

state adjoint optimizations for the large-scale unsteadiness case.

• Use of windowing regularization techniques could help with

convergence of the optimality and the general design behavior.

79



Optimization of Non-Converging Problems using PTA Adjoint:

Summary

• We perform optimizations using sensitivities of averaged objective

functions through inexactly linearizing the fixed-point iterations.

• The small-scale unsteadiness optimization driven by the PTA adjoint

computed sensitivities satisfies the optimality condition.

• The PTA adjoint optimization is far more successful than the steady

state adjoint optimizations for the large-scale unsteadiness case.

• Use of windowing regularization techniques could help with

convergence of the optimality and the general design behavior.

79



Optimization of Non-Converging Problems using PTA Adjoint:

Summary

• We perform optimizations using sensitivities of averaged objective

functions through inexactly linearizing the fixed-point iterations.

• The small-scale unsteadiness optimization driven by the PTA adjoint

computed sensitivities satisfies the optimality condition.

• The PTA adjoint optimization is far more successful than the steady

state adjoint optimizations for the large-scale unsteadiness case.

• Use of windowing regularization techniques could help with

convergence of the optimality and the general design behavior.

79



Optimization of Non-Converging Problems using PTA Adjoint:

Summary

• We perform optimizations using sensitivities of averaged objective

functions through inexactly linearizing the fixed-point iterations.

• The small-scale unsteadiness optimization driven by the PTA adjoint

computed sensitivities satisfies the optimality condition.

• The PTA adjoint optimization is far more successful than the steady

state adjoint optimizations for the large-scale unsteadiness case.

• Use of windowing regularization techniques could help with

convergence of the optimality and the general design behavior.

79



Conclusions and Future Work



Conclusions

• We developed a novel formulation of the tangent and adjoint

systems through linearization of the fixed-point iterations.

• We can develop error estimates for inexact linearization of the

fixed-point iteration and recover useful sensitivities.

• We can average the objective functions in pseudo-time to lower

dependence on the initial conditions and allow for partial

backwards-in-pseudo-time integration.

• We can use these inexactly linearized fixed point and averaged

objective functions to drive design optimizations whose analysis

doesn’t converge and outperform the steady-state adjoint driven

design optimizations.

• We can use the pseudo-time accurate adjoint approach to compute

error estimates and refinement criteria.

80



Conclusions

• We developed a novel formulation of the tangent and adjoint

systems through linearization of the fixed-point iterations.

• We can develop error estimates for inexact linearization of the

fixed-point iteration and recover useful sensitivities.

• We can average the objective functions in pseudo-time to lower

dependence on the initial conditions and allow for partial

backwards-in-pseudo-time integration.

• We can use these inexactly linearized fixed point and averaged

objective functions to drive design optimizations whose analysis

doesn’t converge and outperform the steady-state adjoint driven

design optimizations.

• We can use the pseudo-time accurate adjoint approach to compute

error estimates and refinement criteria.

80



Conclusions

• We developed a novel formulation of the tangent and adjoint

systems through linearization of the fixed-point iterations.

• We can develop error estimates for inexact linearization of the

fixed-point iteration and recover useful sensitivities.

• We can average the objective functions in pseudo-time to lower

dependence on the initial conditions and allow for partial

backwards-in-pseudo-time integration.

• We can use these inexactly linearized fixed point and averaged

objective functions to drive design optimizations whose analysis

doesn’t converge and outperform the steady-state adjoint driven

design optimizations.

• We can use the pseudo-time accurate adjoint approach to compute

error estimates and refinement criteria.

80



Conclusions

• We developed a novel formulation of the tangent and adjoint

systems through linearization of the fixed-point iterations.

• We can develop error estimates for inexact linearization of the

fixed-point iteration and recover useful sensitivities.

• We can average the objective functions in pseudo-time to lower

dependence on the initial conditions and allow for partial

backwards-in-pseudo-time integration.

• We can use these inexactly linearized fixed point and averaged

objective functions to drive design optimizations whose analysis

doesn’t converge and outperform the steady-state adjoint driven

design optimizations.

• We can use the pseudo-time accurate adjoint approach to compute

error estimates and refinement criteria.

80



Conclusions

• We developed a novel formulation of the tangent and adjoint

systems through linearization of the fixed-point iterations.

• We can develop error estimates for inexact linearization of the

fixed-point iteration and recover useful sensitivities.

• We can average the objective functions in pseudo-time to lower

dependence on the initial conditions and allow for partial

backwards-in-pseudo-time integration.

• We can use these inexactly linearized fixed point and averaged

objective functions to drive design optimizations whose analysis

doesn’t converge and outperform the steady-state adjoint driven

design optimizations.

• We can use the pseudo-time accurate adjoint approach to compute

error estimates and refinement criteria.

80



Future Work

Algorithmic improvements/goals:

• windowing regularization

• increased robustness of error estimation through improved

interpolation/limiting mechanics

• coupled AMR and design

81



Future Work

Algorithmic improvements/goals:

• windowing regularization

• increased robustness of error estimation through improved

interpolation/limiting mechanics

• coupled AMR and design

81



Future Work

Algorithmic improvements/goals:

• windowing regularization

• increased robustness of error estimation through improved

interpolation/limiting mechanics

• coupled AMR and design

81



Thanks

Committee:

• Professor Mavriplis (chair)

• Professor Stoellinger

• Professor Fertig

• Professor Ginting (outside member)

• Professor Nadarajah (external member)

81



Thanks for listening!

81



Dual-Weighted Constraint for

Error Estimation



Dual-Weighted Constraint for Error Estimation

• Applies the pseudo-time approach to error estimation

• Seeks to quantify the error in the objective function due to the mesh

• Agnostic as to the impact of the objective function windowing

82



Dual-Weighted Constraint for Error Estimation

• Applies the pseudo-time approach to error estimation

• Seeks to quantify the error in the objective function due to the mesh

• Agnostic as to the impact of the objective function windowing

82



Dual-Weighted Constraint for Error Estimation

• Applies the pseudo-time approach to error estimation

• Seeks to quantify the error in the objective function due to the mesh

• Agnostic as to the impact of the objective function windowing

82



Dual-Weighted Constraint: Notes

• On its face this method would require computing the adjoint and

the constraint on the fine mesh

• This is not practical, so the adjoint is computed on the coarse mesh

and interpolated onto the fine mesh

• This does require weighting the fine-mesh fixed point by the adjoint

similar to how the sensitivities weight the constraint derivative by

the adjoint

• Partial backwards in time integration and curvature correction

• The computation of the constraint on the fine mesh is still

impractical, so virtual mesh methods are attempted

83



Dual-Weighted Constraint: Notes

• On its face this method would require computing the adjoint and

the constraint on the fine mesh

• This is not practical, so the adjoint is computed on the coarse mesh

and interpolated onto the fine mesh

• This does require weighting the fine-mesh fixed point by the adjoint

similar to how the sensitivities weight the constraint derivative by

the adjoint

• Partial backwards in time integration and curvature correction

• The computation of the constraint on the fine mesh is still

impractical, so virtual mesh methods are attempted

83



Dual-Weighted Constraint: Notes

• On its face this method would require computing the adjoint and

the constraint on the fine mesh

• This is not practical, so the adjoint is computed on the coarse mesh

and interpolated onto the fine mesh

• This does require weighting the fine-mesh fixed point by the adjoint

similar to how the sensitivities weight the constraint derivative by

the adjoint

• Partial backwards in time integration and curvature correction

• The computation of the constraint on the fine mesh is still

impractical, so virtual mesh methods are attempted

83



Dual-Weighted Constraint: Notes

• On its face this method would require computing the adjoint and

the constraint on the fine mesh

• This is not practical, so the adjoint is computed on the coarse mesh

and interpolated onto the fine mesh

• This does require weighting the fine-mesh fixed point by the adjoint

similar to how the sensitivities weight the constraint derivative by

the adjoint

• Partial backwards in time integration and curvature correction

• The computation of the constraint on the fine mesh is still

impractical, so virtual mesh methods are attempted

83



Dual-Weighted Constraint: Notes

• On its face this method would require computing the adjoint and

the constraint on the fine mesh

• This is not practical, so the adjoint is computed on the coarse mesh

and interpolated onto the fine mesh

• This does require weighting the fine-mesh fixed point by the adjoint

similar to how the sensitivities weight the constraint derivative by

the adjoint

• Partial backwards in time integration and curvature correction

• The computation of the constraint on the fine mesh is still

impractical, so virtual mesh methods are attempted

83



PTA Error Estimation and AMR

Results



Supersonic Detached Bow Shock

Case



Supersonic Detached Bow Shock Case: Initial Mesh

NACA0012 in M = 1.25, α = 0o flow:

(a) Coarse Mesh Density (b) Coarse Mesh Mach Number

Coarse mesh for detached bow shock error estimation case

Quantity of interest is lift, drag, and entropy

84



Supersonic Detached Bow Shock Case: Fine Mesh Convergence

and Objective

(a) Fine Mesh Convergence (b) Fine Mesh Objective

Objective and convergence behavior on a fine mesh

85



Embedded Mesh Error Estimation with Functional Correction:

Final Adaptation Cycle

(a) Density with mesh (b) Mach number with mesh

18th and final adaptation cycle for detached bow shock with error estimation

86



Embedded Mesh Error Estimation with Functional Correction:

Final Adaptation Cycle

(a) Mesh in full domain (b) Mach number in full domain

18th and final adaptation cycle for detached bow shock with error estimation

87



Embedded Mesh Error Estimation with Functional Correction:

Error Histograms

(a) Baseline to seventh adaptation cycle (b) Tenth to 15th adaptation cycle

Error histograms for detached bow shock case

88



Embedded Mesh Error Estimation with Functional Correction:

Refinement Behavior

(a) Corrected functional with error bars (b) Error convergence

Functional and error estimate convergence for supersonic detached bow shock

89



Transonic Blunt Trailing Edge

Case



Transonic Blunt Trailing Edge Case: Initial Mesh

NACA0012 truncated at 93% of the chord in M = 0.75, α = 5o flow:

(a) Coarse Mesh Density (b) Coarse Mesh Mach Number

Coarse mesh for detached bow shock error estimation case

Quantity of interest is lift and drag

90



Transonic Blunt Trailing Edge: Fine Mesh Convergence and

Objective

(a) Fine Mesh Convergence (b) Fine Mesh Objective

Objective and convergence behavior on a fine mesh

91



Embedded Mesh Error Estimation with Functional Correction:

Final Adaptation Cycle

(a) Density with mesh (b) Mach number with mesh

16th and final adaptation cycle for transonic blunt trailing edge with error

estimation

92



Embedded Mesh Error Estimation with Functional Correction:

Final Adaptation Cycle

(a) Mach number without mesh (b) Mach number with streamlines

16th and final adaptation cycle for transonic blunt trailing edge with error

estimation

93



Embedded Mesh Error Estimation with Functional Correction:

Error Histograms

(a) Baseline to seventh adaptation cycle (b) Tenth to 15th adaptation cycle

Error histograms for transonic blunt trailing edge case

94



Embedded Mesh Error Estimation with Functional Correction:

Refinement Behavior

(a) Corrected functional with error bars (b) Error convergence

Functional and error estimate convergence for transonic blunt trailing edge

95



Application of the PTA Adjoint to Error Estimation: Summary

• The error estimate appears to appropriately refine the mesh in areas

of high importance to the objective.

• The small-scale unsteadiness case shows consistent error estimates

even on the finest meshes.

• The large-scale unsteadiness case shows overall consistent error

estimates, but these could be improved by better interpolation

methods.

• Use of windowing regularization techniques could help with the

functional convergence as well as we use a simple averaging

approach that does not guarantee convergence.

• It would be interesting to pair this work with error estimates that

capture error due to partial convergence of the nonlinear problem.

96



Application of the PTA Adjoint to Error Estimation: Summary

• The error estimate appears to appropriately refine the mesh in areas

of high importance to the objective.

• The small-scale unsteadiness case shows consistent error estimates

even on the finest meshes.

• The large-scale unsteadiness case shows overall consistent error

estimates, but these could be improved by better interpolation

methods.

• Use of windowing regularization techniques could help with the

functional convergence as well as we use a simple averaging

approach that does not guarantee convergence.

• It would be interesting to pair this work with error estimates that

capture error due to partial convergence of the nonlinear problem.

96



Application of the PTA Adjoint to Error Estimation: Summary

• The error estimate appears to appropriately refine the mesh in areas

of high importance to the objective.

• The small-scale unsteadiness case shows consistent error estimates

even on the finest meshes.

• The large-scale unsteadiness case shows overall consistent error

estimates, but these could be improved by better interpolation

methods.

• Use of windowing regularization techniques could help with the

functional convergence as well as we use a simple averaging

approach that does not guarantee convergence.

• It would be interesting to pair this work with error estimates that

capture error due to partial convergence of the nonlinear problem.

96



Application of the PTA Adjoint to Error Estimation: Summary

• The error estimate appears to appropriately refine the mesh in areas

of high importance to the objective.

• The small-scale unsteadiness case shows consistent error estimates

even on the finest meshes.

• The large-scale unsteadiness case shows overall consistent error

estimates, but these could be improved by better interpolation

methods.

• Use of windowing regularization techniques could help with the

functional convergence as well as we use a simple averaging

approach that does not guarantee convergence.

• It would be interesting to pair this work with error estimates that

capture error due to partial convergence of the nonlinear problem.

96



Application of the PTA Adjoint to Error Estimation: Summary

• The error estimate appears to appropriately refine the mesh in areas

of high importance to the objective.

• The small-scale unsteadiness case shows consistent error estimates

even on the finest meshes.

• The large-scale unsteadiness case shows overall consistent error

estimates, but these could be improved by better interpolation

methods.

• Use of windowing regularization techniques could help with the

functional convergence as well as we use a simple averaging

approach that does not guarantee convergence.

• It would be interesting to pair this work with error estimates that

capture error due to partial convergence of the nonlinear problem.

96


	Introduction
	Motivation and Approach
	Derivation for PTA Tangent and Adjoint Formulation
	PTA Tangent and Adjoint Derivation for General Fixed-Point Iterations
	PTA Tangent and Adjoint Derivation for Forward Euler
	PTA Tangent and Adjoint Derivation for Newton's Method

	Error Due to Approximate Linearization of the Fixed-Point
	Effect of Averaging of the Objective Function on Sensitivity Behavior
	Aerodynamic Shape Optimizations
	Conclusions and Future Work
	Dual-Weighted Constraint for Error Estimation
	PTA Error Estimation and AMR Results
	Supersonic Detached Bow Shock Case
	Transonic Blunt Trailing Edge Case

