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Helicopter rotor design optimization is a challenging task due to the multidisciplinary nature

of rotorcraft design: the helicopter operates in a highly unsteady aerodynamic environment, highly

flexible, slender rotor blades highlight the importance of blade aeroelasticity, while the ever more

stringent noise requirements that the helicopter must satisfy underlines the need to include aeroa-

coustic considerations early in the design process.

Such a large scale problem can be efficiently solved with the use of gradient-based optimization

methods. In gradient based optimization, the gradient of the objective function with respect to the

design variables is needed to determine a search direction. The objective function’s gradient can be

computed either with the finite difference approach, the tangent or forward linearization approach

and the adjoint or reverse approach. The finite difference approach is easy to implement but its cost

scales with the number of design variables and can be affected by the choice of the step size used

in the differentiation. The tangent or forward approach computes the exact gradient vector of the

objective function by exact differentiation of the computational code, however its cost still scales

linearly with the number of design variables. On the other hand, the adjoint or reverse approach

computes the sensitivity vector with respect to a potentially infinite number of design variables at

a cost essentially independent of the design variables, making the adjoint technique the only vi-

able approach when the number of design variables is large. Hence, it is the adjoint approach that

makes gradient based optimization techniques competitive for large scale problems characterized

by a large number of design parameters, such as the current helicopter design problem.

The focus of this work is the development of a high-fidelity multidisciplinary adjoint technique that

encompasses the three disciplines of aerodynamics, structural mechanics and aeroacoustics for ro-

torcraft problems. Upon successful implementation and verification, the multidisciplinary adjoint

method is applied to the problem of noise minimization of a flexible rotor in trimmed forward

flight with no performance penalty. Optimization results highlight the potential of high-fidelity

multidisciplinary design optimization for helicopter rotors.
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Chapter 1

Introduction

Helicopter rotor optimization is a challenging task due to the multidisciplinary nature of rotorcraft

design, the complex and intrinsically unsteady operating environment of the rotor and the poten-

tially large number of design variables. Such a large-scale problem can be efficiently solved with

the use of gradient-based optimization methods when the gradient of the optimization objective

function is computed with the adjoint approach. Hence, the goal of the work presented in this

thesis is the development of a high-fidelity multidisciplinary adjoint-based design optimization

capability for helicopter rotors that encompasses the three disciplines of aerodynamics, structural

mechanics and aeroacoustics.

1.1 Helicopter Design: a Multidisciplinary Design Optimiza-

tion Problem

The helicopter is an aircraft that uses two or more rotating wings to generate aerodynamic forces

in order to sustain controlled flight [1]. The rotors operate in a complex unsteady aerodynamic

environment characterized by vortical flow structures, wakes and, possibly, shock waves, and they

provide lift, propulsion and control forces to the aircraft. The aerodynamic forces are generated

by the relative motion between the rotors and the surrounding air even when the translational ve-

locity of the aircraft is zero. This provides the helicopter its most distinguished feature: the ability

to perform efficient hovering and vertical flights. However, large rotor diameters are needed to
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achieve efficient vertical flight while high-aspect ratio blades guarantee the desired aerodynamic

efficiency. Hence, the structural design requirements that the rotor must satisfy to guarantee the

proper aerodynamic performance yield highly flexible blades whose aerostructural response needs

to be taken into account in the rotor design process. Furthermore, the propulsive forces necessary

for the helicopter to sustain translational flight are achieved by tilting the main rotor, resulting in

a lift imbalance between the advancing and retreating side of the blade: the advancing side is sub-

ject to higher velocity than the retreating side as a consequence of the combined translational and

rotational velocity of the rotor. This, however, generates pitching and rolling moments on the rotor

that need to be counteracted with a blade cyclic pitching motion to sustain trimmed level flight [1],

effectively coupling the aerodynamics and flight mechanics problem.

Finally, the ability to take off and land vertically (VTOL), and to maneuver in tightly confined

spaces makes the helicopter the perfect air vehicle to operate in urban environments leading to

very strict noise requirements. Hence, the aeroacoustic problem needs to be addressed early in the

design process and typically requires the detailed knowledge of the flowfield surrounding the rotor

and its aeroelastically deformed shape.

The tight interaction between all the disciplines involved in helicopter operations makes the heli-

copter design an intrinsically multidisciplinary design problem: the accurate computation of the

aerodynamic loads that the rotor must sustain is necessary to determine the correct structural de-

formation of the blades and the blade pitch controls necessary to sustain trimmed forward flight.

Once the blade shape, pitch controls and aerodynamic loads are computed, the correct acoustic

signature and aerodynamic performance can finally be determined.

Furthermore, the number of parameters that the designer can change to improve the rotorcraft per-

formance is potentially high, making the multidisciplinary design problem a large-scale design

optimization problem. To solve this multidisciplinary design problem the helicopter designer can

change a large number of design variables, typically consisting of airfoil shapes, structural proper-

ties and pitch control parameters, making the multidisciplinary design problem a large scale design

optimization problem. This large-scale multidisciplinary problem has traditionally been tackled

using lower fidelity models for each discipline involved, particularly aerodynamics and structural

mechanics, linked together in so-called comprehensive analysis codes, of which CAMRAD is the

2



perfect example [2]. Despite sacrificing accuracy, low fidelity models have seen widespread use in

the past because of the limited computational power available and the quick turnaround time they

offered in evaluating a significant number of design configurations. More recently, efforts have

been aimed at introducing higher-fidelity models earlier in the design process, particularly for the

aerodynamics. Notable examples of these efforts are the U.S. Army HELIOS computer code [3]

and its french counterpart [4]. A new high-fidelity multidisciplinary design analysis and optimiza-

tion tool for the design of helicopter rotors in trimmed forward flight is presented in this work. This

new tool encompasses the three disciplines of aerodynamics, structural mechanics and aeroacous-

tics and it is applied to the redesign of the flexible HART-II rotor [5] to improve its aeroacoustic

and aerodynamic performance.

1.2 Helicopter Aeroacoustics

As the importance of reducing detection distance and helicopter noise signature increases for both

commercial and military applications [1, 6], rotorcraft aeroacoustics takes on a leading role in the

helicopter design process. Hence, a significant portion of this work will focus on including a noise

prediction capability in the multidisciplinary design optimization process. Rotorcraft aeroacous-

tics have been widely studied in the past [7] and are now fairly well understood. Both discrete

frequencies and broadband aerodynamic noise is generated through different noise mechanisms.

Discrete frequency noise is deterministic in nature and divided into different components such as

thickness and loading noise, blade vortex interaction noise and high speed impulsive noise. Broad-

band noise is typically non-deterministic and associated with the turbulent flowfield surrounding

the rotor. In this work only deterministic noise is considered.

To minimize the rotor noise signature, both passive and active noise minimiztion techniques have

been investigated in the past. Common passive noise minimization techniques consist of a judi-

cious selection of rotor blade configurations, airfoils, planform and tip shapes [6]. Active control

techniques such as Higher Harmonic Control (HHC), Individual Blade Control (IBC) and active

flap configurations have also been investigated [6–8]. While these methods mainly rely on expen-

sive wind tunnel experiments and on the experience of the aircraft designer, few attempts have
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been made at exploiting numerical shape optimization techniques in the context of noise reduction

for rotating aerodynamic surfaces: Chae et al. [9] optimized the acoustic signature of a hover-

ing rotor targeting mainly high speed impulsive (HSI) noise, while Marinus et al. [10] performed a

multiobjective, multidisciplinary optimization of transonic propeller blades targeting aerodynamic,

aeroelastic and aeroacoustic performance.

From a computational point of view the acoustic problem corresponds to propagating the acoustic

waves generated by the moving rotor to an observer possibly far away from the rotor itself. One

obvious approach to the solution of the acoustic problem is to resolve the acoustic waves to the

observer. Despite reasonable success for near and mid-field observers [11, 12], the computational

cost of this approach for far-field acoustic problems is still too high even for the current generation

of supercomputers. A more viable and widely employed solution to the aeroacoustic problem is

the use of Lightill’s acoustic analogy. This is a hybrid approach in which a nearbody aerodynamic

solver provides the flow information to an integral acoustic formulation that propagates the acous-

tic waves to the far-field observer. In this work the acoustic analogy approach has been followed

by implementing a Ffowcs-Williams Hawkings (FWH) acoustic integration procedure [13, 14] to

determine the rotor’s noise signature. After validation of the new FWH implementation, an adjoint

sensitivity approach has been developed to perform the noise minimization of the flexible HART-II

rotor in trimmed forward flight.

1.3 Optimization Techniques and Their Application to Rotor-

craft Design

Numerical shape optimization techniques in conjunction with Computational Fluid Dynamics

(CFD) have become a common tool in the aircraft design industry [15], and numerical shape opti-

mization for aeroacoustic and aerodynamic performance is the focus of this work.

Numerical optimization algorithms are divided in two broad categories: global or evolutionary

methods and local or gradient based methods. Evolutionary methods are easy to apply to rotorcraft

design problem as they only require the value of the objective function at the design point cur-

rently evaluated and, in case of a multimodal design space, they converge to the global optimum.
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However, they require a significant number of function evaluations rendering their applications to

design problems involving high-fidelity, computationally-intensive models impractical. The cost

of evolutionary algorithms can be reduced when these are used in conjunction with metamod-

eling techniques [16], e.g. response surfaces, kriging methods and neural networks. However,

metamodeling techniques are not well suited for optimization problems characterized by a large

number of design variables [16]. Despite these limitations, evolutionary algorithms augmented

with metamodeling techniques have been used in the context of airfoil optimization [17], propeller

blade optimization [10, 18] and rotorcraft design [9]. Jones et al. [17] used a genetic algorithm

in conjunction with an aerodynamic low-fidelity model to perform the multidisciplinary optimiza-

tion of rotor blade shapes with up to 20 design parameters. Despite the quick turn-around time of

the low-fidelity aerodynamic model, the authors had to reduce the computational burden by using

a Message-Passing Interface to distribute the numerous function evaluations over multiple cores.

Marinus et al. [10, 18] performed high-fidelity design optimization of a propeller blade for aero-

dynamic, aeroelastic and aeroacoustic performance with up to 30 design variables. Finally, Chae

et al. [9] performed a high-fidelity design optimization of a hovering helicopter rotor to improve

its high speed impulsive noise with up to 19 design variables. Despite their success, these appli-

cations reveal the high computaional cost of evolutionary algorithm even when they are applied to

small-scale design optimization problems.

While a judicious selection of the design space parameterization is fundametnal for a successful

optimization [19], limiting the number of design variable can have a detrimental effect on the

overall optimization process and on the success of the rotorcraft design program. Furthermore, as

more and more disciplines are included in the design optimization process, the number of design

variables is expected to increase, exacerbating the issues associated with evolutionary algorithms.

Hence, evolutionary methods are not well suited for large-scale multidisciplinary rotorcraft de-

sign problems. Contrary to evolutionary algorithms, gradient-based optimization methods require

vastly fewer function evaluations provided that an efficient method for the computation of the

gradient of the optimization objective function exists. This makes gradient-based optimization al-

gorithms the only feasible alternative for the solution of large-scale, high-fidelity multidisciplinary

design optimization problems.
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Gradient-based methods have been the first methods to be applied to rotorcraft problems [20, 21].

Whether in their unconstrained or constrained form, they use the gradient of the objective and

of the constraints of the design problem to find a direction to the nearest saddle point of the La-

grangian function associated with the optimization problem [22]. If the cost of computing the

objective function’s gradient is independent of the number of design variables, the performance of

gradient-based methods is relatively independent of the number of design parameters.

Different methods exist for computing the gradient of an objective function [22]. Traditionally the

finite-difference method has been used as it is extremely easy to implement. It is also an expensive

method as, in the best case, it requires N + 1 function evaluations, N being the number of design

parameters. Furthermore, the accuracy of the method depends on the step size used for differen-

tiation. Exact hand-differentiation of the computer code in forward or tangent mode removes the

accuracy issue associated with the step size, but its cost still scales linearly with the number of

design variables. However, exact hand-differentiation in reverse or adjoint mode removes the cost

issue as its computational cost is independent of the number of design variables. Adjoint sensi-

tivity formulations are a common tool in the context of CFD-based shape optimization since they

allow the computation of the sensitivities of an objective function with respect to a large number

of design parameters at a cost essentially independent of the number of design variables [23–29].

Made popular by Jameson [23, 30, 31], the use of adjoint equations is now well established in the

context of fixed-wing, steady-state aerodynamic shape optimization [24, 27, 28]. Mavriplis [32]

demonstrated the method’s feasibility for time-dependent three-dimensional problems, while im-

plementation and application to large scale rotorcraft problems has been carried out by Nielsen et

al. in the NASA FUN3D code [33,34], by Mani et al. using the current flow solver framework [35]

and by Lee at al. using an unstructured Euler flow solver [36]. Extension of the adjoint method

to multidisciplinary design optimization problems focused mainly on fluid-structure interaction

applications in the context of both fixed and rotary wing aircrafts [37, 38]. In this work a three-

dimensional unsteady adjoint optimization technique for the acoustic analogy based on the FW-H

equation is developed to perform the shape optimization of a rigid and flexible helicopter rotor in

forward flight.
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1.4 Unique Aspects of the Current Work

The current work focuses on the development of a multidisciplinary, high-fidelity, time-dependent

adjoint technique for helicopter aeroacoustic design optimization problems. First, the feasibility

of the aeroacoustic optimization is demonstrated on a two-dimensional application representative

of blade-vortex interaction (BVI) noise: an isentropic vortex interacts with a NACA 0012 airfoil

to generate noise, which is then propagated to a farfield observer with a two-dimensional acoustic

integration in the frequency domain. After developing the two-dimensional coupled aeroacoustic

adjoint, gradient-based airfoil shape optimization is performed to minimize the airfoil noise signa-

ture under a lift constraint. The two-dimensional problem is then extended to the noise minimiza-

tion of three-dimensional rigid and flexible rotors in forward flight to realize a multidisciplinary

adjoint optimization capability that encompasses the three discipline of aerodynamics, structural

mechanics and aeroacoustics.

The thesis is structured as follows: Chapter 2 presents the two-dimensional aerodynamic and

acoustic solver, their coupling and their tangent and adjoint linearization. Chapter 3 describes

the aerodynamics, structural mechanics and aeroacoustic solvers used for the analysis of three-

dimensional flexible rotors in forward flight. After the three discplines have been coupled together,

the tangent and adjoint linearization of the coupled multidisciplinary analysis problem are derived

to realize the multidisciplinary unsteady adjoint capability that represents the unique aspect of the

current thesis. Chapter 4 presents the application of the adjoint methods in Chapter 2 and 3 to two-

dimensional and three-dimensional design optimization problems. Results for these optimization

highlight the potential for multidisciplinary adjoint techniques and enable shape optimization for

large-scale flexible aeroacoustic design problems. Finally, Chapter 5 draws conclusions from the

current work and suggest possible future development.
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Chapter 2

Two Dimensional Aeroacoustic Problem

The two-dimensional aeroacoustics problem is presented in this chapter. The inviscid flow around

a NACA-0012 airfoil interacting with an isentropic vortex is simulated using an inviscid unsteady

flow solver. The noise generated by the complex interaction between the vortex and the airfoil is

then propagated to a far-field observer via a two-dimensional FW-H formulation in the frequency

domain. The coupled aeroacoustic simulation is then linearized in forward or tangent mode and in

reverse or adjoint mode. Upon successful validation, the adjoint linearization is used to minimize

the noise signature of the airfoil through the application of optimal shape modifications. While

two-dimensional adjoint-based aeroacoustic optimizations have been attempted before in the lit-

erature [39, 40], the invaluable experience gained in the two-dimensional context has helped to

expedite the development of the three-dimensional aeroacoustic adjoint solver, which represent

the unique and innovative aspect of this work.

2.1 Aerodynamic Solver

The two-dimensional base flow solver used here is an in-house unstructured-mesh Euler solver that

has been validated for steady-state and time-dependent flows and contains a discrete tangent and

adjoint sensitivity capability for both steady state and time-dependent flow problems. The flow

solver is based on the conservative form of the Euler equations which may be written as:

∂VU(x, t)
∂t

+∇ ·F(U) = 0 (2.1)
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where V refers to the area of the control volume, the state vector U consists of the conserved

variables in the Euler equations and the flux vector F = F(U) contains the inviscid flux. The

equations are closed with the perfect gas equation of state. The solver uses a cell-centered control

volume formulation that is second-order accurate in space, where the inviscid flux integral S around

a closed control volume is discretized as:

S =
∫

dB
[F(U)] ·ndB =

nedge

∑
i=1

F⊥ei
(U,nei)Bei (2.2)

In equation (2.2) Be is the edge length, ne is the unit normal of the edge, and F⊥e is the normal

flux across the edge. The flux is computed using the second-order accurate matrix dissipation

scheme [41] as the sum of a central difference and an artificial dissipation term as shown below,

F⊥e =
1
2
{

F⊥L (UL,Ve,ne)+F⊥R (UR,Ve,ne)

+κ
(4)[T ]|[λ]|[T ]−1{(∇2U)L− (∇2U)R

}}
(2.3)

the left and right state vectors are UL and UR while (∇2U)L, (∇2U)R are the left and right undivided

Laplacians computed for any element i as

(∇2U)i =
neighbors

∑
k=1

(Uk−Ui) (2.4)

The time-derivative term is discretized using a second-order accurate backward-difference formula

(BDF2) scheme as:

∂V U
∂t

=
3
2V Un−2V Un−1 + 1

2V Un−2

∆t
(2.5)

The discretization of the BDF2 scheme shown in equation (2.5) is based on a uniform time-step

size and the index n is used to indicate the current time level. Denoting the spatial residual at time

level n by the operator Sn(Un), the resulting system of non-linear equations to be solved for the

analysis problem at each time step can be written as:

Rn = Rn(Un,Un−1,Un−2) =
3
2V Un−2V Un−1− 1

2V Un−2

∆t
+Sn(Un) = 0 (2.6)

The solution to equation (2.6) is computed using Newton’s method as[
∂Rk

∂Uk

]
δUk =−Rk (2.7)

Uk+1 = Uk +δUk

δUk→ 0,Un = Uk
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To guarantee robustness of Newton’s method, the Jacobian matrix
[

∂Rk

∂Uk

]
employs a linearization of

the first-order accurate spatial discretization of the Euler equation (2.1). Furthermore, to accelerate

convergence for every timestep a dual timestepping technique [42] is used. The Jacobian matrix

in equation (2.7) is inverted iteratively using a GMRES Krylov solver [43] preconditioned with a

coloured Gauss-Seidel algorithm.

2.2 Airfoil Surface Parameterization and Mesh Deformation

Algorithm

Since the ultimate goal of the current exercise is the optimal shape modification of the airfoil to

reduce its noise signature, a geometry parameterization technique is introduced to modify the ge-

ometry of the baseline NACA-0012 airfoil.

Modifications to the baseline airfoil geometry are achieved by displacing the nodes of the airfoil us-

ing the Class function - Shape function Transformation geometry parameterization technique [44].

This parameterization technique defines the upper and lower surfaces of the airfoil as the product

of a class function C(x) and a shape function S(x), as shown in equation (2.8).

yupper(x) =C(x)Su(x)

ylower(x) =C(x)Sl(x) (2.8)

x ∈ [0,1]

The class function for the airfoil geometries considered in this work is defined in equation (2.9).

C(x) =
√

x(1− x) (2.9)

The upper and lower surface shape functions, Sl(x) and Su(x), are defined in equation (2.10) and

they are linear combinations of Bernstein polynomials Si(x).

Su(x) =
N

∑
i=1

AuiSi(x)

Sl(x) =
N

∑
i=1

AliSi(x) (2.10)
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Figure 2.1: Schematic of the CST geometry parameterization technique for the NACA 0012 airfoil
represented with Bernstein polynomials of order 8

The Bernstein polynomials of order N used in equation (2.10) are defined in equation (2.11).

Si(x) =
N!

i!(N− i)!
xi (1− x)N−1 (2.11)

The weights Aui and Ali in equation (2.10) are used to scale the Bernstein polynomials for the air-

foil’s upper and lower surface, and represent the design variables for the optimization. A schematic

of the geometry parameterization is shown in Figure 2.1.

Once the airfoil geometry, i.e. its surface mesh, has been defined according to the set of design

variables D = [Aui,Ali], the displacements of the surface nodes need to be propagated to the in-

terior mesh. This mesh deformation problem is solved with a spring analogy approach. In this

approach the mesh is seen as a network of interconnected springs whose coefficients are assumed

to be inversely proportional to the second power of the edges length. Two independent force

balance equations are formulated for each node in response to the surface displacements. The re-

sulting system of equations is solved using a GMRES Krylov solver preconditioned with a Jacobi

algorithm, similar to the solution strategy for the flow solver. The governing equations for the
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mesh deformation problem can be written symbolically as:

G(x,D) = 0 (2.12)

where x denotes the interior mesh coordinates and D denotes the shape parameters that define the

surface geometry.

2.3 Two-dimensional Blade-Vortex Interaction Noise

The focus of the current exercise is to develop an adjoint-based framework to minimize blade-

vortex interaction (BVI) noise. Blade vortex interaction noise happens when a rotor blade interacts

with the vortices shed from a previous blade. To mimic this behavior in a two-dimensional context

an isentropic vortex [45] is initialized in the steady flowfield computed around the NACA-0012

airfoil. The vortex is then convected downstream to realize an head-on interaction with the airfoil.

The perturbation to the steady-state flowfield around the airfoil generated by the isentropic vortex

is defined in equation (2.13)

δu =− α

2π
(y− y0)expφ

(
1− r2)

δv =
α

2π
(x− x0)expφ

(
1− r2) (2.13)

δT =
α2 (γ−1)

16φγπ2 expφ
(
1− r2)

The parameter φ controls the gradient of the solution while α determines the strength of the vortex,

r =
√

(x− x0)
2 +(y− y0)

2 is the distance from the vortex center and γ = 1.4 is the ratio of specific

heats. The vortex center coordinates are x0 and y0 and for the case of the head - on airfoil vortex

interaction simulated in this work x0 =−4.0 and y0 = 0. The freestream Mach number is M = 0.6

and the angle of attack is zero. The vortex is initialized in the domain upstream of the airfoil

as shown in Figure 2.2 and is freely convected downstream using the BDF2 time discretization in

equation (2.5). The unsteady flowfield is computed for 256 timesteps of uniform size dt = 0.4 non-

dimensionalized with the freestream speed of sound and every timestep is converged to machine

precision as shown in Figure 2.3. The flowfield variables at each timestep are then used as input

to the acoustic propagation module, as described in Section 2.4, to determine the noise signature

at the acoustic observer.
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Figure 2.2: Initialization of the isentropic vortex in the steady state flowfield computed around the
NACA-0012 airfoil.

Figure 2.3: Residual convergence for the first three timestep of the unsteady CFD solution
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2.4 Aeroacoustic Solver: the Two-dimensional FW-H Integra-

tion

After the complex aerodynamic environment around the blade vortex interaction has been deter-

mined, the noise signature of the airfoil at the farfield observer can be computed. Despite the

continuous increase in computational resources, numerical simulations that resolve wave prop-

agation from the nearfield to a farfield observer are still infeasible, hence a viable approach to

predicting farfield noise level is the use of hybrid methods.

In hybrid methods, the finely resolved nearfield flow time history computed by a CFD solver is

used as input to an acoustic integral formulation that predicts the noise radiated to a farfield ob-

server. The acoustic formulations are often based on Lighthill’s acoustic analogy, and in this work

the Ffowcs-Williams and Hawkings (FW-H) acoustic integration has been used, as it is widely

recognized as the workhorse in helicopter aeroacoustic applications [14]. Using the mathemat-

ical theory of distributions, Ffowcs-Williams and Hawkings [46] recombined the Navier-Stokes

equation to arrive at the inhomogeneous wave equation that describes the noise generated by the

relative motion between a body and a surrounding fluid. The FW-H equation can be expressed in

differential form as [46](
∂2

∂t
− c2

0
∂2

∂xi∂x j

)(
H( f )ρ′

)
=−∂Fiδ( f )

∂xi
+

∂Qδ( f )
∂t

(2.14)

where

Q = (ρovi +ρ(ui− vi))
∂ f
∂xi

(2.15)

and

Fj =
(

pδi j +ρui
(
u j− v j

)) ∂ f
∂xi

(2.16)

and the Lighthill’s stress tensor, the quadrupole term, has been omitted since it is not used in this

work. Equation (2.15) gives rise to an unsteady monopole-type contribution that can be associ-

ated with mass addition, while the dipole term, equation (2.16), involves an unsteady force. In

equations (2.14), (2.15) and (2.16), the prime denotes perturbation relative to the freestream which

itself is denoted with the subscript o, while xi and t are Cartesian coordinates and time respectively.

The function f (xi) = 0 defines the surface of integration outside of which the solution is sought.
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Density and pressure are ρ and p, and they are interpreted as the sum of their respective free-stream

values and a perturbation as

ρ = ρo +ρ
′

p = po + p′

The fluid velocities are ui, while vi are the surface velocities and co is the freestream speed of

sound. Finally, H( f ) is the Heaviside function while δ( f ) is the Dirac function.

The solution to the inhomogeneous wave equation (2.14) has been the subject of extensive re-

search [13,14,47] and is computed by integrating the quantities in equation (2.15) and (2.16) over

an acoustic integration surface. The integration surface can be the solid surface of the body moving

in the surrounding fluid, as originally proposed by Ffowcs Williams and Hawkings, or an off-body

permeable integration surface as proposed in [14,47]. For three-dimensional problems the acoustic

integration is typically carried out in the time domain [13,14] as described in Chapter 3. However,

for two-dimensional applications Lockard [48] has derived a more efficient integration in the fre-

quency domain that has been used for the two-dimensional BVI case considered in this work.

By assuming uniform rectilinear motion of both the surface and the acoustic observer, the solution

to the two-dimensional differential FW-H equation in the frequency domain reads:

H( f )c2
0ρ
′ = H( f )p′ =−

∮
f=0

Fi (ξ,ω)
∂G(y,ξ)

∂ξi
dl−

∮
f=0

Q(ξ,ω)G(y,ξ)dl (2.17)

where y is the observer location, ξ = (ξ,η) are the two-dimensional source coordinates on the

integration surface f = 0, ω is the frequency, Q(ξ,ω) and Fi (ξ,ω) are the monopole and dipole

terms in the frequency domain at the source locations and dl is the infinitesimal length along the

surface f = 0.

The function

G(y,ξ) =
i

4β
e

Mkx
β2 H2

0

(
k

β2

√
x2 +β2y2

)
(2.18)

is the free space Green’s function, where H2
0 is the Hankel function of second kind of order zero,

and

x = (x−ξ)cosθ+(y−η)sinθ

y =−(x−ξ)sinθ+(y−η)cosθ
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Figure 2.4: CFD mesh and approximate location of the FW-H integration surface

Here x and y are the observer coordinates, tanθ=V/U with U and V being the freestream Cartesian

velocities of the flow, M =
√

U2 +V 2/co is the Mach number and β =
√

1−M2 is the Prandtl-

Glauert factor.

Numerical evaluation of the integral in equation (2.17) is performed as follows:

1. Definition of the integration surface f (xi) = 0. The integration surface used in this work is

a collection of edges from the unstructured CFD mesh. This set of edges is selected using a

geometrical distance function criterion. The integration surface is placed four chords away

from the airfoil and its approximate location is shown in Figure 2.4.

2. For every acoustic source on the FW-H acoustic integration surface, assemble the monopole

and dipole term in equations (2.15) and (2.16) for every timestep of the CFD time-integration

process.

3. Apply a window function to the monopole and dipole terms to account for the non-periodicity

of their time histories. In this work the window function proposed by Lockard [48] has been
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used.

4. Transform the monopole and dipole term to the frequency domain via a Fast Fourier Trans-

form (FFT). While very efficient FFT algorithms are available [49], the one used in this

exercise had to be implemented ex-novo to allow easy access to the source code for tangent

and adjoint differentiation purposes.

Note that steps 3 and 4 require the prior availability of the complete flow time history. For

this reason the acoustic integration in the frequency domain can only be carried out at the

end of the CFD time-integration process and can be considered a post-processing step of the

CFD time-integration.

5. For each frequency in the Fourier Transform and for each observer location, compute the

two-dimensional Green’s function in equation (2.18) to evaluate the integral in equation (2.17)

and determine the total acoustic pressure at the observer in the frequency domain. In this

work the integral is evaluated with a one point Gaussian quadrature.

6. Perform inverse Fourier Transform (iFFT) to recover the acoustic pressure time history at

the observer.

The current acoustic implementation has been validated against two analytical test cases, a monopole

in uniform flow and the scattering of sound by an edge [48, 50].

The complex potential for the monopole in uniform flow is given by Lockard [48] as

φ(x, t) = AeiωtG(y,ξ) (2.19)

where A is the amplitude, ω is the frequency, t is time and G(y,ξ) is the Green’s function defined

in equation (2.18). Equation (2.19) gives the value of the potential at any point in space and

time and the variables needed for the FW-H integration are obtained by taking the real part of

p′ = −ρo(
∂φ

∂t
+Ui

∂φ

∂xi
), u′i =

∂φ

∂xi
and using the isentropic condition ρ′ = p′/c2

o. The FW-H is

then validated by first evaluating the exact acoustic pressure at the observer location. Then all

the variables needed to evaluate the FW-H integral in equation (2.17) are evaluated at the FW-H

surface and the integration is performed. The acoustic prediction is then compared to the exact

analytical solution. Results for this test case are presented in Figure 2.5: Figure 2.5(a) shows
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(a) Comparison between the exact acoustic pressure
and the one computed by the two-dimensional FW-
H acoustic integration for an observer at r = 500m,
θ = 180deg for a monopole in uniform flow

(b) Directivity plot for the monopole in uniform flow
for an observer at r = 500m

Figure 2.5: Validation of the two-dimensional acoustic integration for the monopole in uniform
flow test case [48]

excellent agreement between the exact and the predicted acoustic pressure time histories for an

observer at a radial distance r = 500m and an azimuthal location θ = 180deg. Figure 2.5(b) shows

the root mean square of the acoustic pressure for the exact solution and the acoustic integration at

different azimuthal locations but for the same radial distance r = 500m, confirming the accuracy

of the acoustic integration.

The same procedure is followed for the scattering of sound by an edge. A vortex of strength k

moves around the edge of a semi-infinite plate along the path shown in Figure 2.6. The vortex

reaches its maximum speed when it is closest to the plate, reaching a Mach number M = 0.001.

The potential for this flow is given by Crighton [50] as:

φ(x, t) =
2
√

2

[M2(r− t)2 +4]
1
4

sin(θ

2)

r
1
2

(2.20)

where r =
√

x2 + y2 is the radial distance from the origin to a general (x,y) location in the 2D

plane, non dimensionalized with the distance b in Figure 2.6 and θ is the angle measured relative

to the positive x-axis. Results for this case are shown in Figure 2.7. Figure 2.7(a) compares

the acoustic-pressure time histories for the exact solution and the acoustic integration at a radial
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Figure 2.6: Schematic of the scattering by an edge from Rumpfkeil [51]

distance r = 50m and θ = 0deg, while Figure 2.7(b) shows the exact and predicted root mean

square of the acoustic pressure for an observer at r = 50m and different azimuthal locations. In

both cases the agreement between the exact solution and the acoustic integration is excellent.

2.5 Tangent and Adjoint Formulations for the Two-dimensional

Aeroacoustic Problem

To perform the efficient gradient-based aeroacoustic optimization of the NACA-0012 airfoil in

blade-vortex interaction the adjoint sensitivities need to be derived for the coupled aeroacoustic

problem. First, the tangent and adjoint sensitivities for the airfoil in vortex interaction are pre-

sented: for simplicity the sensitivities are derived for a BDF1 time discretization and the derivation

closely follows that of Mani and Mavriplis [35]. The sensitivity formulation is then extended to

include the tangent and adjoint acoustic sensitivities, to realize the coupled aeroacoustic sensitivity.

The tangent sensitivity is derived first, while the adjoint sensitivity is obtained by transposing and

reversing all the operations performed in forward mode. The tangent sensitivity is then validated

with respect to the complex step method [52,53], while the adjoint sensitivity is validated with the
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(a) Exact and FWH acoutic pressure solution for an
observer at r = 50m and θ = 0deg for a vortex passing
over an edge

(b) Directivity plot for the vortex over edge flow for an
observer at r = 50m

Figure 2.7: Validation of the acoustic solver for the scattering of sound by an edge [50]

duality relation [54] with the tangent model.

2.5.1 Sensitivity Analysis Formulation for Airfoil in Vortex Interaction

To derive the tangent and adjoint sensitivities for the airfoil in vortex interaction, the objective

function Ln at the end of the time-integration process can be expressed as

Ln = Ln (Un(D),x(D)) (2.21)

where D is the vector of design variables and x(D) is the vector of mesh coordinates that depends

on the design variables, but not on time.

Differentiating equation (2.21) with respect to one design variable yields:

dLn

dD
=

∂Ln

∂Un
dUn

dD
+

∂Ln

∂x
dx
dD

(2.22)

The flow residual at each timestep for a BDF1 time discretization scheme is given as

Rn = Rn (Un(D),Un−1(D),x(D)
)
=

V
(
Un−Un−1)

∆t
+Sn(Un,n) = 0 (2.23)
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and an expression for dUn

dD to be used in equation (2.22) is obtained by differentiating equation

(2.23) with respect to a design variable D

∂Rn

∂Un
dUn

dD
+

∂Rn

∂Un−1
dUn−1

dD
+

∂Rn

dx
dx
∂D

= 0 (2.24)

and solving for the flow tangent sensitivity at timestep n as

dUn

dD
=−

[
∂Rn

∂Un

]−1(
∂Rn

∂Un−1
dUn−1

dD
+

∂Rn

dx
dx
∂D

)
(2.25)

In equation (2.25),
[

∂Rn

∂Un

]
is the exact second-order-accurate Jacobian of equation (2.23) that is

inverted using the GMRES - Krylov algorithm used in the analysis problem. Equation (2.25)

represents a forward integration in time where the initial condition dU0

dD is given by the linearization

of the vortex equations with respect to the design variables.

The term dx
dD is obtained from

[K]
dx
dD

=
dxsur f

dD
(2.26)

where [K] is the stiffness matrix of the mesh deformation problem as described in Section 2.2 and
dxsur f

dD is the forward sensitivity of the mesh boundary nodes with respect to the design variables

computed by linearization of the geometry paramterization described in Section 2.2. The system

in equation (2.26) is solved with the same GMRES-Krylov algorithm described in Section 2.2.

Once the term dUn

dD has been computed as per equation (2.25), the objective function sensitivity at

the final timestep can be evaluated with the matrix vector products described in equation (2.22).

Equation (2.22) gives the sensitivity of the objective function in equation (2.21) with respect to one

design variable D. However, for gradient-based optimization, the sensitivity of the objective func-

tion with respect to the full vector of design variables D is needed. Hence, the expensive forward

time integration in equation (2.25) would need to be repeated for every design variable in the vec-

tor D. A more efficient approach is to compute the adjoint sensitivity of the objective function by

transposing and reversing all the operations performed in the tangent mode. Transposing equation

(2.22) gives the reverse linearization of the objective function in equation (2.21)

dLn

dD

T
=

dUn

dD

T
∂Ln

∂Un

T

+
dx
dD

T
∂Ln

∂x

T

(2.27)

The term dUn

dD
T

is obtained by transposing equation (2.25) as

dUn

dD

T
=−

(
∂Rn

∂Un−1
dUn−1

dD
+

∂Rn

∂x
dx
dD

)T [
∂Rn

∂Un

]−T

(2.28)
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So that equation (2.27) becomes

dLn

dD

T
=−

(
dUn−1

dD

T
∂Rn

∂Un−1

T

+
dx
dD

T
∂Rn

∂x

T
)[

∂Rn

∂Un

]−T
∂Ln

∂Un

T

+
dx
dD

T
∂Ln

∂x

T

(2.29)

The flow adjoint variable at time level n is now defined as

Λ
n
u =

[
∂Rn

∂Un

]−T
∂Ln

∂Un

T

(2.30)

And equation (2.29) becomes

dLn

dD

T
=−dUn−1

dD

T
∂Rn

∂Un−1

T

Λ
n
u +

dx
dD

T
(

∂Ln

∂x

T

− ∂Rn

∂x

T

Λ
n
u

)
(2.31)

The first term in equation (2.31) depends on the sensitivity dUn−1

dD
T

at the previous timestep, which

can be computed by evaluating equation (2.28) at timestep n−1 as

dUn−1

dD

T

=−
(

∂Rn−1

∂Un−2
dUn−2

dD
+

∂Rn−1

∂x
dx
dD

)T [
∂Rn−1

∂Un−1

]−T

(2.32)

Substituting equation (2.32) into equation (2.31) and defining a new adjoint variable at timestep

n−1 as

Λ
n−1
u =

[
∂Rn−1

∂Un−1

]−T
∂Rn

∂Un−1

T

Λ
n
u (2.33)

equation (2.31) becomes

dLn

dD

T
=−dUn−2

dD

T
∂Rn−1

∂Un−2

T

Λ
n−1
u +

dx
dD

T
(

∂Ln

∂x

T

−
n

∑
i=n−1

∂Ri

∂x

T

Λ
i
u

)
(2.34)

Equation (2.34) now depends on the sensitivity dUn−2

dD
T

at timestep n− 2, hence equation (2.31)

represents a backward time integration for the flow adjoint variable that at a given time level k is

given by

Λ
k
u =−

[
∂Rk

∂Uk

]−T [
∂Rk+1

∂Uk

T

Λ
k+1
u

]
(2.35)

where
[

∂Rn

∂Un

]T
is the transpose of the second-order-accurate flow Jacobian that is inverted iteratively

using a GMRES - Krylov algorithm preconditioned with a colored Gauss - Seidel iteration scheme.

The final (initial) term dU0

dD
T

is taken from the linearization of the vortex equations with respect to
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the design parameter in reverse mode. At the end of the backward time integration the sensitivity

vector is

dLn

dD

T
=

dx
dD

T
(

∂Ln

∂x

T

−
n

∑
i=1

∂Ri

∂x

T

Λ
i
u

)
(2.36)

By transposing equation (2.26), the term dx
dD

T
becomes

dx
dD

T
=

dxsur f

dD

T
[K]T (2.37)

and substituting equation (2.37) into equation (2.36) the mesh adjoint problem can be defined as

Λx = [K]−T

[
∂Ln

∂x

T

−
n

∑
i=1

∂Ri

∂x

T

Λ
i
u

]
(2.38)

The system is solved with a Jacobi preconditioned GMRES - Krylov algorithm. Finally, the sensi-

tivity vector dLn

dD
T

is given by the product

dLn

dD

T
=

dxsurf
dD

T
Λx (2.39)

where the term dxsurf
dD

T
is the known sensitivity of the boundary nodes with respect to the design

variables. For the two-dimensional optimizations presented in Chapter 4 the linear systems in

equations (2.35) and (2.38) are both converged to machine precision as shown in Figure 2.8

In the case of a time-integrated objective function, equation (2.21) is modified as

Lg = Lg (L1,L2 · · · ,Ln) (2.40)

and its forward linearization is

dLg

dD
= ∑

n

[
∂Lg

∂Ln
∂Ln

∂Un
dUn

dD
+

∂Lg

∂Ln
∂Ln

∂x
dx
dD

]
(2.41)

with dUn

dD and dx
dD that are still computed from equations (2.25) and (2.26). The term ∂Lg

∂Ln is the

derivative of the global (time-integrated) objective function Lg with respect to the local (instanta-

neous) objective function Ln. Transposing equation (2.41) gives the adjoint or reverse linearization

of equation (2.40) as

dLg

dD

T
= ∑

n

[
dUn

dD

T
∂Ln

∂Un

T
∂Lg

∂Ln

T

+
dx
dD

T
∂Ln

∂x

T
∂Lg

∂Ln

T
]

(2.42)
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Figure 2.8: Residual convergence for the flow adjoint problem at a generic timestep and the final
mesh adjoint problem

Substituting again equation (2.28) into equation (2.42) and following the same rationale used to

arrive at equation (2.35), the flow adjoint equation for a time-integrated objective function now

becomes

Λ
k
u =−

[
∂Rk

∂Uk

]−T [
∂Lk

∂Uk

T
∂Lg

∂Lk

T

+
∂Rk+1

∂Uk

T

Λ
k+1
u

]
(2.43)

and at the end of the backward time integration process the mesh adjoint equation can be computed

as

Λx = [K]−T
n

∑
i=1

[
∂Lg

∂Li

T
∂Li

∂x

T

− ∂Ri

∂x

T

Λ
i
u

]
(2.44)

so that the final sensitivity in equation (2.42) becomes

dLg

dD

T
=

dxsurf
dD

T
Λx (2.45)

Hence, as described by Mani and Mavriplis [35], the only difference between the time-integrated

and the non-time-integrated objective function is the pre/post multiplication of the terms ∂Ln

∂Un and
∂Ln

∂x by the global-to-local sensitivity ∂Lg

∂Ln for the forward/adjoint sensitivity respectively. The two
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terms ∂Ln

∂Un
T

and ∂Ln

∂x
T

drive the backward adjoint time integration: in the case of the acoustic opti-

mization these terms come from the adjoint linearization of the FW-H acoustic module as explained

in Section 2.5.2.

Verification of the Aerodynamic Sensitivities for the Airfoil in Blade-vortex Interaction

The tangent linearization has been verified against the complex step method [52,53]. Any function

f (x) operating on a real variable x can be used to compute both the function and its derivative

f ′(x) if the input variable x and all the intermediate variables used in the discrete evaluation of

f (x) are redefined as complex variables. In this case for a complex input the function will produce

a complex output. A Taylor series of the now complex function f (x+ ih) , where h is a small

step-size and i is the imaginary unit, reads

f (x+ ih) = f (x)+ ih f ′(x)+O
(
h2) (2.46)

from which the real part is simply the function value at x, while from the imaginary part the

function derivative can be easily evaluated as

f ′(x) =
Im [ f (x+ ih)]

h
(2.47)

Despite requiring a step size, as in the case of finite-differencing, the complex step method is

insensitive to small step-sizes since no differencing is required. Hence, by using a step size h =

10−31 the tangent formulation for the blade vortex interaction case can be verified to machine

precision against the complex step method.

The adjoint sensitivities are then verified with the duality relationship [54] between the tangent and

the adjoint formulations. Table 2.1 shows the comparison between the adjoint linearization and

the complex step method for the 7th design variable for the time-integrated aerodynamic objective

function defined in equation (4.1). The error between the complex step method and the flow adjoint

is of the order of machine precision, thus verifying the correctness of the adjoint linearization.
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Table 2.1: Complex step validation of the 7th design sensitivity of the flow adjoint.
Adjoint Complex Error

-1.7854017702037789E-01 -1.7854017702038E-01 -2.10942374678780E-15

2.5.2 Sensitivity Analysis for the FW-H Equation

To enable adjoint-based aeroacoustic optimization the tangent and adjoint differentiation of the

FW-H acoustic integration needs to be derived. The linearizations of the acoustic integrals will

then be coupled to the corresponding tangent and adjoint linearizations of the CFD flow solver to

realize the tangent and adjoint linearizations of the coupled aeroacoustic problem.

The functional dependencies for the quantities in the acoustic integrals in equation (2.17) are shown

in equation (2.48)

Q = Q(xs(D),U(D),ω)

Fi = Fi (xs(D),U(D),ω) (2.48)

G = G(xs(D),xo,ω)

∂G
∂xs

=
∂G
∂xs

(xs(D),xo,ω)

where xs(D) is the discrete source location on the discrete FW-H integration surface, xo is the

observer location and ω is the frequency. From equation (2.48) it is evident that the monopole and

dipole terms depend on the design parameters D through both the FW-H surface geometry and the

input CFD solution. The acoustic pressure at the observer can then be expressed as

p′(D,ω) = FWH(U(D,ω),x(D),ω) (2.49)

where FWH(U(D,ω),x(D),ω) represents all the discrete operations necessary to evaluate equa-

tion (2.17) numerically, as described in Section 2.4. Differentiation of equation (2.49) with respect

to one design variable yields the pressure sensitivity at the observer as

d p(D,ω)

dD
= ∑

n

∂FWH
∂Un

FWH

dUn
FWH

dD
+

∂FWH
∂xFWH

dxFWH

dD
(2.50)

where dUn
FWH

dD is the tangent CFD solution at the n− th timestep evaluated at the FW-H surface

location, and dxFWH
dD is the CFD mesh sensitivity at the FWH integration surface. The matrices
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∂FWH
∂UFWH

and ∂FWH
∂xFWH

have been obtained by forward linearization of each component in the acoustic

integration.

The time-integrated acoustic objective function used in this work is the overall sound pressure level

(OSPL) at the observer location, defined as in equation (2.51):

LFWH = OSPL(p(D)) = 20log10

(
p′RMS

p0

)
(2.51)

Here p′RMS is the root mean square of the acoustic pressure at the observer as computed by the

FW-H acoustic integration and p0 = 20µPa is a reference pressure. Thus the final form of the

aeroacoustic objective sensitivity reads:

dLFWH

dD
=

∂SPL
∂p

d p
dD

=
∂SPL

∂p

[
∑
n

∂FWH
∂Un

FWH

dUn
FWH

dD
+

∂FWH
∂xFWH

dxFWH

dD

]
(2.52)

= ∑
n

∂Ln
FWH

∂Un
FWH

dUn
FWH

dD
+

∂LFWH

∂xFWH

dxFWH

dD

The flow and the acoustic analysis codes are loosely coupled and, as stated before, the FW-H

acoustic propagation model can be considered a post-processing step of the unsteady CFD simu-

lation. All the two-dimensional aeroacoustic simulations are carried out on a computational mesh

consisting of approximately 60000 elements. The non-conserved variables of the CFD solution

must be extracted at the source locations on the FW-H integration surface for the complete time

history to assemble the monopole and dipole terms in equations (2.15) and (2.16). Since the CFD

solver is a cell-centered solver and the FW-H surface is a concatenation of edges from the un-

structured CFD mesh, an unlimited least-square gradient reconstruction procedure is employed to

guarantee second-order accuracy while extracting the CFD data at the acoustic surface location.

The edges of the FW-H surface are chosen using a wall distance criterion four chords away from

the airfoil and the approximate location of the integration surface is shown in Figure 2.4. The ex-

tracted CFD solution time history is then used as input to the FW-H acoustic solver and the acoustic

objective function can be computed. The same procedure is followed to couple the tangent flow

and the tangent acoustic codes. The complete time history of the tangent flow sensitivity must be

reconstructed at the FW-H integration surface, then both the flow and the mesh sensitivities at the

integration surface can be passed as input to the tangent FW-H solver and finally the sensitivity

of the time-integrated objective function, the overall sound pressure level at the observer, can be
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(a) Propagated and computed acoustic pressure sensi-
tivity for an observer 0.4 chords away from the FW-H
integration surface

(b) Propagated and computed acoustic pressure sensi-
tivity for an observer 1.5 chords away from the FW-H
integration surface

Figure 2.9: Comparison of FW-H propagated and CFD computed acoustic pressure sensitivity at
different observer locations highlighting the detrimental effect that numerical dissipation has on
the computed acoustic pressure sensitivity as the observer is moved to the far field.

computed. Hence, the sensitivity in equation (2.52) can be computed once the vectors dUn

dD and dx
dD

are known at the FW-H surface from the flow and mesh tangent problem. Therefore the tangent

FW-H solver can be considered a post-processing step of the flow tangent problem. A compari-

son between the propagated and the computed observer acoustic pressure sensitivity is shown in

Figure 2.9 for two different observer locations. In Figure 2.9(a) the observer is placed underneath

the airfoil at the center of a CFD cell approximately 0.4 chords away from the FW-H integration

surface while in Figure 2.9(b) the observer is placed approximately 1.5 chords away and for both

cases the acoustic pressure sensitivity computed by the tangent flow solver can be compared to

that propagated by the tangent FW-H solver. Figure 2.9 shows good agreement between the two

codes. Note that the tangent CFD solution consistently underestimates all the peaks in the sensitiv-

ity time history, a consequence of the numerical dissipation associated with the employed spatial

discretization. Furthermore, this behaviour deteriorates as the observer is placed further away from

the FW-H integration surface.

Transposing equation (2.52) yields the adjoint linearization of the acoustics objective fuction as
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Table 2.2: Finite difference validation of the 7th design sensitivity.
Adjoint FD Error

-3.1819940460451508E-03 -3.17975314778490E-03 2.24089826024758E-06

dLFWH

dD

T
= ∑

n

dUn

dD

T
∂Ln

FWH
∂Un

T

+
dx
dD

T
∂LFWH

∂x

T

(2.53)

The terms ∂Ln
FWH

∂Un
FWH

T
and ∂LFWH

∂x
T

are known once the products ∂FWH
∂UFWH

T ∂SPL
∂p′

T
and ∂FWH

∂xFWH

T ∂SPL
∂p′

T
have

been evaluated. These two matrix - vector products are the adjoint linearization of the discrete

FW-H equation and are obtained by transposition of the corresponding matrices in the forward

linearization. Equation (2.53) is now in the form of equation (2.42) and the backward time inte-

gration described in Section 2.5.1 can start with the terms ∂Ln

∂Un
T
=

∂Ln
FWH

∂Un
FWH

T
= ∂FWH

∂UFWH

T ∂SPL
∂p

T
and

∂L
∂x

T
= ∂LFWH

∂x
T
= ∂FWH

∂xFWH

T ∂SPL
∂p

T
provided by the adjoint linearization of the acoustic integration.

Hence, the adjoint of the acoustic module can be considered a preprocessing step to the flow ad-

joint solver described in Section 2.5.1: once the two terms ∂Ln
FWH

∂Un
FWH

T
and ∂LFWH

∂x
T

are known the flow

adjoint solver can start as described in Section 2.5.1.

The tangent and FW-H integration have been verified with a finite-difference approach as the

complex-step method [52, 53] is not applicable in this case since the acoustic analysis equation

itself includes complex variables via the Fourier transform and the Green’s function in equation

(2.17). The adjoint solver has then been validated by the duality-relation [54] to the tangent solver

to machine precision. Table 2.2 shows the finite difference validation of the 7th adjoint design

sensitivity. A second-order-accurate centered finite-difference scheme with a step δD = 10−4 has

been used.

With minor modifications the coupling strategy for the two-dimensional tangent and adjoint aeroa-

coustic linearizations will be applied to the three dimensional problem, the main differences re-

sulting from the time-domain formulation for the three-dimensional FW-H acoustic integration as

described in Chapter 3.
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Chapter 3

Three Dimensional Aeroacoustic Problem

for Helicopter Rotors

The three-dimensional adjoint-based multidisciplinary design capability is introduced in this chap-

ter. The design tool encompasses the three disciplines of aerodynamics, structural mechanics and

aeroacoustics. First, the solver for each discipline is presented, with particular emphasis on the

acoustic integration. The coupling of the three discipline is then discussed and the linearization of

the coupled multidisciplinary unsteady problem is introduced.

3.1 Aerodynamic Solver

The base flow solver used in this work is the NSU3D unstructured mesh Reynolds-averaged

Navier-Stokes solver [41,55]. NSU3D has been widely validated for steady-state and time-dependent

flows and is augmented with a discrete tangent and adjoint sensitivity capability which has been

demonstrated previously for optimization of steady-state and time-dependent flow problems. As

such, only a concise description of these formulations will be given in this thesis, with additional

details available in references [32,54,56]. The flow solver is based on the conservative form of the

Navier-Stokes equations which may be written as:

∂u(x, t)
∂t

+∇ ·F(u) = 0 (3.1)
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For moving mesh problems these are written in arbitrary Lagrangian-Eulerian (ALE) form as:

∂V u
∂t

+
∫

dB(t)
[F(u)− ẋu] ·ndB = 0 (3.2)

Here V is the control volume, ẋ is the vector of mesh face velocities, n is the unit normal of

the face, and B(t) is the surface area of the time varying control volume. The state vector u

consists of the conserved variables and the Cartesian flux vector F = (Fx,Fy,Fz) contains both

inviscid and viscous fluxes. The equations are closed with the perfect gas equation of state and the

Spalart-Allmaras turbulent eddy viscosity model [57] for all cases presented in this work. The time

derivative term is discretized using a second-order accurate backward-difference formula (BDF2)

scheme and the implicit residual is solved using Newton’s method. The Jacobian matrix is in-

verted iteratively using a line-implicit agglomeration multigrid scheme that can also be used as a

preconditioner for a GMRES Krylov solver [58]. For the remainder of this chapter, the system of

non-linear equations for the CFD analysis problem will be represented by the generalized notation:

R(u,x) = 0 (3.3)

where the vector u denotes the flow values, x represents the CFD mesh coordinates, and equation

(3.3) denotes the simultaneous solution of all time steps.

3.2 Structural Dynamics Solver

The structural dynamics of the blade are modeled with an Hodges-Dowell [59], non-linear, bend-

twist finite-element model that is well suited for rotary-wing aircraft structures. The model has

previously been developed and coupled to the NSU3D flow solver for both steady [60, 61] and

time-dependent problems [62]. Figure 3.1 shows a typical beam with 15 degrees of freedom per

element to accommodate bend wise, lag wise, axial and torsional displacements. The second-order

equation of motion for the beam can be expressed as: Mq̈+Cq̇+Kq = F . Here [M], [C] and [K]

are mass, damping and stiffness matrices of the system of equations representing the beam. The

vector F=F(t) is the forcing vector, while q represents the displacements along all degrees of free-

dom. This set of equations can be reduced to a first-order system and solved using a second-order

backward difference formula (BDF2) time integration with standard Newton-type linearization and
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Figure 3.1: Beam element with flap, lag, torsional and axial (total 15) degrees of freedom.

sub-iterations to efficiently invert the implicit system: [I]Q̇+ [A]Q = F, where [I] is the identity

matrix, Q = [q, q̇]T , F = [0, [M]−1F]T and [A] =
[

0 −[I]
[M]−1[K] [M]−1[C]

]
. The residual of the structural

equations can be defined as: J = [I] Q̇+[A] Q−F = 0, and can be expressed in a simplified form

as:

J(Q,F) = 0 (3.4)

The beam model for the applications presented in Chapter 4 consists of 20 elements per blade

and has been validated for the standard HART-II rotor case [5] by comparing its natural frequency

predictions with the predictions from other reliable computational structural dynamics models,

such as UMARC [63] and DLR [64], as shown in Table 3.1. Tangent and adjoint linearizations

of the structural model have been developed and coupled to the NSU3D flow solver as shown in

previous work [62].
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Table 3.1: Comparison of HART-II Natural Frequencies [65]
Modes Present Model UMARC DLR
Flap 1 1.104 1.112 1.125
Flap 2 2.802 2.843 2.835
Flap 3 5.010 5.189 5.168

Torsion 1 3.878 3.844 3.845

3.2.1 Fluid-structure Interface

In addition to the solution of the aerodynamic problem and the structural dynamics problem, the

solution of the fully coupled time-dependent aeroelastic problem requires the exchange of aerody-

namic loads from the CFD solver to the beam structure, which in turn returns surface displacements

to the fluid flow solver. In practice, the fluid-structure-interface computes forces at each CFD sur-

face mesh point F(x,u) by integrating the surface stresses (pressure and shear) over the surface

area associated with each surface grid point. These forces are then projected onto the beam finite-

element basis functions where they are assembled in the form of forces on the beam finite-element

nodal locations denoted as Fb. Conversely, once the beam deflections have been computed, the

structural displacements are transferred back to the surface CFD mesh in a similar manner. The

governing equations for the FSI can be written in residual form as:

S(Fb,x,u) = Fb− [T (Q)]F(x,u) = 0

S
′
(xs,Q) = xs− [T (Q)]T Q = 0 (3.5)

In equation (3.5), [T ] represents the rectangular transfer matrix that projects the CFD loads F(x,u)

on the beam model, while its transpose [T ]T is used to obtain the CFD surface coordinates xs from

the CSD degrees of freedom Q

3.3 Prescribed Blade Motion

The time-dependent simulation of a rotor in forward flight requires a prescribed blade motion

capability, in particular the individual blade cycling pitching motion must be superimposed with a

simple solid body rotation of the entire rotor blade system and CFD mesh that contains the rotor.

33



For each blade, the time-dependent pitch angle can be represented by a combination of mean pitch

angle and several harmonic components:

θ = θ0 +
n

∑
i=1

θci cos(iψ)+
n

∑
i=1

θsi sin(iψ) (3.6)

where ψ is the rotor azimuth. Only one harmonic is used to attain the required thrust and moments

values, hence i = 1, and the control parameters Dpitch = [θ0,θ1c,θ1s] are to be chosen such that

the rotor is trimmed, where θ0 is the collective and θ1c,θ1s are the two cyclic pitch parameters.

To incorporate rotor pitch actuation in the CFD simulation two additional equations need to be

considered:

• a pitch actuation equation

Sθ(xsθ,xs,Dpitch) = 0 (3.7)

• an azimuthal mesh rotation equation

Sψ(x,xθ) = 0 (3.8)

Evaluation of equation (3.7) pitches the blade and yields a new set of surface grid coordinates xsθ.

Then, to avoid negative-volume cells in the region surrounding the blade, the interior mesh must be

deformed. This is accomplished with the mesh deformation algorithm described in Section 3.5 and

results in a new set of interior mesh coordinates denoted xθ. Equation (3.8) is then applied to rotate

the entire mesh to the current azimuthal location and results in the final set of grid coordinates x.

3.4 Geometry Parameterization Facility

To perform blade shape optimization, a shape parameterization technique must be implemented.

The blade parameterization technique defines the blade surface, and in turn the intial CFD surface

mesh coordinates xso, as a function of a set of shape design variables, D. Hence the blade surface

mesh points are computed as the solution of a parameterization equation that, in residual form,

reads

BCAD (xso,D) = 0 (3.9)

The specific geometry parameterization used in this work is discussed in Chapter 4.
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3.5 Mesh Deformation Capability

In order to deform the interior CFD mesh in response to surface displacements a linear elastic

analogy mesh deformation approach has been implemented. In this approach, the CFD mesh is

modeled as a linear elastic solid with a variable modulus of elasticity that can be prescribed either

as inversely proportional to the cell volume or to the distance of each cell from the nearest wall

[60,66]. The resulting equations are discretized and solved on the mesh in its original undeformed

configuration in response to surface displacements. The governing equations for mesh deformation

can be written symbolically as:

G(x,xsθ(D)) = 0 (3.10)

where x denotes the interior mesh coordinates and xsθ represents the displaced surface mesh coor-

dinates.

3.6 Aeroacoustic Solver: the Three-dimensional FW-H Inte-

gration

As done for the two-dimensional blade vortex interaction case in Chapter 2, the acoustic signa-

ture of the helicopter rotor is determined with an FW-H acoustic integration. The NSU3D CFD

flow solver provides the nearfield flow time history to a newly developed three-dimensional FW-H

acoustic integration module that propagates the acoustic pressure at a farfield observer. The lo-

cation of the FW-H acoustic integration surface depends on the noise problem being investigated.

When significant non-linear flow effects are present, as in the case of high-speed helicopter forward

flight, an off-body permeable integration surface should be used [14,67] to account for quadrupole

noise effects. Noise prediction with an off-body permeable surface is only accurate when the flow

field between the body and the integration surface is finely resolved, resulting in a significant in-

crease in the computational cost of the CFD time-integration process. However, quadrupole noise

is neglected in this work and an on-body impermeable integration surface is used. Figure 3.2 shows

the FW-H acoustic integration surface and the observer location used for validation and optimiza-

tion purposes. The acoustic surface coincides with the CFD rotor surface mesh and every node on
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Figure 3.2: Acoustic integration surface and observer location: the observer is stationary in the
plane of the rotor two radii from the rotor hub at ψ = 180 deg.

the surface is an acoustic source that produces an acoustic pressure at the observer location via the

FW-H integration process.

Acoustic Analysis Formulation: the FW-H Integration in the Time Domain

As mentioned in Chapter 2, the acoustic integration in three dimension is typically carried out in

the time domain following the derivation from Farassat [13] using the variables

Ui =

(
1− ρ

ρo

)
vi +

ρui

ρo

Li = p′n j +ρui (un− vn) (3.11)

as proposed by Di Francescantonio [47]. In equation (3.11), p′ = p− po is the acoustic pressure, ni

is the unit normal of the acoustic surface, un = uini and vn = vini are the flow and surface velocities
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in the direction normal to the integration surface, and for the on-body solid acoustic integration

surface used in this work u = v. The integral solution is then given, neglecting the quadrupole

term, by equation (3.12)

4πp′T (y, t) =
∫

f=0

[
ρo
(
U̇n +Uṅ

)
r(1−Mr)2

]
ret

dS

+
∫

f=0

[
ρoUnK

r2(1−Mr)3

]
ret

dS

4πp′L =
1
co

∫
f=0

[
L̇r

r(1−Mr)2

]
ret

dS (3.12)

+
∫

f=0

[
Lr−LM

r2(1−Mr)2

]
ret

dS

+
1
co

∫
f=0

[
LrK

r2(1−Mr)3

]
ret

dS

4πp′(y, t) = 4πp′T (y, t)+4πp′L(y, t)

where y is the observer location, t is the observer time, r is the distance between the source x and

the observer y with normalized cartesian components ri, M is the acoustic source Mach number

and

Un =Uini

Mr = Miri

Lr = Liri (3.13)

LM = LiMi

K = rṀr + co(Mr−M2)

Equation (3.12) requires the evaluation of the integrals at the emission or retarded time τ: for a

given observer location y and time t the retarded time must be computed via the solution of the

nonlinear equation (3.14)

τ = t− r(x(τ),y(t))/co (3.14)

where r(x(τ),y(t)) is the distance between the source x at the emission time τ and the observer y at

the observer time t. This approach has been followed in most acoustic-analogy-based codes [14].
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However, by regarding the source time as the primary time one can choose the source time for an

acoustic source and determine when the signal will reach the observer using equation (3.15)

t = τ+ r(x(τ),y(t))/co (3.15)

where τ is again the source time and t is the reception time, i.e. the time at which the acoustic

disturbance reaches the observer. Equation (3.15), a rearrangement of equation (3.14), is easier to

solve than its retarded time counterpart as the observer motion is usually simpler than the motion

of the acoustic integration surface. For each acoustic source a sequence of uniformly spaced source

times leads to a sequence of unequally spaced observer times as each source has a different source-

to-observer distance, hence the acoustic pressure time history for each source must be interpolated

at the desired observer time to determine the final acoustic pressure at the observer location. A

comparison of the retarded time and the source-time-dominant algorithm is given in [68].

The source-time-dominant algorithm has been followed in this work since it allows a seamless

integration of the acoustic module with the CFD solver. The aerodynamic and aeroacoustic time

integration proceed simultaneously and the acoustic surface of integration is the unstructured sur-

face mesh of the rotor. Hence each node of the CFD surface grid corresponds to an acoustic source.

The FW-H acoustic integration in the time domain can be summarized as follows:

1. At every CFD timestep and for every acoustic source compute the flow and surface time

derivatives U̇n, Uṅ, L̇r and Ṁr in equations (3.12) and (3.13) as

U̇n =
dUi

dt
ni

Uṅ =Ui
dni

dt

L̇r =
dLi

dt
ri

Ṁr =
dMi

dt
ri

The time derivatives are based on a BDF2 time discretization with the exception of the source

acceleration term Ṁr that is approximated with a second-order-accurate central difference

scheme.

2. At every timestep and for every acoustic source assemble the terms in equations (3.11) and

(3.13).
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3. At every timestep and for every acoustic source evaluate the acoustic integrals in equation

(3.12) using a one point Gaussian quadrature to determine the acoustic pressure time history

at the observer. In general, the relative distance between the observer and the acoustic source

is different for each source, hence a sequence of uniformly spaced source times will result

in a sequence of unequally spaced observer reception times for every acoustic source.

4. At the end of the CFD time-integration process build the total acoustic pressure at the ob-

server by linear interpolation of each source acoustic pressure at a sequence of specified

observer times.

5. Compute the aeroacoustic objective to be used in the optimizations presented in Chapter 4.

LFWH = p′RMS =

√
∑

Nsample
i=1 p′2(D)

Nsample
(3.16)

where Nsample is the number of samples in the observer acoustic pressure time history and D

is the vector of design variables.

The current implementation of the FW-H integral equation has been validated against the PSU-

WOPWOP [68] acoustic code for the HART-II flexible rotor in trimmed forward flight as shown

in Figure 3.3. The rotor has a freestream Mach number of M = 0.095 with a tip Mach number

of Mtip = 0.638, a shaft angle αsha f t = 5.4deg and a Reynolds Number of 2 million. The corre-

sponding rotor rotational speed is Ω = 1041 RPM (advance ratio µ = 0.15). The CFD simulation

has been carried out for two rotor revolutions on a mesh consisting of approximately 2.32 million

nodes with a 2-degree timestep, 6 CFD/CSD coupling iterations per time step and a stationary in-

plane observer located two radii from the rotor hub at an azimuthal angle ψ = 180 deg as shown in

Figure 3.2 and described in Table 3.2. Two different observer time windows are shown in Figure

3.3: an extended time window, Figure 3.3(a), and the observer time window targeted during the op-

timization, Figure 3.3(b). In both cases agreement between the new FW-H implementation and the

legacy PSU-WOPWOP code [68] is excellent. The effect that blade flexibility has on the predicted

total acoustic pressure is investigated in Figure 3.4: the positive pressure peak is more pronounced

in the flexible case while the negative pressure peak is significantly reduced as a consequence of

blade deformation. A comparison of the rigid and flexible blades is shown in Figure 3.5 together
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Table 3.2: Observer location for the acoustic objective function with respect to the rotor hub, R
being the rotor radius

x y z
2R 0 0

with a surface countour plot of the pressure coefficient. All four blades show different deforma-

tion characteristics due to the corresponding different aerodynamic environment they experience

during trimmed forward flight: the largest flap displacement is attained at ψ = 180 deg while the

smallest happens at ψ = 0 deg.

3.7 Fully Coupled Multidisciplinary Analysis Problem

After introducing each discipline separately, the solvers for aerodynamics, structural mechanics

and aeroacoustics will now be linked together to realize the multidisciplinary analysis problem for

rotorcraft design.

For a given design geometry, the analysis problem consists of a coupled system of equations that

needs to be solved at every timestep. At the beginning of the CFD time-integration process, equa-

tion (3.17) defines the new blade shape. At every timestep blade pitch control is applied by explicit

evaluation of equation (3.18): the cyclic pitching acts directly on the deflected blade shape co-

ordinates xs, although these depend on the original undeflected blade surface coordinates xso and

reduce to these values at the beginning of the solution procedure prior to the solution of the struc-

tural equations. Next, the combined surface displacements from equations (3.17) and (3.18) are

propagated to the interior CFD mesh by iterative solution of the mesh deformation problem in

equation (3.19), and the deformed mesh is then rigidly rotated through explicit evaluation of equa-

tion (3.20). The fully coupled fluid-structure problem can now be solved by performing multiple

coupling iterations on each discipline using the latest available values from the other disciplines.

The flow residual equations, equation (3.21), are solved iteratively using the updated grid coordi-

nates x, and the resulting flow variables u are used to compute the aerodynamic forces that are then
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(a) Validation of the current FW-H implementation with the PSU-WOPWOP
acoustic code over an extended observer time window.

(b) Comparison between the current FW-H implementation and PSU-
WOPWOP over the observer time window used for optimization purposes

Figure 3.3: Validation of the current FW-H implementation over an extended (a) and the optimiza-
tion (b) time window
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applied to the structural model through explicit evaluation of the FSI equation (3.22). Using these

forces, the structural model in equation (3.23) is solved directly and the resulting displacements

are transferred back to the CFD mesh as determined by equation (3.24).

BCAD(xso,D) = 0 (3.17)

Sθ(xsθ,xs,xso,D) = 0 (3.18)

G(xθ,xsθ) = 0 (3.19)

Sψ(x,xθ) = 0 (3.20)

R(u,x) = 0 (3.21)

S(Fb,x,u) = 0 (3.22)

J(Fb,Q) = 0 (3.23)

S
′
(xs,Q) = 0 (3.24)

Since the surface mesh coordinates are now modified, the entire process must be repeated until full

convergence to machine accuracy is achieved or until a prescribed number of coupling iterations

has been reached.

Finally, following an approach similar to that of Dunn and Farassat [69], the aeroelastically con-

verged flow and mesh solutions are used to evaluate the FW-H equation, i.e. to evaluate the acous-

tic integrals in equation (3.12), for the current CFD source-time. At the end of the CFD time-

integration process, the linear interpolation of each source acoustic pressure time history allows

for the computation of the total noise signature at the far-field observer as detailed in Section 3.6.

3.8 Fully Coupled Multidisciplinary Tangent and Adjoint Prob-

lems

Now that the multidisciplinary analysis problem has been properly formulated, the corresponding

tangent and adjoint linearizations can be implemented and verified in order to enable the mul-

tidisciplinary adjoint-based optimization of flexible rotors in forward flight. For gradient-based

optimization, sensitivities of the objective functional with respect to the design parameters are
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Figure 3.4: Acoustic pressure at the observer for the baseline rigid and flexible HART-II rotor.

Figure 3.5: Comparison between the rigid and the flexible HART-II rotor.

43



required. Because of the large-scale nature of the rotor design problem, the number of design

variables is large and an adjoint procedure is used to compute these sensitivities in an efficient

manner. While a forward or tangent linearization of the analysis problem scales linearly with the

number of design variables, the cost of the adjoint or reverse calculation is virtually independent of

the number of design parameters. Both tangent and adjoint sensitivity approaches have been im-

plemented in this work by hand differentiation of the flexible aeroacoustic analysis problem. The

tangent sensitivity is verified by comparison with the complex-step method [53] while the adjoint

linearization is verified using the duality relation [54] to the tangent approach. Upon verification

of the adjoint linearization, the adjoint approach is used in all optimizations.

In this thesis only aerodynamic or aeroacoustic objective functionals are considered, and these

depend only on the flow and mesh solution, and on the geometric shape. To derive the tangent

linearization any objective functional L is expressed as

L = L(u(D),x(D)) (3.25)

where u(D) and x(D) are the aeroelastically converged flow and mesh solution at every time step

respectively. Linearization of equation (3.25) with respect to one design variable gives

dL
dD

=

[
∂L
∂x

∂L
∂u

]
dx
dD

du
dD

 (3.26)

where the inner products are intended over all space and time. Differentiation of the system of

equations (3.17-3.24) yields the system of equations (3.27) which represent the tangent sensitivity
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of the fully coupled aeroelastic problem.

∂BCAD
∂xso

0 0 0 0 0 0 0

∂Sθ

∂xso

∂Sθ

∂xSθ

0 0 0 0 0
∂Sθ

∂xs

0
∂G
∂xsθ

∂G
∂xθ

0 0 0 0 0

0 0
∂Sψ

∂xθ

∂Sψ

∂x
0 0 0 0

0 0 0
∂R
∂x

∂R
∂u

0 0 0

0 0 0
∂S
∂x

∂S
∂u

∂S
∂Fb

0 0

0 0 0 0 0
∂J

∂Fb

∂J
∂Q

0

0 0 0 0 0 0
∂S′

∂Q
∂S′

∂xs





dxso
dD

dxsθ

dD
dxθ

dD
dx
dD
du
dD
dFb
dD
dQ
dD
dxs
dD



=



−∂BCAD
∂D

−∂Sθ

∂D
0

0

0

0

0

0



(3.27)

In equation (3.27), the first equation corresponds to the equation for the surface mesh point sensi-

tivity with respect to the shape design variables, while the second equation rotates this sensitivity

through the prescribed pitch angle, and adds the sensitivity with respect to the pitch control inputs.

The third equation propagates the surface mesh sensitivity to the interior mesh points through the

mesh deformation equations, while the fourth equation corresponds to the azimuthal rotation of

this mesh sensitivity. The fifth equation generates the flow sensitivity based on the mesh sensitiv-

ity and the solution of the linearized flow problem. The flow sensitivity is then used to construct

force sensitivity for the structural model using the tangent linearization of the FSI, which in turn

generates the structural sensitivity in the seventh equation. This is passed back to the CFD surface

mesh in the last equation, to be reused at the next aeroelastic coupling iteration. The tangent aeroe-

lastic system performs the same number of coupling iterations as the aeroelastic analysis problem.

The system in equation (3.27) represents a forward integration in time, the solution of which in-

cludes the aeroelastically converged flow and mesh tangent sensitivities du
dD and dx

dD respectively

that can be used to compute the objective functional sensitivity in equation (3.26). In the case of an
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acoustic objective, the flow and mesh tangent sensitivities are passed to the forward linearization

of the FW-H equation at every CFD time step to determine the sensitivity of the acoustic objective

functional in equation (3.16), following the same approach used in the analysis problem and as

detailed in the next section.

The system of equations (3.27) depends on the particular design parameter chosen for the lineariza-

tion through its right hand side. Hence, every time the design variable D is changed in equation

(3.26) the system of equations (3.27) needs to be solved again. This makes the tangent approach

infeasible for the large-scale rotorcraft design problems treated in this work.

A more efficient technique to compute the objective sensitivity vector is the adjoint method. In

analogy with the derivation of the adjoint problem for the two-dimensional blade-vortex interac-

tion presented in Section 2.5.1, the derivation of the coupled aeroelastic adjoint formulation starts

by transposing equation (3.26)

dL
dD

T
=

[
dx
dD

T du
dD

T
]

∂L
∂x

T

∂L
∂u

T

 (3.28)
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An expression for the unknown sensitivities dx
dD

T
and du

dD
T

is obtained by transposing equation (3.27)

that, after substitution in equation (3.28), leads to the definition of the adjoint system

∂BCAD
∂xso

T
∂Sθ

∂xso

T

0 0 0 0 0 0

0
∂Sθ

∂xsθ

T
∂G
∂xsθ

T

0 0 0 0 0

0 0
∂G
∂xθ

T
∂Sψ

∂xθ

T

0 0 0 0

0 0 0
∂Sψ

∂x

T
∂R
∂x

T
∂S
∂x

T

0 0

0 0 0 0
∂R
∂u

T
∂S
∂u

T

0 0

0 0 0 0 0
∂S

∂Fb

T
∂J

∂Fb

T

0

0 0 0 0 0 0
∂J
∂Q

T
∂S′

∂Q

T

0
∂Sθ

∂xs

T

0 0 0 0 0
∂S′

∂xs

T





Λxso

Λxsθ

Λxθ

Λx

Λu

ΛFb

ΛQ

Λxs



=



0

0

0

∂L
∂x

T

∂L
∂u

T

0

0

0



(3.29)

Equation (3.29) represents a backward integration in time and at every timestep the adjoint aeroe-

lastic system performs the same number of iterations as the analysis aeroelastic problem. The

solution of the backward time integration is then used to compute the sensitivity of the objective

function with respect to the full vector of design variables D, as shown in equation (3.30)

dL
dD

=

[
−∂Bcad

∂D

T

−∂Sθ

∂D

T

0 0 0 0 0 0

]



Λxso

Λxsθ

Λxθ

Λx

Λu

ΛFb

ΛQ

Λxs



(3.30)
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The backward time-integration procedure requires the solution of the flexible aeroacoustic problem

to be written out to disk at each time step in the analysis run, so that it can be read by the adjoint

solver as it proceeds backwards in time.

The right hand side in equation (3.29) depends on the particular objective function L chosen, hence

one backward time integration is computed for each objective or constraint for the optimizations

discussed in Chapter 4. In the case of the aeroacoustic objective function in equation (3.16), the

reverse linearization of the FW-H equation provides the right hand side term in equation (3.29) at

every CFD time as detailed in the next section.

Figure 3.6 summarizes the flow of information among all the disciplines for the analysis, tangent,

and adjoint solvers. In the analysis problem, the CFD solver sends a force vector to the structural

solver and receives a surface displacement vector. At the end of the aeroelastic loop the flow and

surface data are passed to the FW-H to determine the acoustic signature. In the tangent problem

these quantities are replaced by the corresponding forward sensitivities.

For the adjoint problem, the information proceeds in reverse order with the FW-H sending an

acoustic adjoint vector to the adjoint aeroelastic loop. In all cases, these vectors have the same

dimension as those used in the analysis problem and make use of the same data structures for

inter-disciplinary coupling.

3.8.1 Sensitivity Formulation for the Integral FW-H Equation

Computing the sensitivities of the coupled flexible aeroacoustic problem requires the lineariza-

tion of the acoustic module with respect to the design variables. The sensitivity formulation for

the current implementation of the integral FW-H equation closely mimics the linearization of the

CFD code as detailed in references [32, 54]. First the tangent linearization of the acoustic integra-

tion has been developed by exact hand-differentiation of the discretized integral FW-H equation.

The tangent linearization has then been transposed and applied in reverse order to obtain the ad-

joint sensitivity with respect to the full vector of design variables. The derivation of the tangent

and adjoint sensitivities for the three dimensional acoustic integration closely follows the two-

dimensional derivation presented in Section 2.5.2: the main differences between the two deriva-

tions follow from the time-domain formulation of the three-dimensional acoustic integration and
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Figure 3.6: Flow of information for analysis, tangent and adjoint solution processes at every
timestep.

the corresponding coupling strategy to the CFD code.

Tangent Sensitivity Formulation

The tangent linearization of the acoustic objective function allows the computation of the objective

function sensitivity with respect to a single design variable. The acoustic pressure at the observer

location and time is defined as

p′(y, t,D) = FWH(u(D),x(D)) (3.31)

where D is the vector of design variables and FWH(u(D),x(D)) represents all the discrete opera-

tions necessary to evaluate equation (3.12) numerically, as outlined in the algorithm from Section

3.6. In this expression u(D) and x(D) are the flow and mesh solution at every time step of the time-

integration process at the acoustic integration surface, after the aeroelastic coupling has converged.

The acoustic pressure tangent sensitivity time history can be expressed as

d p′(y, t,D)

dD
=

∂FWH
∂uFWH

duFWH
dD

+
∂FWH
∂xFWH

dxFWH
dD

(3.32)
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so that the tangent linearization of the acoustic objective function p′RMS defined in equation (3.16)

becomes:

dLFWH

dD
=

∂LFWH

∂uFWH

duFWH
dD

+
∂LFWH

∂xFWH

dxFWH
dD

=
∂p
′
RMS

∂p′
d p′

dD
(3.33)

=
∂p
′
RMS

∂p′

[
∂FWH
∂uFWH

duFWH
dD

+
∂FWH
∂xFWH

dxFWH
dD

]
In equation (3.33) the terms duFWH

dD and dxFWH
dD are the aeroelastically-converged flow and mesh tan-

gent sensitivities at every time step evaluated at the acoustic integration surface that are computed

via the forward time integration described by equation (3.27). The terms ∂FWH
∂uFWH

and ∂FWH
∂xFWH

are

the tangent linearizations of equation (3.12). The tangent acoustic problem proceeds by analogy

with the acoustic analysis problem. The tangent flow solution and the tangent acoustic solution are

carried out simultaneously: the aeroelastically-converged tangent flow solution is used to assem-

ble the tangent sensitivities of all the terms in equation (3.13) which in turn are used to evaluate

the tangent sensitivity of the integral equation (3.12) at every timestep, resulting in an unequally

spaced acoustic pressure sensitivity at the observer location for every acoustic source. The final

observer acoustic pressure sensitivity time history is built via linearization of the time interpolation

algorithm at the end of the time-integration process allowing for the computation of the acoustic

objective function sensitivity, equation (3.33), with respect to one design variable.

Adjoint Sensitivity Formulation

The adjoint sensitivity can be derived by transposing the tangent sensitivity formulation. Trans-

posing equation (3.33) yields

dLFWH

dD

T
=

[
duFWH

dD

T
∂FWH
∂uFWH

T

+
dxFWH

dD

T
∂FWH
∂xFWH

T
]

∂p
′
RMS

∂p

T

=
du
∂D

T
∂LFWH

∂u

T

+
dx
∂D

T
∂LFWH

∂x

T

(3.34)

The terms ∂LFWH
∂u

T
= ∂FWH

∂uFWH

T ∂p
′
RMS

∂p

T
and ∂LFWH

∂x
T
= ∂FWH

∂xFWH

T ∂p
′
RMS

∂p

T
represent the right-hand-side

of equation (3.29) for the case of the acoustic objective function and drive the adjoint backward
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time-integration described in equation (3.29). The term ∂p
′
RMS

∂p

T
is the reverse linearization of the

observer time interpolation process that needs to be evaluated before the adjoint time-integration

can start while the term ∂FWH
∂uFWH

T
and ∂FWH

∂xFWH

T
correspond to the reverse linearization of the acoustic

integrals in equation (3.12). At the end of the backward time-integration process, the full sensitivity

vector of the acoustic objective function is recovered.

Verification of the Flexible Aeroacoustic Sensitivities

The coupled adjoint flexible aeroacoustic sensitivity to be used by the gradient based optimization

algorithm is verified with the complex step differentiation method [53], that has been described

in Section 2.5.1. As a consequnce of the time-domain implementation of the three-dimensional

acoustic integration, and contrary to the two-dimensional case that employed complex variables in

the acoustic formulation, the complex-step method can be used to verify the tangent and adjoint

sensitivities of the multidisciplinary flexible aeroacoustic problem. By using a step size of h =

10−31 the tangent formulation has been verified to machine accuracy.

For the verification study, two revolutions of the HART-II flexible rotor are simulated on a mesh

consisting of approximately 107,000 nodes using a 4-degree timestep. The acoustic integration is

performed only over the last revolution targeting the same observer time window as in Figure 3.3(b)

and the sensitivity is computed with respect to the twist of the root section and to the first cyclic

pitch parameter. Figure 3.7 shows excellent agreement between the tangent acoustic pressure

sensitivity time history, equation (3.32), and its complex counterpart. Further verification of the

acoustic objective function sensitivity in equation (3.33) is shown in Table 3.3 for the root twist

design variable and in Table 3.4 for the first cyclic pitch parameter. The tangent sensitivity allows

for the verification of the adjoint sensitivity by the duality relation [54]. The current aeroacoustic

adjoint implementation is verified by comparing the adjoint sensitivity to the unsteady forward and

complex step sensitivities with respect to the twist of the root section, in Table 3.3, and to the first

cyclic pitch parameter, in Table 3.4. The coupled flow and structural equations are converged to

machine precision at each time step to avoid any algebraic error, and the complex, tangent and

adjoint sensitivities are seen to agree to 9 significant figures. The adjoint sensitivities can then be

used in the gradient based optimization process.
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Figure 3.7: Complex step verification of the tangent acoustic pressure time history sensitivity

Table 3.3: Adjoint sensitivity verification for the p
′
RMS objective function w.r.t. the root twist design

variable.
Complex 1.46204808801E-06
Tangent 1.4620480608E-06
Adjoint 1.46204808794E-06

Table 3.4: Adjoint sensitivity verification for the p
′
RMS objective function w.r.t. the first cyclic

design variable.
Complex -4.269878110954E-04
Tangent -4.269878110962E-04
Adjoint -4.269878110854E-04
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Chapter 4

Optimization Results

This chapter presents optimization results for both the two-dimensional and the three-dimensional

aeroacoustic adjoint capabilities presented in this thesis. In both cases gradient-based optimization

algorithms are used to minimize noise under a constraint on the aerodynamic performance of the

geometry considered in the application. The gradients needed by the optimization algorithms are

computed with the newly developed aeroacoustic adjoints.

Two dimensional results are presented first. In this case, a comparison between a constrained and

an unconstrained optimization method highlights the superior performance of the constrained op-

timization approach. Three dimensional optimization results are presented next. Optimization re-

sults for the rigid HART-II rotor are presented first. The effect of blade flexibility is then introduced

in the aeroacoustic optimization process to realize a multidisciplinary optimization capability that

encompasses the three disciplines of aerodynamics, structural mechanics and aeroacoustics.

4.1 Two-dimensional Optimization Results

The goal of the following optimizations is to reduce the noise signature of the BVI noise case de-

scribed in Chapter 2 without suffering significant aerodynamic penalties. In the three-dimensional

framework, such as that presented in Section 4.2, the optimization goal would be to minimize

the observer noise under the condition that the helicopter rotor is trimmed. In the present two-

dimensional framework the trim condition is replaced by requiring that the optimized airfoil time-
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integrated lift is constrained to that of the baseline NACA-0012 airfoil, hence the aerodynamic

constraint for the present two-dimensional optimization is expressed as shown in equation (4.1)

LAERO =
∑

Ntsteps
n=1

(
Cn

L−Cn
Lbaseline

)2

Ntsteps
(4.1)

In equation (4.1) CLbaseline is the lift time history of the baseline NACA 0012 airfoil and CL is the lift

time history for the current design iteration. The Overall Sound Pressure Level defined in equation

(2.51) has been chosen as a measure of the noise signature at the observer and the acoustic objective

function is defined as in equation (4.2)

LFWH =
OSPL@x=0.5,y=−50

OSPLbaseline
(4.2)

where OSPLbaseline = 87.1dB is the OSPL of the baseline NACA - 0012 airfoil at the observer

location used for the two-dimensional optimization. Two different optimization algorithms have

been used for this optimization problem: the L-BFGS-B quasi-Newton method from Zhu [70] and

the sequential quadratic programming (SQP) algorithm implemented in SciPy [71]. The two algo-

rithms differ in that the L-BFGS-B is an unconstrained optimization algorithm while the SQP algo-

rithm can handle linear and nonlinear, equality and inequality constraints. Since the L-BFGS-B al-

gorithm does not handle constraint explicitly a penalty function formulation must be employed [22]

to take into account the aerodynamic constraint. In a penalty function formulation the objective

and the constraint are combined into one objective function to be minimized. The algorithm then

tries to find a set of design variables for which the gradient of the combined objective function is

zero. For this reason only the gradients of the combined objective function are needed to drive the

optimization, hence only the adjoint of the combined objective function needs to be computed. For

the current two-dimensional optimization the objective function is defined in equation (4.3).

The SQP algorithm handles constraints explicitly by finding the set of design variables that sat-

isfies the Karush-Kuhn-Tucker optimality condition [22, 72]. However, this requires the solution

of multiple adjoints, one for the objective and one for each constraint in the problem. For the

two-dimensional aeroacoustic application the constrained optimization problem is defined in equa-

tion (4.4).
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4.1.1 L-BFGS-B Optimization

The objective function for the L-BFGS-B optimization algorithm is

Lg = ωLFWH +(1−ω)LAERO (4.3)

where the aerodynamic and acoustic objectives have been defined in equation (4.1) and (4.2) re-

spectively. The parameter ω varies between zero and one and enforces the aerodynamic constraint

as a penalty term. For ω = 1 there is no aerodynamic penalty, while the case ω = 0 corresponds

to a pure aerodynamic optimization. Only two values of ω have been used: the value ω = 1 has

been used to perform the unpenalized optimization of the aeroacoustic objective function in order

to asses the maximum noise signature reduction achievable regardless of the aerodynamic perfor-

mance of the airfoil. The value ω= 0.1 has been used to find an airfoil with reduced noise signature

and untarnished aerodynamic performance. For this optimization one design cycle corresponds to

one unsteady flow solution and one unsteady adjoint solution.

Figure 4.1 shows the baseline, the acoustically optimized (ω = 1) and the aerodynamically penal-

ized (ω = 0.1) airfoils. For the ω = 1 case the optimizer reduces the lower surface thickness and

increases the upper surface thickness of the airfoil. The effect of the aerodynamic penalty term

is evident in the shape for the ω = 0.1 optimization where an almost symmetric shape is recov-

ered although the chordwise thickness distribution of the optimized airfoil is significantly different

from that of the baseline NACA-0012. The lift time histories for the two optimizations and for

the baseline airfoil are shown in Figure 4.2 where it is evident how the aerodynamically penalized

optimization tries to recover the baseline lift time history. Convergence of the optimization for the

ω = 0.1 case is shown in Figure 4.3. The objective function reaches a plateau already after 10 iter-

ations while the gradient magnitude is reduced more than one order of magnitude, suggesting that

an optimum has in fact been reached. In terms of noise signature the unconstrained optimization

(ω = 1) has an OSPL 3dB lower than the baseline airfoil, while the aerodynamically penalized

optimization (ω = 0.1) reduces the baseline OSPL by approximately 1dB, as shown in Table 4.1.
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Figure 4.1: Baseline, acoustically optimized (ω = 1) and aeroacoustically optimized (ω = 0.1)
airfoils

Table 4.1: Overall Sound Pressure Level (OSPL) values for different weights ω.
SPL [dB]

Baseline 87.1
ω = 0.1 86.3
ω = 1.0 84.8

SQP 86.5
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(a) Lift time histories for the baseline, the acoustically optimized (ω = 1) and
the aeroacoustically optimized (ω = 0.1) airfoils

(b) Detail of the lift time histories for the baseline and the aeroacoustically
optimized (ω = 0.1) airfoils

Figure 4.2: Lift time histories for the baseline and the optimized airfoil highlithing the importance
of the aerodynamic penalty term
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(a) Objective as function of the number of iterations

(b) Gradient magnitude as function of the number of iterations

Figure 4.3: Convergence of the L-BFGS-B ω = 0.1 optimization
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4.1.2 Sequential Quadratic Programming Optimization

The optimization problem for the SQP optimization can be formulated as in equation (4.4)

Minimize LFWH

Subject to (4.4)

LAERO = 0

w.r.t. D

where now the aerodynamic constraint is strongly enforced and this requires the solution of an

additional adjoint problem for the constraint. Hence, one design cycle for this optimization corre-

sponds to one unsteady flow solution and two unsteady adjoint solutions, one for the aeroacoustic

objective and one for the aerodynamic constraint. The SQP optimized airfoil shape is shown in

Figure 4.4 together with the penalized L-BFGS-B and the baseline airfoil. The overall sound pres-

sure level for the SQP optimized airfoil is 86.5dB which is comparable to the penalized L-BFGS-B

OSPL value reported in Table 4.1. However, despite an almost identical optimized OSPL value the

two airfoil shapes differ significantly, with the SQP airfoil that considerably departs from the al-

most symmetric shape of the penalized L-BFGS-B airfoil. This is a consequence of the direct

enforcement of the aerodynamic constraint, as shown in Figure 4.5 where the lift time histories

of the two optimizations are compared to that from the baseline NACA-0012 airfoil. The conver-

gence behaviour of the SQP optimization is shown in Figure 4.6. The objective function reaches

a minimum after approximately 30 iterations compared to the 10 iterations from the L-BFGS-B

algorithm.

4.2 Three-Dimensional Optimization Results

The three-dimensional aeroacoustic optimizations of the rigid and flexible HART-II rotors are pre-

sented next. The optimization of the rigid rotor is presented first, followed by the optimization of

the flexible rotor to realize the multidisciplinary adjoint based optimization capability that repre-

sents the unique aspect of this thesis.

In both the rigid and flexible case the HART-II rotor is first trimmed according to equation (4.5) to
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Figure 4.4: Baseline, L-BFGSB-B (ω = 0.1) and SQP optimized airfoils.

Figure 4.5: Baseline, L-BFGSB-B (ω = 0.1) and SQP lift time histories.
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(a) Objective as function of the number of iterations

(b) Gradient magnitude as function of the number of iterations

Figure 4.6: Convergence of the Sequential Quadratic Programming optimization for the NACA
0012 airfoil
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establish the baseline noise signature and torque level.

min LT HRUST

subject to

LLAT ERAL = 0 (4.5)

w.r.t. Dpitch

where the vector of design variables Dpitch includes only pitch control parameters and has been

described in Section 3.3. Then, an aeroacoustic optimization aims at reducing the rotor’s noise

signature under a trim constraint as shown in equation (4.6).

min p′RMS

subject to

LT HRUST = 0 (4.6)

LLAT ERAL = 0

w.r.t. D

and the vector of design variables D now consists of both shape and pitch design variables. The

noise signature of the resulting optimal rotor provides a limit of the achievable noise reduction, but

it comes at the expense of the rotor’s performance, highlighting the need to include rotor torque

in the optimization process: for the rigid rotor the acoustic signature is minimized under a torque

constraint as detailed in equation (4.7)

min p′RMS

subject to

LT HRUST = 0 (4.7)

LLAT ERAL = 0

LTORQUE < LTORQUEBASE

w.r.t. D

For the flexible rotor, a torque minimization under an acoustic constraint will be performed accord-

ing to equation (4.8) and the value p′RMSTARGET
has been chosen to guarantee a 2dB OSPL noise
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signature reduction of the baseline rotor.

min LTORQUE

subject to

LT HRUST = 0 (4.8)

LLAT ERAL = 0

p′RMS = p′RMSTARGET

w.r.t. D

The aerodynamic functionals LT HRUST , LLAT ERAL and LTORQUE measure the aerodynamic perfor-

mance averaged over one rotor revolution and are defined as

LT HRUST =
1
N

(
N

∑
i=1

(
Ci

T −Ci
TAV ERAGE

))2

LLAT ERAL =
1
N

( N

∑
i=1

Ci
Mx

)2

+

(
N

∑
i=1

Ci
My

)2
 (4.9)

LTORQUE =
1
N

N

∑
i=1

(
Ci

Q
)2

In equation (4.9) CT , CQ, CMx and CMy are the rotor’s thrust, torque, pitching and rolling mo-

ments coefficients respectively [1], while Ci
TAV ERAGE

= 0.0044 is the target thrust coefficient for the

baseline HART-II rotor and N is the number of time step in a rotor revolution. The aeroacoustic

functional is the root mean square of the acoustic pressure as computed by the FW-H acoustic

integration and is defined in equation (3.16).

One design cycle for the trim optimization in equation (4.5) corresponds to one unsteady flow solu-

tion and two unsteady adjoint solutions. For the acoustic optimization in equation (4.6) one design

cycle corresponds to one unsteady flow solution and three time-dependent adjoint integrations, one

for the acoustic objective and two for the trim constraints. Finally one design cycle for the opti-

mizations in equations (4.7) or (4.8) corresponds to one unsteady flow solution and four unsteady

adjoint solutions, one for the objective and three for the constraints. For the case of the rigid rotor

one unsteady flow solution takes approximately one hour of wall-clock time on 1024 cores with

each unsteady adjoint integration costing approximately the same as one flow solution. For the
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Table 4.2: Operating condition for the HART-II rotor in trimmed forward flight
Freestream Mach number (velocity) M∞ = 0.095 (64 kt)
Tip Mach Number Mtip = 0.638
Advance ratio µ = 0.15
Rotational speed Ω = 1041 RPM
Shaft angle αsha f t = 5.4deg

flexible rotor one unsteady flow solution takes approximately 90 minutes of wall-clock time on

1024 cores with each unsteady adjoint solution costing approximately 45 minutes of wall clock

time. Approximately 650 Gbytes of data are stored to disk during the analysis problem and read in

by the flexible aeroacoustic adjoint procedure. The computational cost of any of the optimizations

in equations (4.6), (4.7) or (4.8) is approaximately 96 hours of wall-clock time on 1024 cores on

the Yellowstone supercomputer at the NCAR-Wyoming Supercomputing Center (NWSC).

The flow conditions for the HART-II rotor are described in Table 4.2 and the simulations are run

for two rotor revolutions using a 2 degree timestep and a computational mesh that consists of ap-

proximately 2.32 million nodes. The aerodynamic functionals in equation (4.9) are accumulated

only over the second revolution to prevent the optimization algorithm from focusing on the initial

transient. The acoustic integration is performed only over the second revolution and the acoustic

objective function is evaluated over the observer time window shown in Figure 3.3(b). For all op-

timizations the observer is stationary and is placed in front of the rotor as shown in Figure 3.2 and

detailed in Table 3.2.

Only shape design variables that affect the outer mold line of the CFD geometry are considered

here. The baseline blade is constructed by stacking 9 airfoils along the span. Each airfoil is pa-

rameterized with 10 Hicks-Henne bump functions [73], 5 for the upper surface and 5 for the lower

surface respectively. Blade twist varies linearly between root and tip, while one collective and

two cyclics allow the trimming of the rotor, for a total of 95 design variables in the vector of

design variables D in equation (4.6), (4.7) and (4.8). For the flexible optimizations no structural

design variables are considered and the optimization design variables affect the aeroelastic loop

only through changes in the aerodynamic forces applied to the structural model.

All the optimizations are driven by the SNOPT sequential quadratic programming algorithm [72]
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using the unsteady aeroacoustic adjoint capability developed in this work. Convergence results

for the optimization problems are given as a function of nonlinear optimization iterations and of

design cycles. While the number of design cycles is a measure of the optimization wall-clock

time, the number of nonlinear iterations is the number of iterations used by SNOPT to solve the

optimization problem; convergence of the optimization is assessed through feasibility, which is a

measure of the constraint violation, and optimality, which is a measure of the satisfaction of the

Karush - Kuhn - Tucker condition as described in [72].

4.2.1 Rigid HART-II Rotor

Trim Results

The trim optimization problem is described by equation (4.5). The optimization convergence is

shown in Figure 4.7. After 9 nonlinear iterations and 17 design cycles the feasibility and optimality

of the optimization problem are reduced by more than 2 orders of magnitude and the baseline

HART-II rotor is trimmed as further confirmed by thrust and lateral moments time histories shown

in Figure 4.8.

The trimmed HART-II rotor will now serve as the initial design for all subsequent aeroacoustic

optimizations for the rigid rotor.

Aeroacoustic Optimization

As mentioned above the initial design is the trimmed HART-II rotor from the previous section

and the optimization problem is described in equation (4.6). SNOPT convergence is shown in

terms of nonlinear optimization iterations and design cycles in Figure 4.9. After 17 design cycles

the optimization produces a geometry that reduces the Overall Sound Pressure Level of 3.4 dB

while keeping the rotor trimmed as highlighted by the thrust and lateral moments time histories

shown in Figure 4.10. Thickness, loading and total acoustic pressure time histories are shown

in Figure 4.11. Noise minimization is achieved with rather thick airfoils especially at the inboard

sections, as shown in Figure 4.12, while twist and pitch control variables are shown in Table 4.3.
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(a) Feasibility and optimality of the rigid trim optimization problem as a func-
tion of nonlinear optimization iterations

(b) Convergence of the thrust objective function and moment constraint as a
function of design cycles.

Figure 4.7: Convergence of the rigid trim optimization problem
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(a) Target and computed thrust time history for the trimmed HART-II rotor

(b) Target and computed roll moment time history for the trimmed HART-II
rotor
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(c) Target and computed pitch moment time history for the trimmed HART-II
rotor

Figure 4.8: Thrust and moments time histories for the trimmed baseline HART-II rigid rotor

Table 4.3: Twist, collective and cyclics values for the baseline and the aeroacoustically optimized
rigid rotors. All quantities in degrees

Baseline (deg) Aeroacoustic opt. (deg)
Root twist 6.0000 6.006
Tip twist -2.0000 -2.2513

Collective θ0 -0.7769 -1.0278
Cyclic θ1c 0.8954 1.3687
Cyclic θ1s -1.7161 -1.7140
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(a) Feasibility and optimality for the aeroacoustic optimization problem as a
function of nonlinear iterations

(b) Convergence of the aeroacoustic objective function as a function of design
cycles.
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(c) Convergence of the trim constraint as a function of design cycles.

Figure 4.9: Convergence of the aeroacoustic optimization problem for the rigid HART-II rotor
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(a) Thrust time history for the baseline and the aeroacoustically optimized
trimmed HART-II rigid rotor

(b) Rolling moment time history for the baseline and the aeroacoustically op-
timized trimmed HART-II rigid rotor
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(c) Pitching moment time history for the baseline and the aeroacoustically
optimized trimmed HART-II rigid rotor

Figure 4.10: Thrust and moment time histories for the aeroacoustically optimized HART-II rigid
rotor
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Figure 4.11: Thickness, loading and total acoustic pressures at the observer for the aeroacoustically
optimized rigid rotor

Figure 4.12: Baseline and optimized airfoil shapes for the aeroacoustically optimized rigid rotor
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Figure 4.13: Baseline and optimized torque time histories for the aeroacoustically optimized rigid
rotor showing the performance penalty paid to minimize the acoustic signature.

Since rotor torque is not included in the optimization, the noise reduction achieved here, despite

representing the maximum noise reduction achievable within the current optimization framework,

comes at the expense of rotor performance, as clearly indicated in Figure 4.13. Consequently the

next step is to introduce a torque constraint in the optimization process.

Torque-constrained Aerocoustic Optimization

The initial design for this multidisciplinary aeroacoustic optimization is again the trimmed HART-

II rigid rotor and the optimization problem is described in equation (4.7). After 20 design cycles

the acoustic objective function settles down while attaining the same torque level as the base-

line HART-II rotor, as shown in Figure 4.14(b). The trim constraint feasibility is shown in Fig-

ure 4.14(c) and indicates that the optimized rotor is trimmed, as confirmed by the thrust and lateral

moments time histories shown in Figure 4.15. Contrary to the aeroacoustic optimization, the
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(a) Feasibility and optimality for the torque-constrained aeroacoustic optimization
problem as a function of nonlinear iterations

(b) Convergence of the acoustic objective function and the torque constraint as a
function of design cycles.
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(c) Convergence of the trim feasibility as a function of design cycles.

Figure 4.14: Convergence of the torque-constrained aeroacoustic optimization problem
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(a) Thrust time history for the baseline and torque-constrained aeroacoustically op-
timized trimmed HART-II rigid rotor

(b) Rolling moment time history for the baseline and the torque-constrained aeroa-
coustically optimized trimmed HART-II rigid rotor
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(c) Pitching moment time history for the baseline and the torque-constrained aeroa-
coustically optimized trimmed HART-II rigid rotor

Figure 4.15: Thrust and moment time histories for baseline and the torque-constrained aeroacous-
tically optimized trimmed HART-II rigid rotor
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Figure 4.16: Baseline and optimized torque time histories for the torque-constrained aeroacousti-
cally optimized rigid rotor.

torque level for the torque-constrained aeroacoustically optimized rigid rotor is the same as that of

the baseline HART-II rigid rotor as shown in Figure 4.16. Thickness, loading and total acoustic

pressure time histories at the observer are shown in Figure 4.17. The optimized rotor is 1.7 dB

quieter in terms of Overall Sound Pressure Level. A comparison between the baseline and opti-

mized airfoils is shown in Figure 4.18 where it can be seen that, as in the case of the aeroacoustic

optimization in the previous section, the optimized shapes tend to be thicker at the inboard stations

and thinner at the outboard ones. Twist and pitch control variables are given in Table 4.4.

Previous noise mitigation studies [8] have shown that optimizing for one observer location can

result in higher noise levels at different observer locations. A directivity study for the optimized

rotor reveals that the current design is capable of reducing noise at in-plane observer locations that

have not been targeted by the optimization as shown for two different observers placed at ψ = 135

and ψ = 315 degrees as shown in Figure 4.19.
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Figure 4.17: Thickness, loading and total acoustic pressures at the observer for the torque - con-
strained aeroacoustically optimized rigid rotor

Figure 4.18: Torque-constrained aeroacoustically optimized airfoil shapes
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(a) Baseline and optimized total acoustic pressure time history at ψ = 135
degrees

(b) Baseline and optimized total acoustic pressure time history at ψ = 315
degrees

Figure 4.19: Directivity study for the baseline and optimized rigid rotor geometries
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Table 4.4: Twist, collective and cyclics values for the baseline and the aeroacoustically optimized
rigid rotors. All quantities in degrees.

Baseline (deg) Aeroacoustic opt. (deg)
Root twist 6.0000 6.0043
Tip twist -2.0000 -2.1625

Collective θ0 -0.7769 -0.9337
Cyclic θ1c 0.8954 1.0746
Cyclic θ1s -1.7161 -1.7310

4.2.2 Flexible HART-II Rotor

The aeroacoustic optimization of the flexible HART-II rotor in trimmed forward flight is presented

next to realize the flexible aeroacoustic adjoint capability that represents the unique aspect of the

current work.

Trim Results

The trim optimization problem is described by equation (4.5) and the optimization convergence

is shown in Figure 4.20. After 15 nonlinear iterations and 22 design cycles the feasibility and

optimality of the optimization problem are reduced by approximately 3 orders of magnitude and

the baseline flexible HART-II rotor is trimmed as further confirmed by thrust and lateral moments

time histories shown in Figure 4.21. The trimmed HART-II rotor will now serve as the initial

design for all subsequent flexible aeroacoustic optimizations.

Aeroacoustic Optimization

The current optimization problem is described by equation (4.6) and SNOPT convergence is shown

in terms of nonlinear optimization iterations and design cycles in Figure 4.22. After 27 design

cycles the optimization produces a geometry that reduces the Overall Sound Pressure Level by

2.6 dB while keeping the rotor trimmed as highlighted by the thrust and lateral moments time

histories shown in Figure 4.23. The acoustic pressure time history is shown in Figure 4.24. The

main reduction in total acoustic pressure comes from the reduction in thickness noise while the

reduction of the loading pressure peak is less significant. The nature of the aeroacoustic problem
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(a) Feasibility and optimality of the trim problem as a function of nonlinear
optimization iterations

(b) Convergence of the thrust objective function and moment constraint as a
function of design cycles.

Figure 4.20: Convergence of the trim optimization problem for the flexible HART-II rotor
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Figure 4.21: Thrust and moments time histories for the baseline HART-II flexible rotor

dictates the optimization behavior: for in-plane noise problems thickness noise is the dominant

source of noise [74], hence SNOPT chooses a trimmed geometry that minimizes thickness noise.

The noise minimization is achieved with rather thick airfoils especially at the inboard sections, as

shown in Figure 4.25. Blade root cap shape considerations dictate the shape of the most inboard

airfoil at the first spanwise station: the blade cap is built as a surface of revolution that joins

the upper and lower surface of the blade, the design variables for the root airfoil needed to be

bounded more than the design variables for the other airfoils to guarantee a reasonable blade root

cap, resulting in the first airfoil shown in Figure 4.25. Twist and pitch design variables are shown

in Table 4.5. Since rotor torque is not included in the optimization, the noise reduction achieved

here, despite representing the maximum noise reduction achievable within the current optimization

framework, comes at the expense of rotor performance, as clearly indicated in Figure 4.26.

The optimization described by equation (4.7) and discussed in the next section adresses this issue

by minimizing the required torque while constraining the acoustic signature to a lower noise level

than the baseline rotor.
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(a) Feasibility and optimality for the aeroacoustic optimization problem as a func-
tion of nonlinear iterations

(b) Convergence of the aeroacoustic objective function as a function of design cy-
cles.
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(c) Convergence of the trim constraint as a function of design cycles.

Figure 4.22: Convergence of the flexible aeroacoustic optimization problem

Table 4.5: Twist, collective and cyclics values for the baseline and the aeroacoustically optimized
flexible rotors. All quantities in degrees.

Baseline (deg) Aeroacoustic opt. (deg)
Root twist 6.0000 6.0947
Tip twist -2.0000 -2.7574

Collective θ0 -0.4986 -1.1146
Cyclic θ1c 1.3678 1.5074
Cyclic θ1s -2.5530 -2.8053
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Figure 4.23: Thrust and moments time histories for the baseline and optimized flexible HART-II
rotors
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Figure 4.24: Thickness, loading and total acoustic pressures at the observer for the baseline (red)
and the aeroacoustically optimized (green) flexible rotors
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Figure 4.25: Baseline (red) and optimized (green) airfoil shapes for the aeroacoustically optimized
flexible rotors

Figure 4.26: Torque time history for the baseline and aeroacoustically optimized flexible rotors
showing the performance penalty paid to minimize the acoustic signature.
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Table 4.6: Twist, collective and cyclics values for the baseline and the aeroacoustically optimized
flexible rotors. All quantities in degrees.

Baseline (deg) Aeroacoustic opt. (deg)
Root twist 6.0000 5.9996
Tip twist -2.0000 -2.0022

Collective θ0 -0.4986 -0.5028
Cyclic θ1c 1.3678 1.3790
Cyclic θ1s -2.5530 -2.6021

Acoustically-constrained Torque Minimization

The minimization problem for the optimization presented in this section is described in equation

(4.8). In as few as 5 nonlinear iterations feasibility is reduced by more than 2 orders of mag-

nitude while optimality is reduced by approximately 9 orders of magnitude, as shown in Figure

4.27(a). After 10 design cycles the acoustic constraint is satisfied resulting in a rotor with a 2dB

OSPL reduction compared to the baseline, while the required torque is reduced by 2.5% as shown

in Figure 4.27(b). Satisfaction of the trim constraint is shown in Figure 4.27(c) and confirmed by

the thrust and lateral moment time histories shown in Figure 4.28. A comparison of the torque

time histories is shown in Figure 4.29 highlighting the 2.5% torque reduction achieved for this

optimization. The thickness, loading and total acoustic pressure time histories are shown in Fig-

ure 4.30. The thickness acoustic pressure is essentially the same between the current optimization

and the one from the previous section, suggesting that the two minimizations exploit the same

noise reduction mechanism, while loading pressure reduction for the current optimization is sig-

nificantly lower. A comparison of the airfoil shapes for the baseline and the two optimized rotors

is shown in Figure 4.31 highlighting that the acoustically constrained torque minimization results

in more conventional blade shapes at the inboard sections while recovering the same airfoils of

the aeroacoustic optimization at the outboard sections. Twist and pitch control parameters for this

optimization are shown in Table 4.6.

As for the case of the rigid rotor, a directivity study for the baseline and the optimized flexible rotors

is performed and reveals that the current design is capable of reducing noise at in-plane observer
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(a) Feasibility and optimality for the torque-constrained aeroacoustic optimization
problem as a function of nonlinear iterations

(b) Convergence of the acoustic objective function and the torque constraint as a
function of design cycles. 90



(c) Convergence of the trim feasibility as a function of design cycles.

Figure 4.27: Convergence of the acoustically constrained torque optimization of the flexible
HART-II rotor
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Figure 4.28: Thrust and moments time histories for the baseline, the aeroacoustic optimized and
the acoustically constrained torque optimized flexible rotors

locations that have not been targeted by the optimization, as shown in Figures 4.32 and 4.33. Figure

4.32 shows the total acoustic pressure for the baseline and the optimized rotors at the same radial

location used during the optimization but for different azimuthal locations, while Figure 4.33 shows

the acoustic pressure for the same azimuthal location targeted by the optimization but at different

radial distances. In both cases the noise signature for the optimized rotor is smaller than that of the

baseline rotor. As mentioned before, thickness acoustic pressure is the dominant source of noise for

the current aeroacoustic problem and the solid wall acoustic integration implies that the thickness

integral in the FW-H equation (3.12) depends only on geometrical and kinematic parameters of the

rotor, hence justifying the results of the current directivity study.

Validation of Optimization Results over Multiple Rotor Revolutions

In this section we investigate the behavior of the baseline and the optimized flexible rotors from

the previous sections when their performance is evaluated over multiple rotor revolutions. While

the previous computations have been run for only 2 rotor revolutions, the current simulations have
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Figure 4.29: Torque time histories for the baseline, the aeroacoustic optimized and the acoustically
constrained torque optimized flexible rotors

been run for four rotor revolutions and the aerodynamic objective functions are accumulated over

the last 3 revolutions. The acoustic objective function is evaluated over the same observer time

window as in the previous sections. The geometry and the control variables are the same as those

from the previous sections.

As expected, since the rotor does not achieve a fully periodic state within 2 revolutions, the rotors

are now untrimmed for the subsequent revolutions, however the trim constraint is violated by the

same amount by the three rotors, as shown in Figure 4.34, allowing for a meaningful comparison

of the acoustic signature and of the required torque. The observer acoustic pressure time histories,

shown in Figure 4.35, confirm the results from the previous sections: the aeroacoustically opti-

mized rotor yields the most significant noise signature reduction when compared to the baseline

rotor with a noise reduction of 2.7 dB OSPL at the observer, however the required torque is sig-

nificantly increased, as shown in Figure 4.36. The acoustically constrained torque optimized rotor

yields 2.9% reduction in required torque with a 1.9 dB OSPL reduction in noise signature.

These results show that even if the optimizations targeted only the second rotor revolution, they
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Figure 4.30: Thickness, loading and total acoustic pressures at the observer for the baseline (red),
the acoustically optimized (green) and the acoustically constrained torque optimized (blue) flexible
rotors.

Figure 4.31: Acoustically constrained torque optimized blade shapes
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(a) Baseline and optimized total acoustic time history at ψ = 135 degrees

(b) Baseline and optimized total acoustic time history at ψ = 315 degrees

Figure 4.32: Directivity study for the baseline and optimized flexible geometries: radial distance
2R, different azimuthal locations
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(a) Baseline and optimized total acoustic time history at 50R

(b) Baseline and optimized total acoustic time history at 100R

Figure 4.33: Directivity study for the baseline and optimized flexible geometries: Azimuth ψ= 180
degs, different radial locations
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Figure 4.34: Thrust and moments time histories for the baseline, the aeroacoustic optimized and
the acoustically constrained torque optimized flexible rotors over 4 rotor revolutions

Figure 4.35: Thickness, loading and total acoustic pressures at the observer for the baseline and
the two optimized flexible rotors for the multiple revolutions case.
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Figure 4.36: Torque time histories for the baseline, the aeroacoustic optimized and the acoustically
constrained torque optimized flexible rotors over 4 rotor revolutions

still have been able to improve rotor performance over multiple rotor revolutions. The resulting

optimal rotors can be used as intial guesses for more expensive optimizations that target multiple

rotor revolutions.
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Chapter 5

Conclusions and Future Work

This thesis has presented the development and application of an adjoint-based method for aeroa-

coustics, with a particular emphasis on rotorcraft design problems. The aeroacoustic adjoint tech-

nique has been first developed for two-dimensional applications and it has been applied to the noise

minimization of an airfoil in blade-vortex interaction. The two-dimensional formulation has then

been extended to include three-dimensional effects. The three-dimensional aeroacoustic adjoint ca-

pability has been first applied to the gradient-based noise minimization of a rigid rotor in forward

flight. Subsequently, blade flexibility effects have been included in the optimization to realize

a unique and unprecedented multidisciplinary adjoint-based optimization capability that encom-

passes the three disciplines of aerodynamics, structural mechanics and aeroacoustics. By yielding

optimal rotors characterized by superior aeroacoustic and aerodynamic performance, these opti-

mizations show that the multidisciplinary adjoint techniques developed in this work can be used

to efficiently solve the high-fidelity, large-scale design optimization problems often encountered

in rotorcraft design, without the severe design space limitations typical of earlier optimization at-

tempts.

Possible future development for the work presented in this thesis should focus on further advanc-

ing the state-of-the-art in both rotorcraft design optimization and adjoint-based optimization tech-

niques. To advance the state-of-the-art in rotorcraft design, future research activities should focus

on:

• Optimization on finer meshes targeting multiple rotor revolutions: In this thesis no at-
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tempt has been made at quantifying the effect of spatial and temporal mesh resolution on the

aerodynamic and aeroacoustic performance of the rotor. A systematic investigation of the

effect of discretization errors on the predicted performance of the rotor, similar to the grid-

convergence studies in [75], will allow to identify the optimal spatial and temporal mesh

resolution to be employed in the optimization procedure. Furthermore, in Chapter 4, Section

4.2.2, it has been shown that the forces acting on the rotor have not yet reached a periodic

state after two rotor revolutions. To avoid concentrating the optimization efforts on transient

flow conditions of little interest to the rotorcraft designer, more rotor revolutions need to be

included in the simulation and the optimization objective functionals should be evaluated

only after a periodic state has been reached. However, in Chapter 4, Section 4.2.2 it has also

been shown that the optimization results presented in this thesis can be used as initial designs

for lengthier, more expensive optimizations that target multiple rotor revolutions.

• Including higher fidelity structural models: while the Hodges-Dowell beam model em-

ployed in this work is in widespread use in the rotorcraft industry, the use of a higher fidelity

structural model based on bricks and shell elements will allow for a more accurate descrip-

tion of the geometry and the structural dynamics of the blade. Furthermore, the new struc-

tural model will allow to easily update the blade structural properties in response to major

changes in the blade shape and to include structural design variables and objectives in the

multidisciplinary optimization process.

• Including nonlinear flow effects in the aeroacoustic prediction: to allow for the aeroa-

coustic optimization of rotors characterized by high tip Mach numbers, the quadrupole noise

term should be included in the acoustic analogy. The most common approach to account for

quadrupole noise in the aeroacoustic prediction is to perform the acoustic integration on an

off-body, permeable, integration surface provided that the flowfield between the rotor and

the integration surface is sufficiently resolved. Thanks to the choice of the acoustic formula-

tion implemented in this work, the only action required to include quadrupole noise effects

in the current optimization framework is the identification of a suitable off-body integration

surface.
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• Investigating multiple local minima: as stated before, gradient-based optimization algo-

rithms seek a saddle point of the Lagrangian function associated with the optimization prob-

lem. In the case of a multimodal design space, typical of large-scale problems, gradient-

based optimization algorithms can potentially be trapped in a local minimum for the opti-

mization problem. As proposed by Lyu et al. [76], the multimodality of the design space

should be investigated by starting the optimization from random initial geometries. If the ro-

torcraft design space is found to be multimodal, a hybrid optimization strategy that combines

the efficiency of gradient based optimization algorithms with the intrinsic global nature of

evolutionary methods should be pursued. Previous work [16, 77] in this area has focused

on enhancing metamodeling techniques, Kriging or response surface methods, with gradient

information computed with the adjoint approach.

• Investigating multipoint design optimization: Single point design optimizations such as

the ones presented in this work yield optimal geometries for which the performance deterio-

rate quickly at off design conditions. A more robust approach to rotorcraft design would be

to perform a multipoint optimization where different design conditions are targeted simul-

taneously. In the context of helicopter design it would be natural to target both hover and

forward flight to optimize the aerodynamic and the aeroacoustic performance of the vehi-

cle. Furthermore, adopting a higher-fidelity structural model and including structural design

variables and objectives in the optimization process could allow the multipoint optimization

to also target a maneuver condition realizing a fully automated design optimization process.

Strategies to develop discrete adjoint sensitivities are now fairly well understood and future work

on adjoint-based optimizaton should focus on:

• Evaluating algorithms for the solution of linear systems with multiple right hand sides:

The use of sequential quadratic programming algorithms for the solution of the large-scale

design optimization problems treated in this work requires the full sensitivity vector of the

objective and the constraint of the optimization problem. The adjoint method presented in

this work provides an efficient way of computing sensitivity of one functional with respect

to a set of design variables. When multiple functionals are present, the adjoint system needs
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to be solved multiple times as its right hand side depends on the particular functional be-

ing considered, as shown in equation (3.29). Hence, algorithms that allow for the efficient

solution of linear systems with multiple right-hand-sides should be considered in the future

to improve the performance of the current optimization framework. By accessing the co-

efficient matrix and performing all the necessary floating point operations only once for all

the right hand sides, the solution of linear systems with multiple right hand sides should be

well suited for execution on emerging computer architectures. While Jacobi-like iterative

schemes can be trivially extended to the simultaneous solution of mulitiple linear systems,

the generalization of Krylov-based methods to the multiple right-hand-side case is more in-

volved [78]. Finally, the efficient solution of linear systems with multiple right hand sides

could allow for the evaluation of the exact Hessian matrix of the optimization problem, sig-

nificantly improving the performance of the optimization algorithm employed.

• Investigating the effect of gradient accuracy on the performance of the optimization

algorithms: since any gradient-based optimization algorithm uses gradient information to

identify a local minimum for the objective function, the accuracy of the gradient is expected

to significantly affect the performance of the optimization algorithm. Previous studies have

investigated the effect that approximations to the adjoint linearization have on the optimiza-

tion process [79]. The tangent and adjoint linearizations presented in this work are verified

to machine precision provided that the nonlinear flow solution is completely converged. For

realistic applications converging the nonlinear residuals to zero is unrealistic at best. In a

realistic scenario the nonlinear residuals are only partially converged, resulting in inaccurate

gradient computations. By slightly modifying the derivation of the adjoint equations pre-

sented in this thesis, different strategies can be devised to account for errors resulting from

partial convergence of the nonlinear flow problem. These strategies should be thoroughly in-

vestigated to understand and address the effect that partial convergence of the flow solution

has on the optimization process.
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