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Introduction

• Helicopter design: a 
multidisciplinary problem

• Helicopter stringent noise 
requirement

• Adjoint-based blade design 
optimization

• Helicopter rotor blade design: 
minimize noise with no 
performance penalty

• Need for flexible aero-acoustic 
coupled adjoint optimization
– Blade flexibility affects noise signature 3



Motivation & Objective

• Limited high-fidelity multidisciplinary optimization
– Aerodynamics, structural mechanics, aeroacoustics

• Objective
– Enable blade shape (and other) optimization to 

minimize far-field acoustic signature
– Develop coupled near-field/far-field acoustic analysis 

and sensitivity capability for flexible rotors
– Use to perform time-dependent optimization for 

far-field acoustic objectives
– Demonstrate multidisciplinary capability

• Combine aeroelastic and aeroacoustic adjoint
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Aerodynamic Solver

NSU3D
• 3D unstructured finite-volume RANS solver.
• 2nd –order accurate in space and time.

– Fully implicit discretization solved using Newton’s method at 
each time-step

• Central differencing with Matrix dissipation.
• One equation Spalart-Allmaras turbulence model.
• Deforming mesh capability.

– Linear elasticity model to propagate surface deformations to 
interior (cyclic pitching/design changes/structural deformations).

• MPI parallelization with proven scalability up to 30,000 
processors. 
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Structural Analysis: Beam Model
Beam FEM model
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• Hodges-Dowell type finite element 
based solver

• 15 degrees of freedom (flap, lag, axial 
and torsion)

• First order system:
    where,

• J = Residual of structural equation 
• q = blade dof (flap, slope etc)
• F = beam forcing



Outline
• Introduction
• Background
• Motivation & Objective
• Coupled CFD/CSD/CAA Adjoint

– Aerodynamic analysis
– Structural analysis
– Aeroacoustic analysis
– Fully coupled flexible aeroacoustic analysis and 

sensitivity
• Results
• Conclusion

9



Acoustic propagation: FW-H
FW-H: 
• Farassat’s Formulation 1A
• Source-time dominant algorithm. 
• Linear pressure interpolation at the observer. 
• Quadrupole term neglected.
• Use aeroelastically converged flow and mesh 

data



Acoustic Problem setup
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FW-H validation
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RANS based NSU3D CFD code provides input to FW-H acoustic propagation module.

Validation against legacy PSU-WOPWOP FW-H code

Observer time history Optimization window
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Fully coupled aerostructural analysis
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• Time-dependent objective function:

• General expression for forward linearization of 
objective function w.r.t design variables:

Fully coupled aerostructural sensitivity: 
Tangent
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Constraint equation 
to be satisfied at 
every timestep

Aeroelastic system

CFD CSD

(dF/dD)

 (dXS/dD)
Tangent
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Fully coupled aerostructural sensitivity: 
Tangent

Forward integration 
in time

Equations 
dependent of D



Backward integration 
in time

Equations dependent 
of L

Independent of D
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Fully coupled aerostructural sensitivity: 
Adjoint



Acoustic sensitivity: verification
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Tangent sensitivity: Tangent NSU3D solver provides forward aeroelastic flow and 
mesh sensitivity to tangent FW-H integration 

Adjoint sensitivity: Adjoint FW-H code provides reverse sensitivity to NSU3D 
adjoint solver to perform aeroelastic backward time integration

Acoustic sensitivity 
time history

Sensitivity (twist)
Complex 1.46204808801E-06
Tangent 1.46204806875E-06
Adjoint 1.46204808794E-06 

Agreement to 9 significant figures with 
complex step method

Sensitivity (cyclic)
Complex -4.269878110954E-04
Tangent -4.269878110962E-04
Adjoint -4.269878110854E-04
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Optimization Problems – HART-II

20

Objective: Minimize acoustic signature of HART-II 
rotor in trimmed forward flight.

• Initial design: baseline HART-II rotor in trimmed forward flight
➢ Initial trim formulated as separate optimization problem

• Aeroacoustic optimization
• Torque optimization with acoustic constraint
• SNOPT constrained optimizer

➢ Enforces constraints directly
➢ Requires adjoint calculation for each objective/constraint

• Optimization cost: 96 hours wall-clock time on 1024 cores
• 650Gb disk storage



• 4 bladed Hart-II rotor in forward flight:
– Mtip = 0.64; 1040 RPM; μ=0.15 (M∞~0.1); α=5.4O

• CFD/CSD specifications:
– 2.32 million grid nodes (prisms, pyramids, tets)
– 20 beam elements per blade
– 2 rotor revs, Δt=2Ο

• 6 coupling iterations per timestep
– Objective/constraints accumulated over second 

rotor revolution
• Design variables

– 10 Hicks-Henne bump functions per blade section, 
9 blade sections (90). Root and tip twist.

– Control Inputs: 
• Collective (θO) and Cyclics (θ1c, θ1s)

– 95 design parameters total

HART-II rotor in Forward Flight

CFD flow domain
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Optimization Problems – HART-II
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Aeroacoustic 
optimization

Acoustically 
constrained 

Torque optimization
Trim 

optimization



Optimization Problems – HART-II
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Acoustic 
objective/constraint

Aerodynamic 
constraints

 



Optimization Problems – HART-II
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Trim optimization

✓ Convergence in 15 non linear iterations
✓ Only 3 design variables: 1 collective, 2 cyclics
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Trim optimization

✓ Average thrust equals target thrust
✓ Zero average lateral moments

Thrust Rolling moment Pitching moment

Optimization Problems – HART-II
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Aeroacoustic optimization

✓ Single objective, 2 constraints: 3adjoints
✓ 95 design variables
✓ Convergence in 11 non linear iterations
✓ Baseline OSPL reduced 2.6dB

Optimization Problems – HART-II
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Aeroacoustic optimization

✓ Average thrust equals target thrust
✓ Zero average lateral moments
✓ Trimmed optimal design

Thrust Rolling moment Pitching moment

Optimization Problems – HART-II
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Aeroacoustic optimization

Acoustic pressure time history Optimized blade shapes

Optimization Problems – HART-II
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Aeroacoustic optimization

Noise reduction at 
observer achieved 

with strong 
performance 

penalty

Torque time history

Optimization Problems – HART-II
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Acoustically constrained torque minimization

✓ 1 objective, 3 constraints: 4 adjoints
✓ 95 design variables
✓ Convergence in 5 non linear iterations
✓ 2.5% torque reduction and 2dB OSPL 

quieter rotor

Optimization Problems – HART-II
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Acoustically constrained torque minimization

✓ Average thrust equals target thrust
✓ Zero average lateral moments
✓ Trimmed optimal design

Thrust Rolling moment Pitching moment

Optimization Problems – HART-II
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Acoustically constrained torque minimization

Torque time history Optimized blade shapes

Optimization Problems – HART-II



Acoustically constrained torque minimization
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• Acoustic constraint 
results in rotor 2dB 
OSPL quieter than 
baseline

• Noise minimized at 
different observer 
locations too

Acoustic pressure time history

Optimization Problems – HART-II
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Acoustically constrained torque minimization
Acoustic pressure time history

ψ = 135 deg
Acoustic pressure time history

ψ = 315 deg

Optimization Problems – HART-II
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Acoustically constrained torque minimization
Acoustic pressure time history

50R
Acoustic pressure time history

100R

Optimization Problems – HART-II
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Investigation over multiple rotor revolutions

Optimization Problems – HART-II
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Investigation over multiple rotor revolutions

Optimization Problems – HART-II



Optimization problems
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Investigation over multiple rotor revolutions



Optimization Problems – UH60
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Objective: Minimize acoustic signature of rigid 
UH60 rotor in trimmed forward flight.

• Initial design: baseline UH60 rotor in trimmed forward flight
➢ Initial trim formulated as separate optimization problem

• Aeroacoustic optimization (Wind tunnel formulation)
• SNOPT optimizer

➢ Penalty function approach
➢ Requires retrim after convergence

• Optimization cost: 66 hours wall-clock time on 3008 cores
• 2Tb disk storage



• 4 bladed UH60 rotor in forward flight 
(flight counter 8534)
– Mtip = 0.64; 258 RPM; μ=0.368 (M∞~0.236); 

α=-7.3O

• CFD specifications:
– 5.1 million grid nodes (prisms, pyramids, tets)
–  2 rotor revs, Δt=2Ο

– Objective/constraints accumulated over second 
rotor revolution

• Design variables
– 10 Hicks-Henne bump functions per blade section, 

11 blade sections. 11 twist spanwise sections. 
Taper, sweep and droop of tip section.

– Control Inputs: 
• Collective (θO) and Cyclics (θ1c, θ1s)

– 127 design parameters total

UH60 rotor in Forward Flight

CFD flow domain
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Optimization Problems – UH60
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Aeroacoustic 
optimization

Trim 
optimization

 



Optimization Problems – UH60
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Acoustic objective Aerodynamic 
constraints

 



Optimization Problems – UH60
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Trim optimization

✓ Convergence in 14 non linear iterations
✓ Only 3 design variables: 1 collective, 2 cyclics
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Unconstrained optimization:
Penalty function + retrim

✓ Penalty function approach: 1 adjoint
✓ 127 design variables
✓ Requires final retrim
✓ 3.9dB OSPL quieter rotor after retrim

Optimization Problems – UH60
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Optimization Problems – UH60

3.9dB OSPL quieter rotor Final retrim
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Optimization Problems – UH60



Conclusions

• Time dependent high-fidelity 3D multidisciplinary 
suite implemented and verified
– Aerodynamics, structural mechanics, aeroacoustics

• Time dependent multidisciplinary tangent and 
adjoint sensitivity verified on HART-II rotor in 
trimmed forward flight.

• Multidisciplinary adjoint formulation used to 
optimize flexible HART-II and rigid UH60 noise 
signature.
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Original contribution

• Development of a 3D coupled aeroacoustic 
adjoint for rotorcraft problems
– Rigid rotor (AIAA Scitech 2016,2017)
– Flexible rotor (AHS 72nd Annual Forum, May 2016)

• Enable high-fidelity gradient-based 
aeroacoustic optimization for rotorcraft problem
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Future Work

• Finer meshes/multiple rotor revolutions
• Higher fidelity structural model
• Nonlinear flow effects in noise prediction

– Quadrupole term
• Existence of multiple local minima

– Hybrid global/local optimization 
(Gradient enhanced Kriging/Response Surface Models)

• Multipoint design optimization
– Hover & Forward flight
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Future Work

• Linear systems with multiple right hand sides
– Multiple adjoints / Hessian computation

• Newton’s method for optimization problems
• Partial convergence
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Questions?
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Background

• Adjoint optimization: 
computational cost independent 
of number of design variables
– Steady: fixed wing shape 

optimizations
– Unsteady: Mavriplis, Mani, 

Nielsen
– Aeroacoustic: Rumpfkeil, 

Economon, Fabiano
– Helicopter blade design

• Hover: Mani et. al, Lee et. al
• Forward flight: Nielsen et al, Choi et 

al, Alonso et al, Mishra et al.

Mani et. al (AIAA 2013)

Nielsen et. al (AIAA 2012)
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Acoustic problem
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Comparison of rigid and flexible rotor noise signature



• Acoustic pressure @ far field observer: 

• Forward sensitivity of acoustic pressure:

• Time-integrated acoustic objective function (RMS acoustic pressure):

• Forward sensitivity of time-integrated objective function:

Acoustic Sensitivity: Tangent
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• Acoustic pressure @ far field observer: 

• Adjoint sensitivity of acoustic pressure:

• Time-integrated acoustic objective function (RMS acoustic pressure):

• Adjoint sensitivity of time-integrated objective function:

Acoustic Sensitivity: Adjoint
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Future Work

• Multipoint optimization
• Extra design variables
• Different acoustic problems

– Wind tunnel formulation
– Quadrupole term
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Blade Geometry Parametrization

Hicks-Henne bump functions

Structured blade mesh 
overlap with CFD mesh

• Master blade shape defined by Hicks-Henne bump functions and twist
– Defined by high-resolution structured mesh (in black)
– Shape changes interpolated onto unstructured CFD surface mesh

• 95 design parameters
– 10 Hicks-Henne bump functions per blade section, 9 blade sections (90)
– Twist at blade root and tip (2) and 3 pitch parameters
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