

Multidisciplinary Adjoint-based Design Optimization Techniques for Helicopter Rotors

Enrico Fabiano PhD. Candidate Prof. Dimitri Mavriplis Professor

High Altitude CFD Lab, Department of Mechanical Engineering, University of Wyoming, Laramie, WY

Outline

- Introduction
- Motivation & Objective
- Hybrid CFD/CAA Analysis, and Adjoint Sensitivity for Flexible Rotors
- Results
- Conclusions

Introduction

3

Observer time

- Need for flexible aero-acoustic coupled adjoint optimization
 - Blade flexibility affects noise signature

Motivation & Objective

- Limited high-fidelity multidisciplinary optimization
 - Aerodynamics, structural mechanics, aeroacoustics
- Objective
 - Enable blade shape (and other) optimization to minimize far-field acoustic signature
 - Develop coupled near-field/far-field acoustic analysis and sensitivity capability for flexible rotors
 - Use to perform time-dependent optimization for far-field acoustic objectives
 - Demonstrate multidisciplinary capability
 - Combine aeroelastic and aeroacoustic adjoint

Outline

- Introduction
- Background
- Motivation & Objective
- Coupled CFD/CSD/CAA Adjoint
 - Aerodynamic analysis
 - Structural analysis
 - Aeroacoustic analysis
 - Fully coupled flexible aeroacoustic analysis and sensitivity
- Results
- Conclusion

Aerodynamic Solver

NSU3D

- 3D unstructured finite-volume RANS solver.
- 2nd –order accurate in space and time.
 - Fully implicit discretization solved using Newton's method at each time-step
- Central differencing with Matrix dissipation.
- One equation Spalart-Allmaras turbulence model.
- Deforming mesh capability.
 - Linear elasticity model to propagate surface deformations to interior (cyclic pitching/design changes/structural deformations).
- MPI parallelization with proven scalability up to 30,000 processors.

Outline

- Introduction
- Background
- Motivation & Objective
- Coupled CFD/CSD/CAA Adjoint
 - Aerodynamic analysis
 - Structural analysis
 - Aeroacoustic analysis
 - Fully coupled flexible aeroacoustic analysis and sensitivity
- Results
- Conclusion

Structural Analysis: Beam Model

8

- Hodges-Dowell type finite element based solver
- 15 degrees of freedom (flap, lag, axial and torsion)
- First order system: where, $\mathbf{J} = [I] \dot{\mathbf{Q}} + [A] \mathbf{Q} - \mathbf{F} = 0$ $\mathbf{Q} = [\mathbf{q}, \dot{\mathbf{q}}]^T$
- J = Residual of structural equation
- **q** = blade dof (flap, slope etc)
- **F** = beam forcing

Comparison of Hart-II Natural Frequencies

Modes	Present Model	UMARC	DLR
Flap 1	1.104	1.112	1.125
Flap 2	2.802	2.843	2.835
Flap 3	5.010	5.189	5.168
Torsion 1	3.878	3.844	3.845

Outline

- Introduction
- Background
- Motivation & Objective
- Coupled CFD/CSD/CAA Adjoint
 - Aerodynamic analysis
 - Structural analysis
 - Aeroacoustic analysis
 - Fully coupled flexible aeroacoustic analysis and sensitivity
- Results
- Conclusion

Acoustic propagation: FW-H

FW-H: Near field CFD solution Farassat's Formulation 1A **CFD** Far field Source-time dominant algorithm. FW-H surface Linear pressure interpolation at the observer. Quadrupole term neglected. Use aeroelastically converged flow and mesh data $U_i = \left(1 - \frac{\rho}{\rho_o}\right) v_i + \frac{\rho u_i}{\rho_o}$ **FW-H** solution $L_i = p'n_i + \rho u_i (u_n - v_n)$ $U_n = U_i n_i$ Far field observer $M_r = M_i r_i$ $L_r = L_i r_i$ $4\pi p'(\mathbf{v},t) = 4\pi p'_T(\mathbf{v},t) + 4\pi p'_I(\mathbf{v},t)$ $L_M = L_i M_i$ $4\pi p_T'(\mathbf{y},t) = \int_{f=0} \left[\frac{\rho_o \left(\dot{U}_n + U_n \right)}{r(1 - M_r)^2} \right] dS + \int_{f=0} \left[\frac{\rho_o U_n K}{r^2 (1 - M_r)^3} \right]_{ret} dS$ $K = r\dot{M}_r + c_o(M_r - M^2)$ $4\pi p'_{L} = \frac{1}{c_{o}} \int_{f=0}^{L} \left[\frac{\dot{L}_{r}}{r(1-M_{r})^{2}} \right]_{rrr} dS + \int_{f=0}^{L} \left[\frac{L_{r}-L_{M}}{r^{2}(1-M_{r})^{2}} \right]_{rrr} dS + \frac{1}{c_{o}} \int_{f=0}^{L} \left[\frac{L_{r}K}{r^{2}(1-M_{r})^{3}} \right]_{rrr} dS$

Acoustic Problem setup

Flexible Hart-II rotor in trimmed forward flight.

$$M_{\infty} = 0.095 - M_{tip} = 0.638$$

Stationary observer in the plane of the rotor 2R from rotor hub $\psi = 180$ deg. Solid wall acoustic integration – Blade surface is acoustic surface

FW-H validation

RANS based NSU3D CFD code provides input to FW-H acoustic propagation module.

Validation against legacy PSU-WOPWOP FW-H code

Observer time history

Optimization window

Outline

- Introduction
- Background
- Motivation & Objective

Coupled CFD/CSD/CAA Adjoint

- Aerodynamic analysis
- Structural analysis
- Aeroacoustic analysis
- Fully coupled flexible aeroacoustic analysis and sensitivity
- Results
- Conclusion

Fully coupled aerostructural analysis

Fully coupled aerostructural sensitivity: Tangent

• Time-dependent objective function:

$$L = L(\mathbf{U}(\mathbf{D}), \mathbf{x}(\mathbf{D}))$$

 General expression for forward linearization of objective function w.r.t design variables:

$$\frac{dL}{d\mathbf{D}} = \begin{bmatrix} \frac{\partial L}{\partial \mathbf{x}} & \frac{\partial L}{\partial \mathbf{U}} \end{bmatrix} \begin{bmatrix} \frac{d\mathbf{x}}{d\mathbf{D}} \\ \frac{d\mathbf{U}}{d\mathbf{D}} \\ \frac{d\mathbf{U}}{d\mathbf{D}} \end{bmatrix}$$

Fully coupled aerostructural sensitivity: Tangent

Fully coupled aerostructural sensitivity: Adjoint

Acoustic sensitivity: verification

Tangent sensitivity: Tangent NSU3D solver provides forward aeroelastic flow and mesh sensitivity to tangent FW-H integration

Adjoint sensitivity: Adjoint FW-H code provides reverse sensitivity to NSU3D adjoint solver to perform aeroelastic backward time integration

Acoustic sensitivity time history

Agreement to 9 significant figures with complex step method

	Sensitivity (twist)
Complex	1.4620480 8801 E-06
Tangent	1.4620480 6875 E-06
Adjoint	1.4620480 8794 E-06
	Sensitivity (cyclic)
Complex	-4.269878110 954 E-04
Tangent	-4.269878110 962 E-04
Adjoint	-4.269878110 854 E-04

Outline

- Introduction
- Background
- Motivation & Objective
- Coupled CFD/CAA Adjoint
- Results
 - Flexible HART-II
 - Trim optimization
 - Aeroacoustic optimization
 - Acoustically constrained torque minimization
 - Rigid UH60
 - Trim optimization
 - Aeroacoustic optimization
- Conclusion

Objective: Minimize acoustic signature of HART-II rotor in trimmed forward flight.

- Initial design: baseline HART-II rotor in trimmed forward flight
 Initial trim formulated as separate optimization problem
- Aeroacoustic optimization
- Torque optimization with acoustic constraint
- SNOPT constrained optimizer
 - > Enforces constraints directly
 - > Requires adjoint calculation for each objective/constraint
- Optimization cost: 96 hours wall-clock time on 1024 cores
- 650Gb disk storage

HART-II rotor in Forward Flight

- 4 bladed Hart-II rotor in forward flight:
 - $M_{tip} = 0.64$; 1040 RPM; $\mu = 0.15 (M_{\infty} \sim 0.1)$; $\alpha = 5.4^{\circ}$
- CFD/CSD specifications:
 - 2.32 million grid nodes (prisms, pyramids, tets)
 - 20 beam elements per blade
 - 2 rotor revs, $\Delta t=2^{\circ}$
 - 6 coupling iterations per timestep
 - Objective/constraints accumulated over second rotor revolution
- Design variables
 - 10 Hicks-Henne bump functions per blade section,
 9 blade sections (90). Root and tip twist.
 - Control Inputs:
 - Collective (θ_0) and Cyclics (θ_{1c}, θ_{1s})

$$\theta_{pitch} = \theta_O + \theta_{1c} \cos \psi + \theta_{1s} \sin \psi$$

- 95 design parameters total

CFD flow domain

Trim optimization

Aeroacoustic optimization

Acoustically constrained Torque optimization

 $min L_{THRUST}$ subject to $L_{LATERAL} = 0$ w.r.t. **D**pitch

 $min \ p'_{RMS}$ subject to $L_{THRUST} = 0$ $L_{LATERAL} = 0$ $w.r.t. \mathbf{D}$

 $min \ L_{TORQUE}$ subject to $L_{THRUST} = 0$ $L_{LATERAL} = 0$ $p'_{RMS} = p'_{RMS_{TARGET}}$ $w.r.t. \mathbf{D}$

Acoustic objective/constraint

Aerodynamic constraints

 $C^{l}_{T_{AVERAGE}}$

= 0.0044

$$L_{THRUST} = \frac{1}{N} \left(\sum_{i=1}^{N} \left(C_T^i - C_{T_{AVERAGE}}^i \right) \right)^2$$

$$p_{RMS}' = \sqrt{\frac{\sum_{i=1}^{N} p^{\prime 2}(\mathbf{D})}{N_{sample}}} \qquad L_{LATERAL} = \frac{1}{N} \left[\left(\sum_{i=1}^{N} C_{M_x}^i \right)^2 + \left(\sum_{i=1}^{N} C_{M_y}^i \right)^2 \right]$$

$$L_{TORQUE} = \frac{1}{N} \sum_{i=1}^{N} \left(C_Q^i \right)^2$$

 $p'_{RMS_{TARGET}}$ yields 2dB OSPL reduction

Trim optimization

- ✓ Convergence in 15 non linear iterations
- Only 3 design variables: 1 collective, 2 cyclics

Trim optimization

Thrust

Rolling moment

Pitching moment

Average thrust equals target thrustZero average lateral moments

Aeroacoustic optimization

- ✓ Single objective, 2 constraints: 3adjoints
- ✓ 95 design variables
- ✓ Convergence in 11 non linear iterations
- ✓ Baseline OSPL reduced 2.6dB

Aeroacoustic optimization

Thrust

Rolling moment

otimization window

Pitching moment

- Average thrust equals target thrust
- Zero average lateral moments
- Trimmed optimal design

Aeroacoustic optimization

Acoustic pressure time history

Optimized blade shapes

Aeroacoustic optimization

Torque time history

Noise reduction at observer achieved with strong performance penalty

Acoustically constrained torque minimization

- ✓ 1 objective, 3 constraints: 4 adjoints
- ✓ 95 design variables
- ✓ Convergence in 5 non linear iterations
- ✓ 2.5% torque reduction and 2dB OSPL quieter rotor

Acoustically constrained torque minimization

Thrust

Rolling moment

Pitching moment

- Average thrust equals target thrust
- Zero average lateral moments
- Trimmed optimal design

Acoustically constrained torque minimization

Torque time history

Optimized blade shapes

Acoustically constrained torque minimization

Acoustic pressure time history

- Acoustic constraint results in rotor 2dB OSPL quieter than baseline
- Noise minimized at different observer locations too

Acoustically constrained torque minimization

Acoustic pressure time history $\psi = 135 \text{ deg}$

Acoustic pressure time history $\psi = 315 \text{ deg}$

Acoustically constrained torque minimization

Acoustic pressure time history 50R

Acoustic pressure time history 100R

Investigation over multiple rotor revolutions

Investigation over multiple rotor revolutions

Optimization problems

Investigation over multiple rotor revolutions

Objective: Minimize acoustic signature of rigid UH60 rotor in trimmed forward flight.

- Initial design: baseline UH60 rotor in trimmed forward flight
 Initial trim formulated as separate optimization problem
- Aeroacoustic optimization (Wind tunnel formulation)
- SNOPT optimizer
 - > Penalty function approach
 - > Requires retrim after convergence
- Optimization cost: 66 hours wall-clock time on 3008 cores
- 2Tb disk storage

UH60 rotor in Forward Flight

- 4 bladed UH60 rotor in forward flight (flight counter 8534)
 - $M_{tip} = 0.64$; 258 RPM; µ=0.368 (M_∞~0.236); $\alpha = 7.3^{\circ}$
- CFD specifications:
 - 5.1 million grid nodes (prisms, pyramids, tets)
 - 2 rotor revs, $\Delta t=2^{\circ}$
 - Objective/constraints accumulated over second rotor revolution
- Design variables
 - 10 Hicks-Henne bump functions per blade section, 11 blade sections. 11 twist spanwise sections. Taper, sweep and droop of tip section.
 - Control Inputs:
 - Collective (θ_{o}) and Cyclics (θ_{o}) θ_{s}) $\theta_{pitch} = \theta_{o} + \theta_{1c} \cos \psi + \theta_{1s} \sin \psi$
 - 127 design parameters total

CFD flow domain

Trim optimization

Aeroacoustic optimization

 $min L_{THRUST}$ subject to $L_{LATERAL} = 0$ w.r.t. **D**pitch

 $min \ L_{UNC}$ $w.r.t. \ \mathbf{D}$ $L_{UNC} = L_{FWH} + 10L_{THRUST} + 100L_{LATERAL}$

Acoustic objective

Aerodynamic constraints

$$L_{THRUST} = \frac{1}{N} \left(\sum_{i=1}^{N} \left(C_T^i - C_{T_{AVERAGE}}^i \right) \right)^2$$

$$p'_{RMS} = \sqrt{\frac{\sum_{i=1}^{N_{sample}} p'^{2}(\mathbf{D})}{N_{sample}}} \qquad L_{LATERAL} = \frac{1}{N} \left[\left(\sum_{i=1}^{N} \left(C_{M_{x}}^{i} - C_{M_{x-average}}^{i} \right) \right)^{2} + \left(\sum_{i=1}^{N} \left(C_{M_{y}}^{i} - C_{M_{y-average}}^{i} \right) \right)^{2} \right]$$

Flight counter 8534 $C_{T_{AVERAGE}} = 0.0067$ $C_{M_{x-AVERAGE}} = 8.0535E - 5$ $C_{M_{y-AVERAGE}} = -7.5640E - 5$

Trim optimization

- ✓ Convergence in 14 non linear iterations
- Only 3 design variables: 1 collective, 2 cyclics

Unconstrained optimization: Penalty function + retrim

- ✓ Penalty function approach: 1 adjoint
- ✓ 127 design variables
- ✓ Requires final retrim
- ✓ 3.9dB OSPL quieter rotor after retrim

3.9dB OSPL quieter rotor

Conclusions

 Time dependent high-fidelity 3D multidisciplinary suite implemented and verified

- Aerodynamics, structural mechanics, aeroacoustics

- Time dependent multidisciplinary tangent and adjoint sensitivity verified on HART-II rotor in trimmed forward flight.
- Multidisciplinary adjoint formulation used to optimize flexible HART-II and rigid UH60 noise signature.

Original contribution

- Development of a 3D coupled aeroacoustic adjoint for rotorcraft problems
 - Rigid rotor (AIAA Scitech 2016,2017)
 - Flexible rotor (AHS 72nd Annual Forum, May 2016)
- Enable high-fidelity gradient-based aeroacoustic optimization for rotorcraft problem

Future Work

- Finer meshes/multiple rotor revolutions
- Higher fidelity structural model
- Nonlinear flow effects in noise prediction
 - Quadrupole term
- Existence of multiple local minima
 - Hybrid global/local optimization (Gradient enhanced Kriging/Response Surface Models)
- Multipoint design optimization
 - Hover & Forward flight

Future Work

- Linear systems with multiple right hand sides
 Multiple adjoints / Hessian computation
- Newton's method for optimization problems
- Partial convergence

Acknowledgements

- Alfred Gessow Rotorcraft Center of Excellence at University of Maryland
- University of Wyoming ARCC
- NCAR-Wyoming Supercomputer Center
- Dr. K. S. Brentner
- Dr. K. Mani, Dr. A. Mishra

Questions?

Background

- Adjoint optimization: computational cost independent of number of design variables
 - Steady: fixed wing shape optimizations
 - Unsteady: Mavriplis, Mani, Nielsen
 - Aeroacoustic: Rumpfkeil, Economon, Fabiano
 - Helicopter blade design
 - Hover: Mani et. al, Lee et. al
 - Forward flight: Nielsen et al, Choi et al, Alonso et al, Mishra et al.

Nielsen et. al (AIAA 2012)

Acoustic problem

Comparison of rigid and flexible rotor noise signature

Acoustic Sensitivity: Tangent

• Acoustic pressure @ far field observer:

 $p'(\mathbf{y}, t, \mathbf{D}) = \mathbf{FWH}(\mathbf{U}(\mathbf{D}), \mathbf{x}(\mathbf{D}))$

• Forward sensitivity of acoustic pressure:

$$\frac{dp(\mathbf{y}, t, \mathbf{D})}{dD} = \sum_{n} \frac{\partial \mathbf{FWH}}{\partial \mathbf{U}_{\mathbf{FWH}}^{\mathbf{n}}} \frac{\partial \mathbf{U}_{\mathbf{FWH}}^{\mathbf{n}}}{\partial D} + \frac{\partial \mathbf{FWH}}{\partial \mathbf{x}_{\mathbf{FWH}}^{\mathbf{n}}} \frac{\partial \mathbf{x}_{\mathbf{FWH}}^{\mathbf{n}}}{\partial D}$$

Time-integrated acoustic objective function (RMS acoustic pressure):

$$L_{FWH} = p'_{RMS}$$

• Forward sensitivity of time-integrated objective function:

$$\frac{dL_{FWH}}{dD} = \frac{\partial p'_{RMS}}{\partial p'} \frac{\partial p'}{\partial D} = \frac{\partial p'_{RMS}}{\partial p'} \left[\sum_{n} \frac{\partial FWH}{\partial \mathbf{U}_{FWH}^{n}} \frac{\partial \mathbf{U}_{FWH}^{n}}{\partial D} + \frac{\partial FWH}{\partial x_{FWH}^{n}} \frac{\partial x_{FWH}^{n}}{\partial D} \right]_{55}$$

Acoustic Sensitivity: Adjoint

• Acoustic pressure @ far field observer:

$$p'(\mathbf{y}, t, \mathbf{D}) = \mathbf{FWH}(\mathbf{U}(\mathbf{D}), \mathbf{x}(\mathbf{D}))$$

• Adjoint sensitivity of acoustic pressure:

$$\frac{dp(\mathbf{y},t,\mathbf{D})}{dD}^{T} = \sum_{n} \frac{\partial \mathbf{U}_{\mathbf{FWH}}^{\mathbf{n}}}{\partial D}^{T} \frac{\partial \mathbf{FWH}}{\partial \mathbf{U}_{\mathbf{FWH}}^{\mathbf{n}}}^{T} + \frac{\partial \mathbf{x}_{\mathbf{FWH}}^{\mathbf{n}}}{\partial D}^{T} \frac{\partial \mathbf{FWH}}{\partial \mathbf{x}_{\mathbf{FWH}}^{\mathbf{n}}}^{T}$$

• Time-integrated acoustic objective function (RMS acoustic pressure):

$$L_{FWH} = p'_{RMS}$$

• Adjoint sensitivity of time-integrated objective function:

$$\frac{dL_{FWH}}{dD}^{T} = \frac{\partial p}{\partial D}^{T} \frac{\partial p'_{RMS}}{\partial p}^{T} = \sum_{n} \frac{\partial U^{n}}{\partial D}^{T} \frac{\partial L_{FWH}}{\partial U^{n}}^{T} + \frac{\partial x^{n}}{\partial D}^{T} \frac{\partial L_{FWH}}{\partial x^{n}}^{T}$$

56

Future Work

Blade Geometry Parametrization

- Master blade shape defined by Hicks-Henne bump functions and twist
 - Defined by high-resolution structured mesh (in black)
 - Shape changes interpolated onto unstructured CFD surface mesh
- 95 design parameters
 - 10 Hicks-Henne bump functions per blade section, 9 blade sections (90)
 - Twist at blade root and tip (2) and 3 pitch parameters