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• Turbulence is prevalent in every day life 
• Most common engineering flow 

• Characterized by: 
• Mechanical mixing 
• Vorticies  
• Chaotic fluctuations 
• Cascade of Energy from large to small scales 

• These characteristics are a challenge to simulate 

Motivation 



• An accurate simulation must capture all 
temporal and spatial scales 
• Computationally expensive 

• Large Eddy Simulation  
• Reduced computational cost 
• Without sacrificing accuracy 
• Two LES models were analyzed 

• Constant Smagorinsky 
• Dynamic Smagorinsky 

 

Motivation 



• High order finite element methods (FEM) have 
grown in popularity  
• FEM can leverage new architectural advances 
• Historically neglected due to high computational 

costs 

• The Discontinuous Galerkin Method is a finite 
element method with discontinuous values at 
each element interface 
• Relies on the weak form of the governing equations 

 
 

Motivation 



• An alternative DG formulation exists that relies 
on the strong form 
• The split-form is derived from the strong form DG 

• This split-form is kinetic energy preserving 

• The behavior of the LES models when used with 
the split-form DG formulation were analyzed 
and compared to the standard DG formulation 

 

Motivation 



• All time and space scales are simulated 

• Very fine mesh resolution required 

• Very small time steps required 

• Very Expensive 
• Everything is directly simulatied 

• Increasing Reynolds Number increases the cost 

 

 

Direct Numerical Simulation (DNS) 



• Average flow field is calculated 
• Models the fluctuations  
• Much cheaper due to the reduced resolution 

needed 
• Struggles with unsteady flow problems 
• Reduction of accuracy due to model limitations 
• Models need to be selected correctly for a given 

problem 

Reynolds Averaged Navier-Stokes (RANS) 



• Directly simulate large scale structures 

• Filter smallest scales (sub-grid scales) 

• Introduce model for the SGS 

• Cheaper than DNS, lower accuracy 

• More expensive than RANS, more accuracy 
 

 

Large Eddy Simulation (LES) 
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Compressible Navier-Stokes  



• Obtained by multiplying by a test function  
𝜙𝑠, 𝑠 = 1, … , 𝑀 

• And integrating over the element volume 

 
𝜕𝑸

𝜕𝑡
 + 𝛻 ⋅ 𝑭 𝜙(𝑥) 𝑑𝑥  

Ω𝑘

 

 

Weak Form  



• Separating and applying the divergence theorem 

𝑅𝑤𝑒𝑎𝑘 =  
𝜕𝑸

𝜕𝑡
𝜙 𝑥 𝑑𝑥  

Ω𝑘

 

−  𝑭 ⋅ 𝛻 𝜙 𝑥 𝑑𝑥

Ω𝑘

 

+ 𝑭∗ ⋅ 𝑛 𝜙 𝑥 Γ𝑘
𝑑Γ𝑘   

𝚪𝐤
= 0   

Weak Form  



• The divergence theorem is applied a second 
time to the volume term 

• The derivative of the volume fluxes must 
now be calculated 

• An additional term now must be evaluated 
at the boundary 

 

Strong Form  



𝑅𝑠𝑡𝑟𝑜𝑛𝑔 =  
𝜕𝑸

𝜕𝑡
𝜙 𝑥 𝑑𝑥  

Ω𝑘

 

−  𝛻𝑭 ⋅ 𝜙(𝑥) 𝑑𝑥

Ω𝑘

 

+ (𝑭∗−𝑭) ⋅ 𝑛 𝜙 𝑥 Γ𝑘
𝑑Γ𝑘  

𝚪𝐤
= 0   

 

Strong Form  



• The summation-by-parts property is applied 
to the surface fluxes on of the strong form 
discretization 

•  Requires a coordinate transform of the 
generalized governing equations: 

 

 

 

Split-Form 



• The split-form discretization is derived from 
the DG spectral element formulation 
(DGSEM) and is constructed in a similar 
manner to the standard DG formulation 

 

 

 

 

 

Split-Form 



• A split-form discretization only flux scheme 
• Primarily used with no artificial dissipation in this 

work 

Pirozzoli Numerical Flux Scheme 



• A method for stabilizing DG methods 

• Solution is filtered at each time step  
• Also any time stepping stages like in the Runge-

Kutta Method 

• Solution filter is also used in the Dynamic 
Smagorinsky Method 
• Modal Cutoff 
• Laplacian Filter 

 

Solution Filtering 



• An Nth order hierarchical basis function 
contains all lower solutions 

• Specific orders can be filtered by zeroing 
corresponding modes 

• Emulates a sharp cut off filter 

• Problem: CartDG uses a nodal basis for 
solution 

Modal Cutoff Filter 



• Legendre Polynomial 
used to calculate 

• P6 Basis shown 

• All lower order basis 
functions are 
represented in the 
basis 

 

Hierarchical Modal basis 



• Gives rise to 
Kronecker Delta 
Property used to 
speed up CartDG 

• Each order has a 
unique set of basis 
functions 

• P6 Basis shown  

Nodal Basis 



• Can be transformed by use of mass matricies 

• Modal Mass Matrix 

𝑀𝑖𝑗 =  𝜓𝑖 𝜉 𝜓𝑗 𝜉 𝑑𝜉
1

−1

 

• Mix Mass Matrix 

𝐶𝑖𝑗 =  𝜓𝑖 𝜉 𝜙𝑗 𝜉 𝑑𝜉
1

−1

 

• This can be used to calculate 
𝐶𝑢 = 𝑀𝑏 

𝑏 = 𝑀−1𝐶𝑢 

• The filter matrix F can be applied 

𝑏 = 𝐹𝑏 

 

Modal Cutoff Filter 



• This can be used to get the filtered solution 

𝑢 = 𝐶−1𝑀𝑏 

𝑢 = 𝐶−1𝑀𝐹𝑀−1𝐶𝑢 

• Terms can be combined into an overall filter 
𝐹  

𝑢 = 𝐹 𝑢 

• Filter 𝐹  only needs to be calculated once 

Modal Cutoff Filter 



• P6 Nodal 
approximation in Red 

• N = 6 mesh elements 
(blue) 

• Quadrature points 
shown in violet 

• Black is true solution 

1-D Test Problem 

𝑦 = cos 2𝑥 + 0.3 sin 8𝑥 + sin 𝑥2 + 0.4 sin
36

𝜋
𝑥  

 



• P4 filtered solution in green 

• Steep peaks are smoothed 
out in several areas 

• Some larger discontinuities 
near element boundary 

• High order content is 
removed  

• Solution is slightly less 
accurate 

1-D Test Problem: Modal Cutoff Filter 



• P1 filtered solution in 
green 

• All high order 
frequencies are 
smoothed out 

• Solution accuracy is poor 
• Implies that too low of 

filter order worsens 
accuracy and potentially 
stability 

1-D Test Problem: Modal Cutoff Filter 



• P6 Nodal approximation 
for x-momentum ρu 

• Taylor Green Vortex 
• At 𝜏 ≈ 10 

• N = 10 mesh elements in 
each direction 

• Red is positive values of 
ρu, green is zero, and 
blue is negative values 
 

3-D Test Problem 



• P4 filtered solution 

• Sharp flow features 
smoothed out on XZ-
face near Z = 0 

• Majors structures on XZ-
face have become more 
defined 

 

3-D Test Problem: Modal Cutoff Filter 



• P1 filtered solution 
• Structures are coarse 
• Other structures smoothed 

out entirely 
• Discontinuities from finite 

representation are apparent 
• Suggest that too low of a 

filter order leads to a 
significant degradation in 
accuracy 
 

3-D Test Problem: Modal Cutoff Filter 



• Regularizations of the convective term in the 
Navier-Stokes equations 
• This nonlinear term leads to the small scale structures 

for the turbulent cascade 

• The regularization of this term can lead to the 
convection term becoming a source or a sink 
• This can be corrected by projecting onto a 

divergence free space 

• This lead to this work investigating the Laplace 
Filter in the dynamic Smagorinsky model 

Laplace Filter 



• Calculated explicitly: 
𝑢 = 𝑢 + 𝛻 ⋅ (𝛾𝛻𝑢) 

• Where the filtered solution 𝑢  is filtered based on the 
divergence of the flow 

• γ is a filter width term 
• Box filter was selected on a per element basis 

𝛾 =  

1
𝑝 + 1 × Ω𝑘

1
3

2

24
 

• With the element volume Ωk normalized by the solution 
order p  

 

 

Laplace Filter 



• P6 Nodal 
approximation in Red 

• N = 6 mesh elements 
(blue) 

• Quadrature points 
shown in violet 

• Black is true solution 

1-D Test Problem 

𝑦 = cos 2𝑥 + 0.3 sin 8𝑥 + sin 𝑥2 + 0.4 sin
36

𝜋
𝑥  

 



• Laplacian filtered 
solution in green 

• Minimal changes in 
filtered solution 
• Derivative of a sinusoid 

is a sinusoid 

• Slight changes near 
the edges of each 
element 

1-D Test Problem: Laplace Filter 



• P6 Nodal approximation 
for x-momentum ρu 

• Taylor Green Vortex 
• At 𝜏 ≈ 10 

• N = 10 mesh elements in 
each direction 

• Red is positive values of 
ρu, green is zero, and blue 
is negative values 
 

3-D Test Problem 



• Laplace filtered solution 
• Formerly smooth areas now 

have structures 
• These arise from small changes 

in the sign of the solution 

• Areas with more gradual 
changes are smoothed out 

• This makes it ideal for the 
filter used in LES  
• These areas are more likely to 

be under resolved 

3-D Test Problem: Laplace Filter 



• To obtain these equations a low-pass filter is 
applied to the Navier-Stokes equations 
• Applied to the incompressible Conservation of 

Mass: 

LES Equations 



• The filter is linear: 

 

 

• Commutative with respect to differentiation: 

 

LES Equations 



• This filter operation introduces 𝑢𝑖𝑢𝑗 as an unknown 

• This is approximated by decomposing the term into: 
𝜏𝑖𝑗 = 𝑢𝑖𝑢𝑗 − 𝑢𝑖 𝑢𝑗  

• 𝜏𝑖𝑗 is the sub-grid scale (SGS) stress tensor 

• The deviatoric SGS stress tensor can be calculated with: 
𝜏𝑖𝑗

𝑑 = −2 𝜈𝑆𝐺𝑆𝑆𝑖𝑗
𝑑  

• Which introduces 𝜈𝑆𝐺𝑆 as the eddy viscosity or sub-grid scale 
kinematic viscosity 

• An LES model is introduced to solve for 𝜈𝑆𝐺𝑆 

• The same procedure can be followed for compressible LES but 
requires the use of Favre filtering 

 

LES Equations 



• Key for LES in compressible flows 

• Change of variables based on filtered density 

• This can be written as: 
𝜌Φ = 𝜌 Φ  

• Or more practically: 

Φ =
𝜌Φ

𝜌 
 

 

Favre Filtering 



• Directly models 𝜇𝑆𝐺𝑆 based on instantaneous 
flow state: 

𝜇𝑆𝐺𝑆 = 𝜌 (𝐶𝑠Δ)2 𝑆  

• 𝑆  is the magnitude of the Favre averaged 
strain rate tensor: 

𝑆 = 2𝑆𝑖𝑗
 𝑆𝑖𝑗

  

 

Constant Smagorinsky Model 



• 𝐶𝑠 is the Smagorinsky coefficient 
• Often chosen to be 0.17   

• Δ represents the element size 

Δ = 𝐶𝑃 Δ𝑥Δ𝑦Δ𝑧
1/3

  

• 𝐶𝑃 factors in finite element solution order P: 

𝐶𝑃 =
1

𝑃 + 1
 

Constant Smagorinsky Model 



• Modification of the constant Smagorinsky model 
• Constant model poorly handles laminar and 

transitional flows 

• The Smagorinsky coefficient is now calculated as 
a function of the instantaneous flow state 

𝐶𝑠 = 𝐶𝑠(𝑥, 𝑦, 𝑧, 𝑡) 

• An explicit filter operation is applied locally 
• Occurs independently of solution or grid filtering 
• This filter is referred to as the test filter 

Dynamic Smagorinsky Model 



• This work examined the performance both filters  
• Sharp Modal Cutoff 
• Laplace 

• Test filtered quantity is represented by a hat 
𝜌   

•  Calculation is based on the Leonard Stress tensor: 

𝐿𝑖𝑗 = 𝜌 𝑢𝑖 𝑢𝑗  −
𝜌 𝑢𝑖  𝜌 𝑢𝑗  

𝜌  
 

• And the 𝑀𝑖𝑗 tensor: 

𝑀𝑖𝑗 = 𝜌 𝑆 𝑆𝑖𝑗
𝑑  

− 𝛼𝜌  𝑆  𝑆𝑖𝑗
𝑑   

 

Dynamic Smagorinsky Model 



• α is the ratio of the grid filter size and the test filter size: 

𝛼 =
Δ  

Δ 

2

 

• For the finite element formulation order is factored in: 

𝛼 =
𝑝𝑔𝑟𝑖𝑑 + 1

𝑝𝑡𝑒𝑠𝑡 + 1

2

 

• Manipulation of the terms results in: 

(𝐶𝑠Δ)2= 
1

2

𝐿𝑖𝑗
𝑑 𝑀𝑖𝑗

𝑀𝑙𝑘𝑀𝑙𝑘
 

• Which is then substituted into: 
𝜇𝑆𝐺𝑆 = 𝜌 (𝐶𝑠Δ)2 𝑆  

 

Dynamic Smagorinsky Model 



• Both tensors are constructed out of terms: 
• Filtered then assembled 
• Assembled then filtered 

• High energy content is associated with high order 
components of flow 

• Leonard Stress tensor becomes zero in smooth flow 
• Results in 𝜈SGS having zero contribution in this flow regime  
• This contrasts with the Constant model that only has zero 

contribution with zero strain rate 

Dynamic Smagorinsky Model 



• Calculated at each integration point, then 
averaged over the volume: 

(𝐶𝑠Δ)2
𝑒 =

 (𝐶𝑠Δ)2𝑑𝑉
𝑉𝑒

𝑉𝑒
 

• Then applied on a per element basis 

• Clipping was introduced to prevent 𝜇𝑆𝐺𝑆  from 
becoming negative 
• If 𝜇 + 𝜇𝑆𝐺𝑆  ≤ 0 instabilities will form 

 

Dynamic Smagorinsky Model 



• ILES relies strictly on the native viscosity from 
the Navier-Stokes equations and numerical 
dissipation arising from the solver 

• No small scale physics or structures are 
captured 

• Referred to as Baseline or No Model in this 
work 

Implicit Large Eddy Simulation 



• Is an unsteady flow that is 
initially laminar and under 
goes transition to fully 
turbulent flow 

• Ideal test for SGS models 
• Transition is difficult to handle 

• Inherently an incompressible 
problem  
• Mach Number of 0.1 was 

selected 
 
 

Taylor Green Vortex 

Contour of Z-vorticitiy at the initial 
condition [1]. 



• This is a perodic problem 
• All boundary conditions were perodic 

• Domain of [- 𝜋L, 𝜋L]x[- 𝜋L, 𝜋L] x[- 𝜋L, 
𝜋L] 
• With the characteristic length L = 1.0 

• The Characteristic velocity 𝑈0 = 0.1 

• The initial density 𝜌 = 1.0 

• Air was chosen as the working fluid 
• γ = 1.4 
• Pr = 0.71 

Taylor Green Vortex 

Contour of Z-vorticitiy at 𝜏 = 20.0 
condition [1]. 



• Initial Flow field: 

 

Taylor Green Vortex 



• Initial temperature was considered to be 
uniform 
• Thus density was calculated by: 

𝜌 = 𝑅𝑇0 

• The time was normalized with a 
characteristic convective time: 
• 𝑡𝑐 = 𝐿/𝑈0 

• 𝜏 =
𝑡

𝑡𝑐
 

 

Taylor Green Vortex 



• Key quantities were analyzed to determine the 
behavior of the TGV simulation runs 

• Volume averaged kinetic energy: 

𝐾𝐸 =
1

𝜌Ω
 𝜌

𝑢𝑖𝑢𝑗

2
𝑑Ω

Ω

 

• Kinetic energy dissipation rate: 

𝜖 = − 
𝑑𝐾

𝑑𝑡
 

 

 

Taylor Green Vortex 



• Kinetic energy rate is based on the sum of three terms: 
• The e1  term represents the dissipation  arising from viscosity: 

𝑒1 =
2

𝜌0Ω
 𝜇𝑆𝑖𝑗

𝑑𝑆𝑖𝑗
𝑑𝑑Ω

Ω

 

• The e2 term represents dissipation arising from velocity dilatation: 

𝑒2 =
2𝜇

3𝜌0Ω
 𝛻 ⋅ 𝑢 2𝑑Ω
Ω

 

• The e3  term represents dissipation arising from pressure dilatation: 

𝑒3 = −
1

𝜌0Ω
 𝑃(𝛻 ⋅ 𝑢)𝑑Ω
Ω

 

• Due to the incompressible nature of the problem e2 and e3 
should be negligible  

 

Taylor Green Vortex 



• Volume averaged turbulent viscosity was also 
analyzed: 

𝜇𝑆𝐺𝑆 =
1

Ω
 𝜇𝑆𝐺𝑆𝑑Ω
Ω

 

• The number of degrees of freedom were 
calculated as: 

𝐷𝑂𝐹 = 𝑃 + 1 𝑛1𝐷
3 

• This is based on the solution order P and the number 
of elements which were constant for each direction 

Taylor Green Vortex 



• Simulations were run in CartDG  

• Both the split-form and standard DG 
discretizations were run 

• The explicit fourth-order four stage Runge-
Kutaa (RK4) scheme was used for time 
advancement 
• The 3/8th Method was used for the RK coefficients 

• CFL = 1.0 was selected  

Taylor Green Vortex 



• TGV was run without viscosity 

• Fully periodic  

• No means of dissipating energy 
• TKE should be strictly conserved 

• Challenging: 
• Will always be under-resolved for long 

simulations 

Inviscid Taylor Green Vortex 



• Total Kinetic Energy 

• Run with the standard DG 
formulation 

• Lax-Friedrichs numerical flux 
scheme 

•  All cases P2, P3, and P6 
filtered to P3 are too 
dissipative 

• Only the lowest order P2 case, 
shown in purple, was stable 
and ran to completion 

Results: Inviscid TGV DG 



• P3, shown in green,  
reaches approximately 
𝜏 ≈ 16.0 before crashing  

• Adding in filtering from 
P6 to P3, shown in red, 
destabilized the solution 
further  
• Due to worsening 

polynomial aliasing errors 
• The quadrature points are 

as if the solution was P6  

 
 

Results: Inviscid TGV DG 



• Total Kinetic Energy 

• Run with the split-form 

• No numerical flux dissipation was 
introduced 

• P2, shown in purple, runs to 
completion 

• Negligible changes in KE 

• P3, shown in cyan, runs to 
completion  

• KE begins to decrease at 𝜏 ≈ 13.0 
• Then begins to rise after 𝜏 ≈ 18.0 

Results: Inviscid TGV Split-form 



• Both P4 cases crash 

• The case with 14 elements 
per direction shown in 
yellow 
• Preserves KE until 𝜏 ≈ 7.5  
• At this point it decreases  
• It begins to increase at 

𝜏 ≈ 10.0 before crashing 

• The case with 16 elements 
per direction 
• Preserves KE for its entire 

life before crashing 

Results: Inviscid TGV Split-form 



• Run with viscosity  

• Reynolds Number was varied to examine the 
effects 
• RE=1,600 

• RE=20,000 

• Run with and without LES models 
• Baseline will refer to ILES 

Taylor Green Vortex 



• Run with viscosity  

• Reynolds Number was varied to examine the 
effects 
• RE=1,600 

• RE=20,000 

• Run with and without LES models 
• Baseline will refer to ILES 

Results: TGV DG 



• TKE with Re-20000 P6 
• DNS is in Purple 
• Standard DG 

formulation in green 
• Split-form in red 

• The standard DG 
formulation is unstable 
• In the regime before 

the instability is more 
accurate then the split-
form 

Results: TGV DG vs Split-Form 



• The split-form under 
predicts compared to 
the DNS 
• The transition is 

predicted earlier 

Results: TGV DG vs Split-Form 



• Total Kinetic Energy at 
Re=1,600  
• DNS results are in purple 
• Baseline simulation with no 

LES model is shown in Blue 
• The simulation with Constant 

Smagorinsky model model is 
green 

• The simulation with Dynamic 
Smagorinsky model with the 
modal cutoff filter set to P4 is 
in orange 

• The simulation with Dynamic 
Smagorinsky model with the 
Laplacian filter is in red 

 

Results: TGV Split-form LES 



• All simulations 
• under predict KE compared to the DNS 
• predict transition earlier than the DNS 

• The Constant Smagorinsky Model is the 
most under predictive 

• It predicts transition the earliest 

• The Dynamic Smagorinsky Model  with 
the modal cutoff filter is slightly more 
dissipative than the baseline, the split-
form with no model   

• The Dynamic Smagorinsky Model  with 
the Laplace Filter is nearly identical to 
the baseline as the model has very little 
contribution 

Results: TGV Split-form  



• Energy dissipation rate at 
Re=1,600  
• DNS results are in purple 
• Baseline simulation with no 

LES model is shown in Blue 
• The simulation with Constant 

Smagorinsky model is green 
• The simulation with Dynamic 

Smagorinsky model with the 
modal cutoff filter set to P4 is 
in orange 

• The simulation with Dynamic 
Smagorinsky model with the 
Laplacian filter is in red 
 
 

Results: TGV Split-form 



• All simulations over 
predict energy 
dissipation and predict 
transition earlier than the 
DNS 

• The Constant 
Smagorinsky model is 
the most dissipative until 
𝜏 ≈ 7.5  
• After this time it is the 

least dissipative 
 
 
 

Results: TGV Split-form 



• The Dynamic Smagorinsky model 
with the cutoff filter has close 
performance with the baseline 

• At 𝜏 ≈ 5 it is slightly more 
dissipative, this is responsible for 
the divergence seen in the figure 
of TKE shown previously 

• The Dynamic Smagorinsky model 
with the Laplace filter has too 
small of a contribution and 
produces negligible differences 
when compared to the baseline 
simulation 

 
 
 

Results: TGV Split-form 



• Modeled eddy viscosity is 
shown 
• This is volume averaged over 

the whole domain 

• The Constant Smagorinsky 
Model results are shown in 
purple 

• The Dynamic Smagorinsky 
Model results with the modal 
cutoff filter is shown in green 

• They Dynamic Smagorinsky 
Model results with the Laplace 
filter is shown in red 

Results: TGV Split-form 



• The Constant Smagorinsky model 
predicts the largest 𝜇𝑡 during the 
entire simulation 

• The Dynamic Smagorinsky model 
with the cutoff filter predicts a 
𝜇𝑡 ≈ 0 until 𝜏 ≈ 2.5  

• This is when the flow is Laminar 

• The Dynamic Smagorinsky model 
with the Laplace filter predicts 
𝜇𝑡 ≈ 0 for the lifetime of the 
simulation 

• A closer examination shows similar 
behavior to the modal cutoff filter 

• The magnitude is too small to 
have an effect on the flow 

Results: TGV Split-form 



• Total Kinetic Energy at 
Re=20,000 
• DNS results are in purple 
• Baseline simulation with no 

LES model is shown in Blue 
• The simulation with Constant 

Smagorinsky model is green 
• The simulation with Dynamic 

Smagorinsky model with the 
Laplacian filter is in orange 

• The simulation with Dynamic 
Smagorinsky model with the 
modal cutoff filter set to P4 is 
in red 

 

Results: TGV Split-form High Re 



• Again, all cases under 
predict KE and predict 
transition earlier than 
the DNS 

• The Constant 
Smagorinsky Model 
predicts the transition 
the earliest 
• After transition it over 

predicts KE 

Results: TGV Split-form High Re 



• The Dynamic Smagorinsky with 
the Laplace filter is notably 
different than the baseline 
simulation with no LES model 

• Improvement over the lower 
Reynolds Number case 

• It predicts a higher KE than the 
baseline 

• Transition occurs at nearly the 
same time as the baseline 

• The Dynamic Smagorinsky with 
the cutoff filter predicts transition 
closer to the DNS results than all 
other cases 

 

Results: TGV Split-form High Re 



• Energy dissipation rate at 
Re=20,000 
• DNS results are in purple 
• Baseline simulation with no 

LES model is shown in Blue 
• The simulation with Constant 

Smagorinsky model is green 
• The simulation with Dynamic 

Smagorinsky model with the 
Laplacian filter is in orange 

• The simulation with Dynamic 
Smagorinsky model with the 
modal cutoff filter set to P4 is 
in red 

 

Results: TGV Split-form High Re 



• All cases predict a higher 
dissipation rate before 
transition 
• 𝜏 ≈ 7.5 

• After this point they under 
predict the energy dissipation 
rate until  𝜏 ≈ 13.0 

• The DNS indicates there is a 
secondary peak at 𝜏 ≈ 12.0 
• This is not seen in the lower Re 

case 
• All LES cases capture this 

Results: TGV Split-form High Re 



• The Constant Smagorinsky 
Model predicts the onset of 
transition the earliest 
• After 𝜏 ≈ 6.0 it predicts the 

lowest dissipation rate of the 
LES cases 

• The Dynamic Smagorinsky 
Model case with the cutoff 
behaves similarly to the 
baseline no model case until 
𝜏 ≈ 6.0 
• This case also has a significant 

amount of fluctuations after 
𝜏 ≈ 6.0 

Results: TGV Split-form High Re 



• The Dynamic 
Smagorinsky Model case 
with the Laplace filter 
behaves similarly to the 
baseline no model case 
until 𝜏 ≈ 9.0 
• Unlike the Low Re case 

this filter has a significant 
contribution 

• In many areas this case 
performs closer to the 
DNS results than the 
other LES cases 

 

Results: TGV Split-form High Re 



• Modeled eddy viscosity is 
shown 
• This is volume averaged over 

the whole domain 

• The Constant Smagorinsky 
Model results are shown in 
purple 

• The Dynamic Smagorinsky 
Model results with the modal 
cutoff filter is shown in green 

• They Dynamic Smagorinsky 
Model results with the Laplace 
filter is shown in red 

 

Results: TGV Split-form High Re 



• As seen in the low Re case the Constant 
Smagorinsky model predicts the largest 
𝜇𝑡 during the entire simulation 

• The Dynamic Smagorinsky  model case 
with the modal cutoff filter predicts a 
near zero 𝜇𝑡 until about 𝜏 ≈ 4.0  

• This is desirable as the flow is laminar 
early in the simulation 

• The Dynamic Smagorinsky model case 
with the Laplace filter again has the 
lowest volume averaged 𝜇𝑡  

• Unlike the low Re Case 𝜇𝑡 has a notable 
contribution on the flow 

Results: TGV Split-form High Re 



• The standard DG discretization is unstable for the inviscid 
TGV 
• It is unstable in every case 

• The split-form discretization can preserve KE 
• This is seen in the inviscid TGV 

• No dissipation was added with a numerical flux scheme 
• Some cases were stable for the whole simulation life with negligible 

loss in KE 

• The standard DG discretization is unstable when the split-
form discretization is stable 
• When the stand DG discretization is stable it is less dissaptive 

than the split-form discretization 

 

Conclusions 



• At Re=1600 all LES models under predict KE 
when compared to the DNS results 
• The case with no LES model was the least dissipative 

• At Re=20000 all LES models under predict KE 
when compared to the DNS results 
• The Dynamic Smagorinsky model cases had less 

dissipation than the no model LES case 
• This arises from the extra dissipation from the model is 

applied in key flow areas 

 

Conclusions 



• The Constant Smagorinsky Model was the most 
dissipative when compared to the Dynamic 
Smagorinsky model and no model cases 
• This model has poor performance for laminar flows 

• The Dynamic Smagorinsky model cases 
performed better than the Constant 
Smagorinsky Model case 
• This model has better performance in laminar flows 
• Accurately capturing the early laminar flow and 

transition leads to better accuracy 

Conclusions 



• The split-form discretization chosen was kinetic 
energy preserving 
• Other discretizations exist with different variable 

formulations or preserved properties 

• Other LES models should be explored 
• Dynamic Heinz 
• Wall-Adapting Local Eddy-Viscosity (WALE) model 

• Other turbulent flow problems should be 
analyzed 
• Turbulent channel flow 

Future Work 
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