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This work considers the accuracy, efficiency, and robustness of an unstructured high-

order accurate discontinuous Galerkin (DG) solver for computational fluid dynamics (CFD).

Recently, there has been a drive to reduce the discretization error of CFD simulations using

high-order methods on unstructured grids. However, high-order methods are often criti-

cized for lacking robustness and having high computational cost. The goal of this work is

to investigate methods that enhance the robustness of high-order discontinuous Galerkin

(DG) methods on unstructured meshes, while maintaining low computational cost and high

accuracy of the numerical solutions. This work investigates robustness enhancement of

high-order methods by examining effective non-linear solvers, shock capturing methods, tur-

bulence model discretizations and adaptive refinement techniques. The goal is to develop

an all encompassing solver that can simulate a large range of physical phenomena, where

all aspects of the solver work together to achieve a robust, efficient and accurate solution

strategy.

The components and framework for a robust high-order accurate solver that is capable of

solving viscous, Reynolds Averaged Navier-Stokes (RANS) and shocked flows is presented.

In particular, this work discusses robust discretizations of the turbulence model equation

used to close the RANS equations, as well as stable shock capturing strategies that are

applicable across a wide range of discretization orders and applicable to very strong shock

waves. Furthermore, refinement techniques are considered as both efficiency and robustness

enhancement strategies. Additionally, efficient non-linear solvers based on multigrid and

Krylov subspace methods are presented. The accuracy, efficiency, and robustness of the

solver is demonstrated using a variety of challenging aerodynamic test problems, which

include turbulent high-lift and viscous hypersonic flows.

Adaptive mesh refinement was found to play a critical role in obtaining a robust and

efficient high-order accurate flow solver. A goal-oriented error estimation technique has been

developed to estimate the discretization error of simulation outputs. For high-order dis-

cretizations, it is shown that functional output error super-convergence can be obtained,
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provided the discretization satisfies a property known as dual consistency. The dual con-

sistency of the DG methods developed in this work is shown via mathematical analysis

and numerical experimentation. Goal-oriented error estimation is also used to drive an

hp-adaptive mesh refinement strategy, where a combination of mesh or h-refinement, and

order or p-enrichment, is employed based on the smoothness of the solution. The results

demonstrate that the combination of goal-oriented error estimation and hp-adaptation yield

superior accuracy, as well as enhanced robustness and efficiency for a variety of aerodynamic

flows including flows with strong shock waves.

This work demonstrates that DG discretizations can be the basis of an accurate, efficient,

and robust CFD solver. Furthermore, enhancing the robustness of DG methods does not

adversely impact the accuracy or efficiency of the solver for challenging and complex flow

problems. In particular, when considering the computation of shocked flows, this work

demonstrates that the available shock capturing techniques are sufficiently accurate and

robust, particularly when used in conjunction with adaptive mesh refinement . This work

also demonstrates that robust solutions of the Reynolds Averaged Navier-Stokes (RANS)

and turbulence model equations can be obtained for complex and challenging aerodynamic

flows. In this context, the most robust strategy was determined to be a low-order turbulence

model discretization coupled to a high-order discretization of the RANS equations.

Although RANS solutions using high-order accurate discretizations of the turbulence

model were obtained, the behavior of current-day RANS turbulence models discretized to

high-order was found to be problematic, leading to solver robustness issues. This suggests

that future work is warranted in the area of turbulence model formulation for use with

high-order discretizations. Alternately, the use of Large-Eddy Simulation (LES) subgrid

scale models with high-order DG methods offers the potential to leverage the high accuracy

of these methods for very high fidelity turbulent simulations. This thesis has developed

the algorithmic improvements that will lay the foundation for the development of a three-

dimensional high-order flow solution strategy that can be used as the basis for future LES

simulations.
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Chapter 1

Introduction

Computational fluid dynamics (CFD) is now a standard tool for conducting flow field anal-

ysis for a variety of applications spanning engineering and science. Current state-of-the-art

techniques in CFD are nominally second-order accurate flow solvers that are usually based

on finite-volume [1–6] or finite-difference methods [2, 3, 7–10]. However, solvers based on

second-order continuous finite-element methods [11, 12] have also been developed for CFD

applications. Due to the second-order accuracy of these CFD solvers, computing low error

simulations requires very large meshes that take a great deal of time to generate, process,

and partition for parallel processing. As CFD matures and computational resources grow,

the complexity and scope of the problems being solved grows in tandem. However, as the

complexity of the problems increases, the resolution requirements of the computational sim-

ulations also increase. For example, it is now commonplace to compute entire helicopter

fuselages and rotor blades in the same simulation, which requires very high resolution to

obtain adequate results for non-trivial flight conditions. Due to the high resolution re-

quirements of such problems, interest in the use of high-order discretizations (higher than

second-order) for industrial computational fluid dynamic problems, including aerodynamics

and aerothermodynamics, has become more widespread over the last several years. This is

partly due to the difficulties encountered with traditional second-order accurate methods at

delivering consistently grid converged results and in quantifying the spatial discretization

errors [13, 14]. Furthermore, complex multi-scale problems such as the Large Eddy Simula-
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tion (LES) of turbulent flows require very high resolution to obtain accurate results. The

asymptotic error properties of high-order methods makes them suitable for problems where

high spatial accuracy is required, since for smooth solutions, spatial error is reduced ever

more rapidly with increasing grid resolution at higher “p” orders of accuracy. However, there

is still a great amount of research that must be conducted before high-order methods are

suitable for industrial scale problems. In particular, the robustness of high-order methods is

considered specifically in this work. Robustness is an area that has received limited attention

in the literature and is critical to industrial applications.

Complex aerodynamic flow fields exhibit a wide range of phenomena including thin

boundary layers, high streamline curvature regions, shock waves and turbulence model arti-

facts. The resolution of the latter two types of phenomena represents a significant challenge

for high-order methods. Direct application of high-order methods results in Gibbs phenom-

ena that may cause solver failure [15], which is a result of using high-order polynomials

to approximate non-smooth solution behavior. The standard treatments of Gibbs phenom-

ena that are employed in the low-order methods context are not suitable for high-order

discretizations. As a result, much of this work focuses on finding optimal strategies for

dealing with these challenges robustly and efficiently, while maintaining high-order accuracy

as often as possible. In order to address these challenges, a discontinuous Galerkin(DG)

method is employed as the basis for the high-order unstructured CFD solver in this work.

DG discretization methods are capable of generating arbitrarily high-order accurate results

on unstructured grids made of triangles and/or quadrilaterals, in two spatial dimensions.

In addition, DG discretizations have a rich mathematical foundation with excellent stability

theory, conservation properties, and consistency.

An efficient and robust high-order accurate unstructured CFD solver for aerodynamic

applications based on a DG discretizations, requires the consideration of many facets of CFD.

In particular, the discretization must be able to ensure that high-order accuracy is obtained.

The stabilization methods employed must be robust and suitable for DG discretizations.

Furthermore, the non-linear solver and the corresponding linear solver must ensure adequate

and rapid convergence of the discrete equations. Finally, refinement must be conducted
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carefully so that degrees of freedom (DoFs) are placed efficiently and robustly. This work

focuses on each of these areas as well as the coupling between them to develop a high-order

accurate DG CFD solver on mixed-element unstructured meshes. The dual consistency of

the discretization is derived by analysis and verified through numerical experiments. Pre-

conditioned Krylov subspace methods are developed for the efficient solution of the discrete

equations. Additionally, adaptive methods are also investigated for both efficiency and ro-

bustness enhancement. The adaptation is driven via a goal-oriented adjoint-based error

estimation technique similar to those used in references [16–20] such that the adaptation

strategy targets the error in a specific simulation output (objective) as efficiently as possible.

1.1 High-order Discontinuous Galerkin Methods

High-order methods have been successfully applied to linear partial differential equation(PDE)

based problems [21–24]. However, this does not preclude the application of high-order meth-

ods to non-linear equations e.g. such as those associated with CFD [25–32]. High-order

methods represent an excellent strategy for removing the discretization error from CFD

simulation results because they can deliver asymptotic solution error convergence rates of

O (hp+1), where h is the average element size and p is the discretization order. Furthermore,

under a specific condition known as dual consistency, simulation output functional error will

convergence at the rate of O (h2p). Therefore, for increasingly high accuracy tolerances, the

use of high-order methods such as DG becomes more appealing because simulation error is

reduced evermore rapidly as the discretization order is increased. However, as the discretiza-

tion order is increased the number of degrees of freedom (DoF) rises rapidly. For example,

second-order accurate (p = 1) DG discretizations for the two-dimensional Euler or Navier-

Stokes equations have 12 DoFs per element while a fourth-order accurate (p = 3) element

has 40 DoFs per element. Thus high-order methods have a significant computational cost

associated with them, and this cost scales with the discretization order of the element.

DG methods are, in their most basic form, a finite-element method. However, typi-

cal finite-element methods are continuous finite-element methods where the basis functions,
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which approximate the discrete solution, are continuous at the element interfaces. Contin-

uous finite-element methods traditionally have been applied to linear structural and ther-

mal analysis problems that constitute purely elliptic operators, and hence continuous basis

functions are appropriate. DG methods employ basis functions that are discontinuous at

the element interfaces, which makes DG methods naturally suitable for computing convec-

tion dominated problems. DG discretizations are an ideal choice for convection dominated

problems because the discontinuous basis functions allow for upwind flux calculations using

approximate Riemann solvers. Employing approximate Riemann solvers at the element in-

terfaces is a strategy that is borrowed from finite-volume methods. Thus DG can be thought

of as a combination of traditional finite-element and finite-volume methods. The blending of

these methods is the result of simultaneously viewing the element as a control volume and

as a domain over which interpolation functions (which are also known as basis functions)

may be defined. However, since the DG method is a finite-element method, the order of

accuracy and number of unknowns are coupled. DG methods attain high-order accuracy by

adding additional basis functions within the elements, which results in additional degrees of

freedom for increased orders of accuracy. Alternatively, finite-volume and finite-difference

methods reconstruct high-order data from neighboring elements, which does not increase the

total number of degrees of freedom. Therefore, finite-volume and finite-difference methods

do not couple the order of accuracy with the number of degrees of freedom. The coupling of

the order of accuracy and number of unknowns within an element is a non-trivial property

of DG methods, which affects many aspects of solver robustness and hence is a recurring

theme throughout this work. However, locating extra unknowns within the elements can

be advantageous, provided that great care is taken in constructing and implementing these

methods.

As problem size increases, the efficient use of parallel computers becomes more impor-

tant. DG methods add resolution to a given problem via two approaches. DG methods can

add resolution by increasing the number of degrees of freedom within the element, which

results in increased parallel efficiency over low-order methods for unstructured grids [33].

By locating the DoFs within the element, higher computational density is achieved and pro-
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portionally less inter-element data communication is required. This makes high-order DG

methods an ideal candidate for large scale parallel computing. Contrarily, while high-order

finite-difference methods have been developed, these methods require the construction of ex-

tended interpolation stencils. Extending the interpolation stencil can cause parallel scaling

to degrade as the order of accuracy is increased. This degradation of parallel efficiency is a

result of the stencils of the grid points on partition boundaries relying on information from

multiple data points on neighboring processors. Reference [33] has shown that high-order DG

methods have the opposite trend, as the order of accuracy increases the parallel scalability

increases as well.

1.1.1 Shock Waves and High-order Methods

High-order methods rely on the solution being sufficiently smooth to attain high-order con-

vergence rates and maintain non-oscillatory solutions. However, if the solution is not suffi-

ciently smooth high-order methods often fail due to Gibbs phenomena. Gibbs phenomena

are manifested as oscillations due to the use of high-order interpolation for non-smooth or

discontinuous solutions. These oscillations can cause negative pressure and density values,

which are non-physical states for the equations of fluid motion and hence result in solver fail-

ure. While there has been extensive work conducted on stabilization methods [15,28,34–38]

additional work is still warranted to determine the most effective way to robustly compute

flows with discontinuities. Despite the availability of several shock capturing schemes, there

is still a great deal of debate [39] on the most effective way to compute flows containing

shock waves. In order to discuss resolving shock waves with compact high-order methods,

the coupling between order of accuracy and number of degrees of freedom must be addressed.

In this work, stabilization methods for shocked flows are discussed. In particular, stabi-

lization methods are evaluated based on their ability to account for the coupling of order of

accuracy and the number of degrees of freedom. In CFD, stabilization methods take two main

forms, slope/flux limiters and artificial diffusion methods. Slope and flux limiters are com-

monly used in finite-volume and finite-difference methods, and reference [1] gives a concise

review of these techniques. However, artificial diffusion methods have also been investigated
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for finite-volume and finite-difference methods. VonNeumann and Ritchmeyer were the first

to consider this idea in reference [40]. Reference [4] also considered artificial diffusion shock

capturing methods in a structured two-dimensional finite-volume setting. Recently, there

has been a resurgence of interest in artificial diffusion methods for shock capturing within a

compact high-order discretization setting [28, 34, 36, 37]. Artificial diffusion is an attractive

method for application to DG discretizations because it can take the coupling between order

of accuracy and number of degrees of freedom into account. The governing parameter of an

artificial diffusion method is the artificial viscosity. This work discusses limiters and artificial

viscosity and makes some comparisons between two of the most successful artificial viscosity

techniques applied to high-order methods. While stabilization methods are an important

subject pertaining to the computation of shocked flows, the choice of refinement method

is equally important. Therefore, refinement methods for shocked flows are also discussed

in detail in this work. The relationship between refinement method and robustness for the

resolution of shock waves is of particular importance for DG discretizations because of the

coupling between the order of accuracy and the number of degrees of freedom.

1.1.2 Turbulence Modeling

Turbulent flows modeled using the Reynolds Average Navier-Stokes (RANS) equations rep-

resent another challenging application area for high-order DG discretizations. Turbulent

modeled using the Reynolds Averaged Navier-Stokes (RANS) equations employ a closure

model for the turbulent eddy viscosity. This work employs the turbulence model of Spalart

and Allmaras (SA) [41] as the closure model for the RANS system. The challenges in com-

puting RANS flows stem from a discontinuity in the SA turbulence model working variable.

This discontinuity takes the form of artificial sharp interfaces that occur at the edges of

boundary layers and wakes and has proven extremely difficult to eliminate. The presence of

this discontinuity has gone largely ignored in the low-order methods and turbulence modeling

literature. For example, reference [41] does not mention this discontinuity in the turbulence

model working variable. This discontinuity can lead to negative values of the turbulence

model working variable which impact the stability of the SA turbulence model discretiza-
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tion. References [20, 42, 43] have also computed RANS solutions using a DG method but

have cited significant difficulty in doing so. Herein, an attempt is made to explain why the

discontinuity is so pronounced in the high-order setting. While obtaining high-order solu-

tions to the turbulence model is sometimes possible, obtaining these solutions is not robust

enough for general applications. Reference [20] presented modifications to the SA turbu-

lence model source terms that are intended to stabilize the model for negative values of the

turbulence model working variable. These modifications are implemented within the pre-

sented DG solver in order to help alleviate the difficulties encountered when the turbulence

model working variable becomes negative. Additionally, the behavior and effectiveness of

these modifications are analyzed in detail. The discretization and solution method of the SA

turbulence model equation are discussed extensively. In particular, the choice of convective

numerical flux function as well as implicit solver treatments are important aspects of the

discretization and solution methodology of the SA turbulence model equation.

The lineage of the work on turbulent RANS flows can be traced directly to reference [20].

However, there are significant differences between reference [20] and the work on RANS flows

presented in this dissertation. In particular reference [20] does not consider the robustness

of high-order DG discretizations of the RANS equations. Furthermore, this work expands

on reference [20] by considering the grid convergence of lift and drag rather than attached

viscous drag alone. This work also considers the solution of turbulent high-lift flows on

mixed-element meshes and is the first to demonstrate a robust strategy for these flows,

which are particularly challenging to solve.

1.2 Error Estimation and Adaptation

Functional or output error estimation has been the subject of intense research over the last

decade [16–18,43–48]. Error estimation can be used to drive adaptive refinement procedures

that target the error in a particular output of interest. For aerodynamic flows, the output

is often an aerodynamic loading such as lift or drag. Output-based error estimation often

results in adaptive mesh refinements that are non-intuitive, which is the reason one appeals
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to these methods to guide adaptive refinement. In order to estimate the error in a functional,

one must solve the discrete adjoint problem to obtain the sensitivity of the functional with

respect to the solution residual. In this work, the discrete adjoint is obtained from the

discretization of the physical or primal problem. Functional error super-convergence and

accurate error estimates are only obtained if the discrete adjoint problem is consistent with

the corresponding continuous adjoint problem. The consistency is defined such that the

discrete adjoint derived from the primal discretization represents a discretization of the

continuous adjoint equation. This property is known as dual consistency [49].

Dual consistency is a particularly important property for high-order discretizations, be-

cause if a discretization is dual consistent one can show that functional error behaves as

O(h2p), where h is the mesh size and p is the discretization order. This functional error

convergence behavior is known as super-convergence. In this work, dual consistency is ana-

lyzed for some model problems to demonstrate that the strategies adopted are indeed dual

consistent. In particular, the dual consistency of the stabilization methods for shock waves

is discussed in Chapter 3. When applying stabilization methods for shock waves one must be

very careful not to introduce terms that may be dual inconsistent. If this dual consistency is

lost, then output error estimates will be affected and one cannot use them as reliable adapta-

tion, correction or simulation termination criteria. Additionally, the treatment of boundary

conditions affects the dual consistency of a discretization, and hence this work examines the

dual consistency of an example boundary condition. The analysis demonstrates the origin

of the mathematical form of the boundary conditions used in this work. Additionally, the

functional error super-convergence bound (i.e. O(h2p)) is also derived.

A large part of this work focuses on the computation of shock waves and other discon-

tinuous solutions. Therefore, the subject of error estimation for discontinuous solutions is

discussed. Solution irregularities are oscillations in the solution such as Gibbs phenomena

that result from projecting the solution from a coarse to a fine mesh. Usually the irregularity

is the result of projecting a solution that is discontinuous from a discretization order p to a

discretization order p+ 1. If the solution contains irregularities, then these irregularities will

likely corrupt the functional error estimate. Corrupt error estimates often manifest them-
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selves as error estimates that do not converge under conditions when the actual functional

error is obviously converging. This work shows how to obtain accurate error estimates for

shocked flows even in the presence of potential irregularities. The effect of turbulence model

discontinuity on functional error estimates will also be considered.

In this work, functional error estimates are used to drive mesh adaptation. In particular

hp-adaptation [17, 47] is used throughout this work. Recall that DG methods can increase

resolution via two approaches: mesh-refinement which decreases the size h of the elements or

p-enrichment which increases the discretization order p within the elements. hp-adaptation

is an adaptation strategy where both forms of resolution enhancement are conducted simul-

taneously and was first presented in reference [17]. While the hp-adaptation strategy in this

work is based on reference [17], this work has made several improvements to enhance the

robustness and flexibility of this adaptation strategy. In particular this work considers non-

conforming hp-adaptation on mixed-element meshes as well as viscous flows. Furthermore,

this work considers combining hp-adaptation with artificial diffusion for shock capturing,

which has not been considered by previous work. While hp-adaptation certainly shows

significant efficiency improvements compared to low-order mesh adaptation and uniform re-

finement [17, 47], hp-adaptation can also be used as a robustness enhancement method. By

resolving non-smooth features using low-order accurate discretizations, the solver becomes

significantly more robust and still maintains high-order accuracy of functional outputs, as

will be shown. Slope limiters examine the smoothness of a cell to decide whether to reduce

the discretization order locally. Additionally, hp-adaptation can be viewed as slope limi-

tation applied in the reverse direction, and is similar in that it examines the smoothness

of an element to decide whether or not to increase the discretization order locally. Thus

these two procedures are similar but operate in reverse directions. The benefits of applying

hp-adaptation to DG discretizations will be discussed and demonstrated.
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1.3 Dissertation Overview

The main theme of this work is robust, efficient, and accurate high-order discretization and

solution strategies that can be applied to real world fluid dynamics problems. Much of the

work focuses on shocked and turbulent flows, although simpler laminar and inviscid flows are

considered as well. The applications range from simple inviscid flows to viscous supersonic

and viscous hypersonic flows, as well as turbulent flows over complex geometries, all in two

spatial dimensions. The main contributions of the dissertation are:

• Chapter 3 considers the dual consistency analysis of artificial diffusion methods for

shock capturing.

• Chapter 4 develops efficient h and p-independent solvers for viscous flows on high

aspect ratio mixed-element meshes.

• Chapter 5 considers an investigation of hp-adaptation for robustness and development

of this adaptation strategy for mixed element meshes.

• Investigation of the effectiveness of combining hp-adaptation and artificial diffusion for

computing shocked flows is considered in Chapters 5 and 7.

• Chapter 6 considers the development of robust Spalart Allmaras turbulence model

discretizations for the RANS equations.

• Chapter 7 considers an investigation of the most robust and effective combination of

refinement and shock capturing methods for hypersonic flows.

• Chapter 8 compares high-order unstructured DG methods to current state-of-the-art

second-order accurate unstructured finite-volume methods.

The overall goal of this work is to examine the robustness of high-order DG methods

and improve the robustness where necessary. In order to demonstrate the robustness and

efficiency of the presented DG solver, several test problems that span a range of complexity

and difficulty from simple steady-state laminar viscous flows to hypersonic and turbulent
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flows are examined. The goal of the dissertation is to demonstrate that, with the described

strategy, high-order solutions to practical problems can be obtained. Furthermore, a wide

range of problems is considered in order to demonstrate the robustness of the solver. The

final chapter discusses quantitative comparisons between the DG solver and a finite-volume

solver also written by the author. The subjects of computational expense, robustness and

shock capturing are compared between the two solvers in a quantitative fashion. A graphical

outline of the dissertation is shown in Figure 1.1, which demonstrates how various subjects

in the dissertation are related to one another.
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Methods

DG Model
Results

Laminar Flow 
Results

Line-Implicit
Smoothing

Inviscid Hypersonic
Flows

Turbulence Model
Discretization

Non-smooth
Behavior

hp-adaptation
Results

Hybrid Discretization
Results

Results

Combined with 
Artificial Diffusion

Supersonic
Flows

Viscous Hypersonic
Flows

Results

Conclusions

Transonic
Flows

Figure 1.1: Diagram of how various portions of the dissertation are related.
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Chapter 2

Discontinuous Galerkin Methods

Discontinuous Galerkin(DG) methods can be regarded as a combination of finite-volume

and finite-element methods. DG methods are capable of obtaining arbitrarily high-order

accuracy by expanding the solution as a set of basis functions and coefficients within each el-

ement. This is similar to traditional finite-element methods with the exception that the basis

functions are allowed to be discontinuous at the element interfaces. Allowing discontinuous

basis functions establishes upwinding inter-element communication similar to finite-volume

methods. This property of DG discretizations allows for the natural computation of hy-

perbolic operators but complicates the treatment of diffusion operators. In this work, both

the Euler and Navier-Stokes equations are considered, which requires stable and accurate

convection and diffusion discretizations. This section discusses the governing equations and

discontinuous Galerkin discretization of both convection and diffusion operators as well as

shock capturing via artificial diffusion. A detailed derivation of the discretization of diffusion

operators is provided in Appendix A.

In addition to the discretization, the boundary conditions used throughout this work

are derived and discussed in detail. In particular the derivation of the slip wall, no-slip wall,

and far-field boundary condition is considered. Boundary conditions play a critical role in

obtaining optimal functional error convergence and are not derived in the typical “ghost”

cell fashion, which is common in many unstructured finite-volume methods. The “ghost”

cell method is avoided due to the lack of dual consistency of this approach (Chapter 3).
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2.1 Governing Equations

The conservative form of the compressible Reynolds Averaged Navier-Stokes (RANS) equa-

tions describing the conservation of mass, momentum and total energy in two dimensions is

given as:
∂u

∂t
+∇ ·

(
~Fc(u)− ~Fv(u,∇u)

)
= S (u,∇u) (2.1.1)

within a domain Ω, subject to the appropriate boundary conditions on the domain boundary

Γ and a suitable initial condition at t = 0. In equation (2.1.1), u is the vector of conserved

variables, ~Fc is the convective flux, ~Fv is the viscous flux and S is the source term. In this

work, the RANS equations are coupled to the one equation turbulence model of Spalart and

Allmaras (SA model) [41] with the modifications given in reference [20]. The equation for

this turbulence model is given by:

∂ρν̃

∂t
+∇ · (ρν̃~u) = P (u,∇u) +

1

σ
[∇ · (η∇ν̃) + cb2ρ∇ν̃ · ∇ν̃]−D (u,∇u) (2.1.2)

where ν̃ is the turbulence model working variable, ρ is the density, ~u is the velocity field,

and σ, cb2 are constants. In equation (2.1.2), ∇ · (ρν̃~u) is turbulence model convection term,

the term multiplied by 1
σ

is the diffusion term, η is the diffusion coefficient, P (u,∇u) is the

production source term, and D (u,∇u) is the destruction source term. Appendix B gives

a full description of the model terms and analyzes the modifications to the production and

destruction terms given in reference [20].

The state vector and flux vectors including those of the SA model equation for two
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dimensional flow are explicitly given as:

u =



ρ

ρu

ρv

Et

ρν̃


, Fc

x =



ρu

ρu2 + P

ρuv

u(Et + P )

ρuν̃


, Fc

y =



ρv

ρuv

ρv2 + P

v(Et + P )

ρvν̃


,

Fv
x =



0

τxx

τxy

uτxx + vτxy + cp

(
µ
Pr

+ µT
PrT

)
∂T
∂x

1
σ

(η) ∂ν̃
∂x


,

Fv
y =



0

τyx

τyy

uτyx + vτyy + cp

(
µ
Pr

+ µT
PrT

)
∂T
∂y

1
σ

(η) ∂ν̃
∂y


,

S =



0

0

0

0

P (u,∇u) + 1
σ

[cb2ρ∇ν̃ · ∇ν̃]−D (u,∇u)



(2.1.3)

where ρ is fluid density, (~u = (u, v)) are the Cartesian velocity components, P is the fluid

pressure, Et is the total energy, cp is the specific heat at constant pressure, T is the fluid tem-

perature, Pr and PrT are the Prandtl and turbulent Prandtl numbers respectively and τij is

the total viscous stress tensor including the Boussinesq approximated Reynolds stresses. As-

suming a Newtonian fluid and using the Boussinesq approximation for the Reynolds stresses,
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the viscous stress tensor takes the form (with xi = x, y; i = 1, 2):

τij = 2 (µ+ µT )Sij

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
− 1

3

∂uk
∂xk

δij

for i = 1, 2, j = 1, 2

(2.1.4)

where µ is the fluid viscosity obtained via Sutherland’s law and µT is a turbulent eddy

viscosity, which is given by:

µT =

 ρν̃fv1 ν̃ ≥ 0

0 ν̃ < 0

fv1 =

(
ρν̃
µ

)3

(
ρν̃
µ

)3

+ c3
v1

cv1 = 7.1

(2.1.5)

The components of the viscous stress tensor for two dimensional flow are given explicitly as:

τxx = (µ+ µT )

(
4

3

∂u

∂x
− 2

3

∂v

∂y

)
, τxy = (µ+ µT )

(
∂u

∂y
+
∂v

∂x

)
τyx = (µ+ µT )

(
∂u

∂y
+
∂v

∂x

)
, τyy = (µ+ µT )

(
4

3

∂v

∂y
− 2

3

∂u

∂x

) (2.1.6)

It should be understood that all quantities in the above equations are the Reynolds Averaged

quantities (the usual (̄) notation is omitted for simplicity). The pressure is obtained from

the ideal gas equation of state given as:

P = (γ − 1)

[
Et −

1

2
ρ
(
u2 + v2

)]
(2.1.7)

where γ = 1.4 is the ratio of specific heats.

The RANS equations are subject to a non-reflecting far-field boundary condition and a

wall boundary condition. The wall boundary condition is a no-slip wall, hence the velocity

is zero at the wall. Additionally, the eddy viscosity is zero at the wall because the Reynolds

stresses are zero at the wall.

~u = (0, 0) ~x ∈ Γwall

ρν̃ = 0 ~x ∈ Γwall

(2.1.8)
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Laminar flow solutions are obtained by simply setting µT = 0 and eliminating the turbulence

model from the system of equations.

When shock waves are present, artificial diffusion fluxes are added to the governing

equations in order to stabilize the solution in the vicinity shock waves. In this case the

governing equations take the following form

∂u

∂t
+∇ ·

(
~Fc(u)− ~Fv(u,∇u)− ~Fad (ε̂,u,∇u)

)
= 0 (2.1.9)

where the convective (Fc) and viscous (Fv) fluxes are the same as equation (2.1.3) and the

artificial diffusion fluxes are given as:

Fadx =



ε̂hx
h̄
∂ρ
∂x

ε̂hx
h̄
∂ρu
∂x

ε̂hx
h̄
∂ρv
∂x

ε̂hx
h̄
∂ρH
∂x


, Fady =



ε̂hy
h̄
∂ρ
∂y

ε̂hy
h̄
∂ρu
∂y

ε̂hy
h̄
∂ρv
∂y

ε̂hy
h̄
∂ρH
∂y


(2.1.10)

where ε̂ is the artificial viscosity and H is the total enthalpy, which is given as:

H = Et +
P

ρ
(2.1.11)

The terms, hx, hy and h̄ are mesh size metrics, which are discussed in Section 2.7.3. For

an infinitely fine mesh, which is obtained by taking the he mesh size h taken to zero, the

artificial diffusion fluxes vanish. Therefore the artificial diffusion operator is consistent with

the governing partial differential equations (PDEs).

2.1.1 Simplification to the Euler Equations

This work also considers inviscid shocked flows that are governed by the compressible Euler

Equations of gas dynamics. For an inviscid flow both the molecular viscosity µ and the

turbulent eddy viscosity µT are set to zero and thus no viscous stresses exist. Additionally,

since the viscosities are zero there is no heat conduction, as seen in equation (2.1.3). This

gives rise to the following governing equations

∂u

∂t
+∇ ·

(
~Fc(u)− ~Fad (ε̂,u,∇u)

)
= 0 (2.1.12)
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where the artificial diffusion fluxes are the same as in equation (2.1.10) and the convective

flux is the same as in equation (2.1.3). The appropriate boundary condition for the Euler

equations is a zero normal flow boundary condition.

~u · ~n = 0 ~x ∈ Γwall (2.1.13)

The far-field boundary condition is the same non-reflective boundary condition that is applied

to the Navier-Stokes equations.

2.2 Discontinuous Galerkin Discretizations

To discretize the governing equations, a mesh is defined consisting of elements such that the

union of these elements makes up the domain on which the PDEs are to be solved. Within

each element, a finite dimensional function space consisting of a finite set of functions of

order p is defined. DG discretizations are carried out by first taking the inner product of

the governing equations with each function on each element. These weighting functions are

known as test functions, which in this work take the form of polynomials. The solution

u is then discretized into a polynomial representation uh that takes the form of known

polynomials and unknown coefficients or modes. The solution expansion polynomials, also

known as basis functions, are the same as the test functions and are defined in a standard

element that must be mapped to the physical element. Taking the solution basis functions

to be the same as the test functions is the key property that defines a Galerkin method.

The final step of the discretization is to integrate the governing equations by parts once

to yield the weak form discretization. The integrals are evaluated using numerical quadrature

formulas in the standard element. The integrals are transfered back to the physical space

using a mapping from the standard element to the physical element. In order to account

for geometry curvature, super-parameter mappings are used, i.e the mappings of boundary

elements are generated to p+1 order where p is the solution order. For each boundary element

the mapping is generated by interpolating additional surface points on the boundary onto

a set of mapping basis functions for each element on the boundary. The additional surface

geometry points are taken from original analytic definition of the configuration geometry. In
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general, the mapping basis functions are defined differently from the solution basis functions

used to define the approximate solution uh.

Before the discretization is described in detail it is important to explain the notation

used in deriving the discretization. Firstly, a bold face symbol denotes a vector with size

equation to the number of fields (i.e. the number of partial differential equations denoted Nf )

while ~(·) denotes a vector in d spatial dimensions (herein d = 2). A matrix will be denoted by

[·]. With regard to the discretization, given an exact solution u, the corresponding discrete

solution is denoted uh. Likewise for a continuous test function v the discrete test function

is denoted by vh. For the derivation of the discretization, the test functions are written as

vectors with the same dimension as the solution. The inner products result in scalar discrete

equations from the continuous system, the test function space has enough functions to obtain

the required number of discrete equations (i.e. number of PDEs Nf times number of modes

M on the element).

The DG discretization is carried out by considering u ∈ V , where V is the space which

contains the exact solution. Let the computational domain Ω be partitioned into a set of

non-overlapping elements such that

Ω =
N⋃
k=1

Ωk k ∈ Th,p (2.2.1)

where Th,p = {k} is the set of all elements k in the mesh of size h and discretization order

p. Subsequently the subscript p in the notation will be omitted for brevity and simply let

Th represent the discretized domain. Let k denote an element k ∈ Th on which a discrete

function space Vph is defined, which is chosen such that Vph ⊂ V . Additionally, let the

collection of interior faces of Th be denoted Ih = {i}, where i denotes a face ∈ Ih. Also let

the boundary ∂Ω be discretized into a set of non-overlapping faces Bh = {b} with a single

boundary face denoted b ∈ Bh. Let uh represent the discrete solution to u, then the DG

discretization is derived by substituting uh for u in equation (2.1.9), multiplying with the

test function vTh , and integrating over the domain Ω, which has been partitioned in elements

as defined by equation (2.2.1). Formally, the discretization is given by finding uh ∈ Vph such
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that ∑
k∈Th

∫
Ωk

vTh
∂uh
∂t

+ vTh∇ ·
(
~Fc (uh)− ~Fv (uh,∇uh)− ~Fad (ε,uh,∇uh)

)
− vh

TS (uh,∇uh) dΩk = 0, ∀vh ∈ Vph

(2.2.2)

This can be written as∑
k∈Th

∫
Ωk

vTh
∂uh
∂t

dΩk + Rh (uh,∇uh,vh) = 0, ∀vh ∈ Vph (2.2.3)

where the Rh (uh,∇uh,vh) is the discrete spatial residual. The spatial residual is integrated

by parts resulting in the following weak form

Rh (uh,∇uh,vh) = −
∑
k∈Th

∫
Ωk

∇vTh ·
(
~Fc (uh)− ~Fv (uh,∇uh)− ~Fad (ε,uh,∇uh)

)
+ vh

TS (uh,∇uh) dΩk+∑
i∈Ih

∫
Γi
Hc

(
u+
h ,u

−
h ,v

+
h ,v

−
h , ~n

)
−Hv

(
u+
h ,u

−
h ,v

+
h ,v

−
h ,∇u+

h ,∇u−h , ~n
)
−

Had

(
ε+, ε−,u+

h ,u
−
h ,v

+
h ,v

−
h ,∇u+

h ,∇u−h , ~n
)
ds+

∑
b∈Bh

∫
Γb
Hb
c

(
ubh
(
u+
h

)
, ~n
)
−

Hb
v

(
ubh
(
u+
h

)
,v+

h ,∇u+
h , ~n

)
−Hb

ad

(
ε+,ubh

(
u+
h

)
,v+

h ,∇u+
h , ~n

)
ds

(2.2.4)

whereHc(·, ·, ·, ·, ~n) is the convective numerical flux, Hv(·, ·, ·, ·, ·, ·, ~n) is the viscous numerical

flux and Had(·, ·, ·, ·, ·, ·, ·, ·, ~n) is the artificial diffusion numerical flux on the interior faces Γi.

Numerical fluxes take the discontinuous states on each side on the interior faces and compute

a unique flux for the face. The numerical fluxes Hb
c(·, ~n), Hb

v(·, ·, ·, ~n) and Hb
ad(·, ·, ·, ·, ~n)

denote boundary numerical fluxes (which are different from the interior numerical fluxes)

on a boundary edge Γb. The ()+ and ()− notation refers to the elements on each side of

an edge i ∈ Ih, where a ()+ denotes the element with the normal ~n of i pointing out of

the element and ()− denotes the element with the normal of i pointing into the element,

depicted pictorially in Figure 2.1. In the case of boundary edges, ()b denotes the state at the

boundary interface and ()+ denotes the state from the element adjacent to the boundary.

The boundary edge normal ~n points out of the ()+ element as shown in Figure 2.2

Reference [49] has shown that taking Hb
c

(
ubh
(
u+
h

)
, ~n
)

= Hc

(
u+
h ,u

−
h ,v

+
h ,v

−
h , ~n

)
results

in a dual inconsistent discretization. Dual consistency is discussed in Chapter 3 where the
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~n

k+ k−

i ∈ Ih

Figure 2.1: Graphical explanation of ± notation used in edge flux discretization.

~n

k+

b ∈ Bh

Figure 2.2: Graphical explanation of ()b and ()+ notation used in boundary flux discretization.

analysis of this boundary condition will prove the dual inconsistency. For a dual consis-

tent discretization, the boundary numerical flux is taken as Hb
c = ~Fc

(
ubh
(
u+
h

))
· ~n, which

is the convective flux ~Fc given in equation (2.1.3) normal to the boundary evaluated at the

boundary condition state ubh(u
+
h ). The interior convective numerical fluxes are chosen to

be approximate Riemann solvers, which are approximations to the exact Riemann problem

on the interface. The Riemann problem considers the solution of a system of PDEs at the

interface between two discontinuous states e.g. u+
h and u−h . This solution results in a unique

value of the flux at the interface between the two discontinuous states. An approximate

Riemann solver considers the same two states u+
h and u−h and solves the Riemann problem

approximately to generate the single valued interface flux. Reference [50] provides an ex-

cellent description of theory and applications of Riemann solvers, as well as descriptions of
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several approximate Riemann solvers. Current implementations of approximate Riemann

solvers include the flux difference splitting schemes of Rusanov [51] and Roe [52] as well as

the flux vector splitting scheme of Hänel and Schwane [53].

The numerical flux for the viscous term is obtained via a modified version of the sym-

metric interior penalty method (SIP) presented in references [54–57], which seeks to penalize

the solution for being discontinuous at the element interfaces. The form of the SIP method

used in this work is the same as reference [56], however the penalty parameter value is taken

from reference [57]. It is now convenient to introduce the following average and jump oper-

ators for both vector and scalar quantities. The average operator is defined for a scalar ϕ

and vector ~χ by

{φ} =
1

2

(
φ+ + φ−

)
{~χ} =

1

2

(
~χ+ + ~χ−

) (2.2.5)

with the scalar and vector jump operators given by

JϕK = (ϕ+ − ϕ−)~n

J~χK = (~χ+ − ~χ−) · ~n
(2.2.6)

respectively. Note that the jump in a scalar quantity is a vector and the jump in a vector

quantity is a scalar. Also note that the jump of a vector denoted with a bold symbol,

which is a vector across the system of equation of size Nf , is obtained by considering each

component of the vector as a scalar. Therefore, the jump of uh is a matrix with the number

of rows equal to the number of equations and the number of columns equal to the number

of spatial dimensions in the domain. Using this notation the SIP interior numerical flux is

given as

Hv = JvTh K ·
{
~Fv (uh,∇uh)

}
+
{

[G (uh)]
Tblock ∇vh

}
· JuhK + νJvTh K · {[G (uh)]} JuhK (2.2.7)

and the boundary SIP numerical flux is given by

Hb
v = (vTh )+Fv

(
ubh
(
u+
h

)
,∇u+

h

)
· ~n+

[
G
(
ubh
(
u+
h

))]Tblock ∇v+
h · ~n

(
u+
h − ubh

(
u+
h

))
+ ν(vTh )+

[
G
(
ubh
(
u+
h

))] (
u+
h − ubh

(
u+
h

))
~n · ~n

(2.2.8)
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The corresponding SIP numerical fluxes for the artificial diffusion are

Had =JvTh K ·
{
~Fad (ε,uh,∇uh)

}
+
{

[Gad (ε,uh)]
Tblock ∇vh

}
· Juh K+

νJvTh K · {[Gad (ε,uh)]} JuhK

Hb
ad =(vTh )+~Fav

(
εb,ubh

(
u+
h

)
,∇u+

h

)
· ~n+[

Gad

(
εb,ubh

(
u+
h

))]Tblock ∇v+
h · ~n

(
u+
h − ubh

(
u+
h

))
+

ν(vTh )+
[
Gad

(
εb,ubh

(
u+
h

))] (
u+
h − ubh

(
u+
h

))
~n · ~n

(2.2.9)

For the SIP numerical fluxes the matrix [G] is actually a block matrix with d×d blocks and

with each block having Nf ×Nf dimensions, where Nf is the number of equations (or fields).

The [·]Tblock indicates a transposing of the blocks of [G]. The blocks of [G] are defined as

derivative of the viscous flux ~Fv from equation (2.1.3) with respect to the solution gradient

∇u. In particular for two dimensional flow the blocks of [G] are given such that

Fv
x = [G11]

∂uh
∂x

+ [G12]
∂uh
∂y

Fv
y = [G21]

∂uh
∂x

+ [G22]
∂uh
∂y

(2.2.10)

The [Gij] matrices for two dimensional flow are given as:

[G11] =
1

ρ


0 0 0 0

−4
3
αvu

4
3
αv 0 0

−αvv 0 αv 0

βvγ
(
u2 + v2 − Et

ρ

)
− αv

(
4
3
u2 + v2

)
−βvγu+ αv

4
3
u −βvγv + αvv βv



[G12] =
1

ρ


0 0 0 0

2
3
αvv 0 −2

3
αv 0

−αvu αv 0 0

−αv 1
3
uv αvv −2

3
αvu 0

 , [G21] =
1

ρ


0 0 0 0

−αvv 0 αv 0

2
3
αvu −2

3
αv 0 0

−1
3
αvuv −2

3
αvv αvu 0



[G22] =
1

ρ


0 0 0 0

−αvu αv 0 0

−αvv 0 αv 0

βvγ
(
u2 + v2 − Et

ρ

)
− αv

(
u2 + 4

3
v2
)
−βvγu+ αvu −βvγv + 4

3
αvv βv
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where the αv and βv viscous coefficients are defined as:

αv = µ+ µT , βv =
µ

Pr
+
µT
PrT

Pr and PrT represent the laminar and turbulent Prandtl numbers respectively (which are the

ratio of momentum diffusivity to thermal diffusivity). The values of the Prandtl numbers

are set based on the working fluid of air as Pr = .72 and PrT = .9. The [Gad] is defined as the

derivative of the artificial diffusion fluxes in equation (2.1.10) with respect to the solution

gradient ∇u. The
[
Gadij

]
for the artificial diffusion operator are diagonal matrices since the

artificial diffusion operator is a Laplacian type operator:

[Gad11 ] =


ε̂hx
h̄

0 0 0

0 ε̂hx
h̄

0 0

0 0 ε̂hx
h̄

0

0 0 0 ε̂hx
h̄

 , [Gad12] =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0



[Gad21 ] =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 , [Gad22 ] =


ε̂hy
h̄

0 0 0

0 ε̂hy
h̄

0 0

0 0 ε̂hy
h̄

0

0 0 0 ε̂hy
h̄


The final piece of the discretization is the approximation of u ∈ V by uh ∈ Vph for each

element. In particular Vph is the space spanned by the polynomials {φi, i = 1..M} where M

is the number of polynomials or modes required to specify a complete basis of order p on

an element. The set of functions chosen are Legendre polynomial-based bubble functions φi

from reference [58], which are so-called modal basis functions. The discrete solution uh for

an element is given as a sum of the unknown coefficients times the basis functions

uh ≡ uh(~x, t) =
M∑
j=1

ûj(t)φj(~x) (2.2.11)

where M is the number of modes defining the truncation level. The semi-discrete discon-

tinuous Galerkin formulation (i.e. continuous in time) is given by choosing vh to be each

24



φi,∀i = 1...M , resulting in Nf × M equations for each element k ∈ Th where Nf is the

number of equations (fields) in the system of Navier-Stokes equations.

The choice of the penalty parameter(ν) can be rather ad-hoc as the value is only required

to be “large enough” to stabilize the scheme. However, Shahbazi in reference [54] derived an

explicit expression for the penalty parameter for Poisson’s equation. A modified version of

this expression given in reference [57] has been successfully implemented in this work. The

value of the penalty parameter on an interface is taken as

ν = max
(
M+,M−)max( |∂Ω−k |

|Ω−k |
,
|∂Ω+

k |
|Ω+

k |

)
(2.2.12)

where |Ω±k |,|∂Ω±k | and M± are the area, perimeter and number of modes of elements k±

respectively and where the ( )± denotes the elements on each side of the interface. Note

that as the discretization order p is increased the number of modes M in an element increases,

hence the number of degrees of freedom(DoFs) within an element is coupled to the order of

accuracy.

2.3 Basis Functions

As mentioned previously, the discrete DG solution uh is expanded in a series of basis functions

{φi, i = 1, ...M} and corresponding coefficients {ûi(t), i = 1, ...M} where M is the number

of modes and is chosen such that a complete basis of order p is obtained. Various basis

functions exist and this work uses a set of hierarchical basis functions φi, which take the

form of modal shape functions in a standard element that spans {−1 < ξ < 1,−1 < η < 1}.
The standard elements for a triangle and a quadrilateral are shown in Figure 2.3(a) and

Figure 2.3(b) respectively. The basis functions are hierarchical, meaning that a basis of

order p contains all the functions from a basis of order p−1. This work employs meshes that

contain both triangles and quadrilaterals and the basis functions are defined for triangular

and quadrilateral elements separately. The basis functions are based on combinations of one
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(−1, 1)

(−1,−1) (1,−1)

η

ξ

(a) Standard Triangle

(−1, 1)

η

(1, 1)

ξ

(1,−1)(−1,−1)

(b) Standard Quadrilateral

Figure 2.3: Standard triangle and standard quadrilateral on which basis functions are defined.

dimensional Legendre polynomials, which are given by

Ln (x) =
(2n+ 1)xLn−1 (x)− nLn−2 (x)

n+ 1

L0 (x) = 1

L1 (x) = x

(2.3.1)

where n is the polynomial order.

2.3.1 Triangular Elements

For triangular elements the basis functions take form of generalized Legendre polynomials

defined on the standard triangle [58]. Consider a local polynomial of order p for an element.

The complete basis set of order p is made up of the M = (p+1)(p+2)/2 Legendre polynomials

given by

φi = Ln1 (λ3 − λ2)Ln2 (λ2 − λ1) , 0 ≤ n1, n2;n1 + n2 ≤ p (2.3.2)
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where

λ1 =
η + 1

2

λ2 = −ξ + η

2

λ3 =
ξ + 1

2

(2.3.3)

and Ln1 is the 1-D Legendre polynomial of order n1, which is given by equation (2.3.1). This

basis is hierarchical making it ideal for p-multigrid solvers, as discussed in Section 4.4.1,

and contains p = 0, i.e. the constant function within the hierarchical structure. Figure 2.4

depicts the basis functions of order p = 3 for a triangular element.

Reference [59] has made use of a set of so-called H1 hierarchical shape functions, which

do not have p = 0 as part of the hierarchical structure. These H1 basis functions are

particularly useful for geometry mappings and are used to generate the mapping from the

reference element to the physical element. The H1 designation means that the lowest order

polynomial in the set is a linear or p = 1 polynomial. Details of these functions and their

formulation can be found in Section 2.4 as well as in references [58, 59].

2.3.2 Quadrilaterals

The basis functions employed for quadrilateral elements are similar to those employed for

triangular elements. The functions are based on Legendre polynomials and are also hierar-

chical and have p = 0 within the hierarchical structure. Again consider a polynomial basis

of order p that is now made up of M = (p+ 1)2 modes. This is actually more functions than

required for a polynomial basis of order p but still constitutes a complete basis set of order

p. The basis functions are a tensor product of 1-D Legendre Polynomials(equation (2.3.1))

that span {−1 < ξ < 1,−1 < η < 1} from reference [58].

φi = Ln1 (ξ)Ln2 (η) , 0 ≤ n1, 0 ≤ n2 (2.3.4)

Figure 2.5 depicts the basis functions of order p = 3 for a quadrilateral element. Although

these functions are a tensor product, no effort is made in the implementation to take ad-

vantage of this property and these function are implemented in the same way as the basis

functions on the triangle.

27



(a) φ1 (b) φ2 (c) φ3

(d) φ4 (e) φ5 (f) φ6

(g) φ7 (h) φ8 (i) φ9

(j) φ10

Figure 2.4: Complete basis function set for p = 3 discretization on triangular elements.

2.4 Element Mappings

In order to compute integrals and define basis functions on any given physical element in

the mesh, a mapping from the standard element in (ξ, η) to the physical element in (x, y), is

generated using a set of mapping basis functions, denoted {ψj}. The elements are mapped

to pmax + 1 order where pmax is the maximum solution discretization order in the mesh. Let

the mapping order be represented as pmap = pmax + 1. Mathematically the mapping for an
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(a) φ1 (b) φ2 (c) φ3

(d) φ4 (e) φ5 (f) φ6

(g) φ7 (h) φ8 (i) φ9

(j) φ10 (k) φ11 (l) φ12

(m) φ13 (n) φ14 (o) φ15

(p) φ16

Figure 2.5: Complete basis function set for p = 3 discretization on quadrilateral elements.
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element amounts to defining the ~x coordinates by:

xk (ξ, η) =

Mmap∑
j=1

x̂kjψj (ξ, η)

yk (ξ, η) =

Mmap∑
j=1

ŷkjψj (ξ, η)

(2.4.1)

where the ψj basis function is a set of hierarchical basis functions which belong to the H1

space, i.e. the lowest degree of any function in the set is a linear or p = 1 polynomial. The

corresponding mapping Jacobian and mapping Jacobian inverse for an element k are given

by:

[Jk] =

 ∂xk
∂ξ

∂xk
∂η

∂yk
∂ξ

∂yk
∂η


[Jk]

−1 =
1

|Jk|

 ∂yk
∂η

−∂xk
∂η

−∂yk
∂ξ

∂xk
∂ξ

 =

 ∂ξ
∂xk

∂ξ
∂yk

∂η
∂xk

∂η
∂yk

 (2.4.2)

The mapping from the standard or reference element to the physical element is depicted in

Figure 2.6.

The set of functions used to map the element from the standard element to the physical

element are a set of localized vertex, edge and bubble functions as described in [58]. These

functions are particularly useful due to the decoupling of the vertex, edge and bubble func-

tions as seen in Figure 2.7 and Figure 2.8 where the functions on a given edge are zero on

all other edges. This decoupling allows for the specification of a reference map of order pmap

using only pmap+1 surface points. These basis functions are all based on a Jacobi polynomial

kernel Φn given as

Φn (z) = −2
σ

n− 1
P1,1
n−1 (z)

σ =
1√

2
2n−1

(2.4.3)

where the Pα,βn is the Jacobi polynomial of order n with weights α and β. The Jacobi
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η

ξ

x

η

y

x

y

ξ

Figure 2.6: Diagram of mapping the standard triangle and quadrilateral to the arbitrarily curved
one in physical space.

polynomials can be generated via the recurrence relation

Pα,β0 (z) = 1

Pα,β1 (z) =
1

2
[α− β + (α + β + 2) z]

Pα,βn (z) = (an2 + an3z)Pα,βn−1 (z)− an4P
α,β
n−2 (z)

an1 = 2 (n+ 1) (n+ α + β + 1) (2n+ α + β)

an2 = (2n+ α + β + 1)α2 − β2

an3 = (2n+ α + β) (2n+ α + β + 1) (2n+ α + β + 2)

an4 = 2 (n+ α) (n+ β) (2n+ α + β + 2)

(2.4.4)

from reference [60], which also contains additional useful formulas. The complete set of

mapping functions for the triangle are defined by vertex functions

ψv1 = −ξ + η

2

ψv2 =
η + 1

2

ψv3 =
ξ + 1

2

(2.4.5)
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edge functions

ψe1n = ψv1ψv2Φn−2 (ψv2 − ψv1)

ψe2n = ψv2ψv3Φn−2 (ψv3 − ψv2)

ψe3n = ψv3ψv1Φn−2 (ψv1 − ψv3)

(2.4.6)

and bubble functions

ψbn1,n2
= ψv3ψv1ψv2Φn1−2 (ψv2 − ψv1) Φn2−2 (ψv1 − ψv3) ,{

n1, n2 : 1 ≤ n1, n2;n1 + n2 ≤ pb − 1
} (2.4.7)

where superscripts v, e, and b denote vertex, edge and bubble respectively. The order of the

edge and bubble functions is the same as pmap, i.e. pe = pb = pmap, where pe is the edge

function order and pb is the bubble function order. The mapping basis functions of order

pmap = 3 are depicted in Figure 2.7. The separation of the vertex, edge and bubble modes is

seen in Figure 2.7, which shows that functions defined for the edges (e.g. ψ4) are zero at the

vertices and for all edges other than the edge on which they are defined. Similarly, bubble

functions such as ψ10 are zero on all edges and vertices of the element.

Quadrilaterals mappings are defined by an analogous set of basis functions which are

also given as vertex functions

ψv1 =

(
1− ξ

2

)(
1− η

2

)
ψv2 =

(
1 + ξ

2

)(
1− η

2

)
ψv3 =

(
1− ξ

2

)(
1 + η

2

)
ψv4 =

(
1 + ξ

2

)(
1 + η

2

)
(2.4.8)

edge functions

ψe1n =

(
1− ξ

2

)(
1− η

2

)(
1 + η

2

)
Φn−2 (η)

ψe2n =

(
1 + ξ

2

)(
1− η

2

)(
1 + η

2

)
Φn−2 (η)

ψe3n =

(
1− η

2

)(
1− ξ

2

)(
1 + ξ

2

)
Φn−2 (ξ)

ψe4n =

(
1 + η

2

)(
1− ξ

2

)(
1 + ξ

2

)
Φn−2 (ξ)

(2.4.9)
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(a) ψ1 (b) ψ2 (c) ψ3

(d) ψ4 (e) ψ5 (f) ψ6

(g) ψ7 (h) ψ8 (i) ψ9

(j) ψ10

Figure 2.7: Complete mapping basis function set for pmap = 3 on triangular elements.

and bubble functions

φbn1,n2
=

(
1− ξ

2

)(
1 + ξ

2

)
Φn1−2 (ξ)

(
1− η

2

)(
1 + η

2

)
Φn2−2 (η) ,{

n1, n2 : 2 ≤ n1, n2 ≤ pb
} (2.4.10)

where the superscripts v, e, and b denote vertex, edge and bubble respectively. The order

of the edge and bubble functions is the same as pmap, i.e. pe = pb = pmap, where pe is the

edge function order and pb is the bubble function order. The mapping basis functions for
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quadrilaterals of order pmap = 3 are shown in Figure 2.8.

The surface points, which are the physical points that are interpolated to the mapping

basis functions to define the element mappings, encompass the two nodes an a boundary

edge and additional points interior to the edge, which are all given by the mesh generator as

shown in Figure 2.9. The black points in Figure 2.9 are the element nodal points and the red

points are the additional geometry points given by the mesh generator. The mapping modal

coefficients x̂ and ŷ are found by interpolating the x and y coordinates to the mapping basis

functions, following:

x̂ = [V ]−1 x

ŷ = [V ]−1 y

Vij = ψi (ξj, ηj)

xj = x (ξj, ηj)

yj = y (ξj, ηj)

(2.4.11)

where [V ] is the Vandermonde matrix found by evaluating the mapping basis functions {ψj}
at the standard element locations(ξj, ηj) at both the red and black points in Figure 2.9. The

vectors x and y are the coordinates given by the mesh generator at the points illustrated in

Figure 2.9.

2.5 Numerical quadrature

The set of discrete equations (2.2.3) is solved in modal space and the integrals are evaluated

using Gaussian quadrature rules [58, 61, 62]. Modal space is the space Vph that is made

up of the basis functions in Section 2.3. These quadrature rules require projection of the

solution from the modal space to the quadrature points. To preserve the p + 1 accuracy

of the DG scheme, the volume integrals, which are the
∫

Ωk
terms in equation (2.2.4), are

computed using a rule that integrates a polynomial of degree 2p exactly. To the same end,

surface and boundary surface integrations, which are the
∫

Γi
and

∫
Γb

terms in equation

(2.2.4) respectively, are carried out with a rule that integrates a polynomial of degree 2p+ 1
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(a) ψ1 (b) ψ2 (c) ψ3

(d) ψ4 (e) ψ5 (f) ψ6

(g) ψ7 (h) ψ8 (i) ψ9

(j) ψ10 (k) ψ11 (l) ψ12

(m) ψ13 (n) ψ14 (o) ψ15

(p) ψ16

Figure 2.8: Complete mapping basis function set for pmap = 3 on quadrilateral elements.
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Element Nodal Coordinates

Extra Points for Curving

Figure 2.9: Diagram of the points used to construct curved elements on a boundary. Black points
are the element nodes and red points are the additional geometry points used to define the curved
element mapping

exactly [63]. Figure 2.10 shows an element stencil with the quadrature points employed for

integrating a p = 3 solution on a mixed element mesh.

In order to apply Gaussian quadrature, the integrals must first be mapped into the

standard element. For volume integrals the integration is transformed as∑
k∈Th

∫
Ωk

∇vTh ·
(
~Fc (uh)− ~Fv (uh,∇uh)− ~Fad (ε,uh,∇uh)

)
dΩk =

∑
k∈Th

∫ ξmax

ξmin

∫ ηmax

ηmin

∇vTh ·
(
~Fc (uh)− ~Fv (uh,∇uh)− ~Fad (ε,uh,∇uh)

)
|Jk|dηdξ

(2.5.1)

where the gradient is defined by:

∇ =

(
∂

∂ξ

∂ξ

∂x
+

∂

∂η

∂η

∂x
,
∂

∂ξ

∂ξ

∂y
+

∂

∂η

∂η

∂y

)T
(2.5.2)

Let the integrand in equation (2.5.1) be denoted as F (ξ, η), then the integral in equation

(2.5.1) is approximated using Gaussian quadrature as

∑
k∈Th

∫ ξmax

ξmin

∫ ηmax

ηmin

F (ξ, η) dηdξ ≈
∑
k∈Th

Nq∑
iq=1

F
(
ξiq , ηiq

)
wiq (2.5.3)
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Figure 2.10: Example quadrature points for p = 3 discretization. Volume integral: red points,
surface integral: green points, boundary surface: blue points.

where ξiq and ηiq are the quadrature point locations in the standard element and wiq are

the quadrature weights. For volume integrals, the location, number of points and weights

are selected such that a polynomial of degree 2p is integrated exactly. Surface integrals are

computed in a similar fashion. For interior surfaces the integration in the standard element

is given by:∑
i∈Ih

∫
Γi
Hc

(
u+
h ,u

−
h ,v

+
h ,v

−
h , ~n

)
−Hv

(
u+
h ,u

−
h ,v

+
h ,v

−
h ,∇u+

h ,∇u−h , ~n
)
−

Had

(
ε+, ε−,u+

h ,u
−
h ,v

+
h ,v

−
h ,∇u+

h ,∇u−h , ~n
)
ds =∑

i∈Ih

∫ 1

−1

(
Hc

(
u+
h ,u

−
h ,v

+
h ,v

−
h , ~n

)
−Hv

(
u+
h ,u

−
h ,v

+
h ,v

−
h ,∇u+

h ,∇u−h , ~n
)
−

Had

(
ε+, ε−,u+

h ,u
−
h ,v

+
h ,v

−
h ,∇u+

h ,∇u−h , ~n
))√dx

ds

2

+
dy

ds

2

ds

(2.5.4)

which is also approximated by Gaussian quadrature. The quadrature point locations and

weights are defined on the edges of the elements. Let the integrand in equation (2.5.4) be
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denoted by Fi (ξ, η). The integration of equation (2.5.4) is approximated as

∑
i∈Ih

∫ 1

−1

Fi (ξ, η) ds ≈
∑
i∈Ih

Nq∑
iq=1

Fi
(
ξiq , ηiq

)
wiq (2.5.5)

where quadrature point locations
(
ξiq , ηiq

)
and weights wiq are obtained from a rule that

integrates polynomials of 2p + 1 exactly on the edges. The boundary surface integral is

transformed in the same way as the interior surface integral.∑
b∈Bh

∫
Γb
Hb
c

(
ubh
(
u+
h

)
, ~n
)
−

Hb
v

(
ubh
(
u+
h

)
,v+

h ,∇u+
h , ~n

)
−Hb

ad

(
ε+,ubh

(
u+
h

)
,v+

h ,∇u+
h , ~n

)
ds =∑

b∈Bh

∫ 1

−1

(
Hb
c

(
ubh
(
u+
h

)
, ~n
)
−Hb

v

(
ubh
(
u+
h

)
,v+

h ,∇u+
h , ~n

)
−

Hb
ad

(
ε+,ubh

(
u+
h

)
,v+

h ,∇u+
h , ~n

))√dx

ds

2

+
dy

ds

2

ds

(2.5.6)

Let the integrand in equation (2.5.6) be denoted by Fb (ξ, η). The integral in equation (2.5.6)

is approximated using Gaussian quadrature as

∑
b∈Bh

∫ 1

−1

Fb (ξ, η) ds ≈
∑
b∈Bh

Nq∑
iq=1

Fb
(
ξiq , ηiq

)
wiq (2.5.7)

where the quadrature point locations and weights are the same as for the interior surface

integrations. The Gaussian quadrature point locations and weights used in this work are

tabulated in reference [58].

2.6 Turbulence Model Discretization

Due to the aforementioned turbulence model discontinuity discussed in Chapter 1, this work

employs an alternative discretization which makes use of a first-order finite-volume discretiza-

tion of the convection terms for the turbulence model in equation (2.1.2). This discretization

has been successful in many applications such as those in references [5,41,64–66]. In order to

maintain an appropriate testing method, two options are available for discretizing the turbu-

lence model equation. The standard DG discretization can be utilized or the aforementioned
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first-order finite-volume discretization can be employed. The standard DG discretization

is exactly the same as previously described for the mean flow equations. The first-order

finite-volume discretization is carried out in a slightly different manner due to the lack of

turbulence model variable gradients (i.e. a first-order discretization cannot contain gradient

information).

This section will discuss the first-order convection term finite-volume discretization of

the SA model as well as how it is coupled to the DG discretization of the RANS equations.

Unfortunately by discretizing the turbulence model to first-order accuracy, there is now a

resolution discrepancy between the mean flow equations and the model equation. This is

inevitable for a DG method because of the coupling between degrees of freedom (DoFs) and

order of accuracy. In order to have a first-order finite-volume representation and not recon-

struct model variable gradients, the diffusive source term must be cast in a non-conservative

form, as shown in reference [41]. This allows one to place the entire diffusion term on the

surface in order to avoid requiring gradients of the SA model variable. The turbulence model

is discretized on a mesh of elements Th,0 and the discrete solution is in the space of piecewise

constant functions ρν̃h ∈ V0
h. Substitution of the discrete solution into the model equation

given in equation (2.1.2) and integration over the domain yields.∑
k∈Th

∫
Ωk

[
∂ρν̃h
∂t

+
∂ (uhρν̃h)

∂x
+
∂ (vhρν̃h)

∂y
− 1

σ
∇ · ((µh + ρν̃h) (1 + cb2)∇ν̃h) −

cb2ρν̃h∇2ν̃h − Sh
]
dΩk = 0

with

Sh = P (uh,∇uh)−D (uh,∇uh)

(2.6.1)

where P (uh,∇uh) is given in equation (B.1.3) and D (uh,∇uh) is given in equation (B.1.6).

Integration by parts of equation (2.6.1) results in∑
k∈Th

∫
Ωk

∂ρν̃h
∂t
− Sh (uh,∇uh) dΩk +

∑
i∈Ih

∫
Γi
Hc (uh)− (Hv (uh))

± ds+

∑
b∈Bh

∫
Γb
Hb
c

(
ubh
(
u+
h

))
+Hb

v

(
u+
h ,u

b
h

(
u+
h

))
ds = 0

(2.6.2)

39



where

Hc =
1

2

[
(ũhρν̃h)

+ + (ũhρν̃h)
− +max

(
ũ+
h , ũ

−
h

) (
ρν̃+

h − ρν̃−h
)]

ũh = (uhnx + vhny)

(2.6.3)

Hb
c = (ũhρν̃h)

b (2.6.4)

Hc is an upwind numerical flux function for a scalar convection equation and Hb
c is a bound-

ary numerical flux function for a scalar convection equation. The numerical flux for the

turbulence model equation diffusion term is taken as:

(Hv)
+ =

[
1

2

(
µ+ + µ− +

(
ρν̃+ + ρν̃−

)
(1 + cb2)

)
− ρν̃+cb2

]
×(

(ν̃− − ν̃+) (∆x±)

(l±)2 nx +
(ν̃− − ν̃+) (∆y±)

(l±)2 ny

) (2.6.5)

with

∆x± = x− − x+

∆y± = y− − y+

l± =

√
∆x±2 + ∆y±2

(2.6.6)

(Hv)
− =

[
1

2

(
µ+ + µ− +

(
ρν̃+ + ρν̃−

)
(1 + cb2)

)
− ρν̃−cb2

]
×(

(ν̃− − ν̃+) (∆x±)

(l±)2 nx +
(ν̃− − ν̃+) (∆y±)

(l±)2 ny

) (2.6.7)

H±v are thin layer approximation viscous flux functions and are employed so that turbulence

model gradients are not required. The same formulation of the turbulence model viscous

flux is employed in [5]. Similarly, the boundary numerical flux is taken as:

Hb
v =

[
1

2

(
µ+ + µb +

(
ρν̃+ + ρν̃b

)
(1 + cb2)

)
− ρν̃+cb2

]
×((

ν̃b − ν̃+
)

(∆x±)

(l±)2 nx +

(
ν̃b − ν̃+

)
(∆y±)

(l±)2 ny

) (2.6.8)

Hb
v is the boundary thin layer viscous numerical flux. These flux formulations treat the SA

turbulence model equation decoupled from the mean flow RANS equations.
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The source term discretization is straight forward since it does not depend on the gra-

dient of the turbulence model variable. While the convective discretization can be used with

any numerical method, the diffusion discretization is specifically tailored for a first-order

finite-volume method. Additionally the form of the continuous diffusion term used in this

work is only advantageous for finite-volume and similar discretizations. This form of the

diffusion term is not advantageous for DG discretizations because the manipulation used to

obtain the non-conservative form of the diffusion term is undone upon integrating by parts

to obtain a weak form DG discretization.

When employing this turbulence model discretization method, the turbulence model

and the RANS equations discretizations occupy different function spaces, and a method

by which to obtain µ±, u±h etc. for use in the turbulence model discretization is required.

Due to the first-order accurate turbulence model discretization, an appropriate quadrature

rule consisting of a single Gauss point is chosen for the integrations. For volume integrals

the Gauss point is at the cell-center and for edge integrals the Gauss point is at the edge

mid-point. Mean flow quantities are projected from their modal representations to these

quadrature points directly, via equation (2.2.11). This amounts to a “reconstruction” of

the mean flow variables but not the turbulence model variables since the turbulence model

variables are constant over the cell in question. The combination of this first-order finite-

volume discretization for the turbulence model equation combined with a DG discretization

of the mean flow equations is denoted as a hybrid discretization.

2.7 Artificial Viscosity Formulation

This work makes extensive use of artificial diffusion for shock wave capturing. The govern-

ing parameter for artificial diffusion is the artificial viscosity ε̂ in equation (2.1.10). Many

researchers have developed artificial viscosity methods and this work has tested and imple-

mented those of references [28, 34, 37, 38]. After much experimentation, two methods have

been observed to be the most robust, these are the methods of references [34, 37]. The

method of reference [38] was abandoned due to an extended numerical stencil and a dual
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inconsistency(see Chapter 3) when using a DG method. The method of reference [28] was

abandoned due to robustness problems at high-order. This work makes use of both the piece-

wise constant method of reference [34] and the PDE-based artificial viscosity of reference [37]

to control the values of ε̂.

2.7.1 Piecewise Constant Artificial Viscosity

The piecewise constant artificial viscosity formulation is taken from reference [34]. The value

of the artificial viscosity coefficient ε̃ in each cell k is given as

ε̃k =


0 sk ≤ s0 − κ

1
2
ε0

(
1 + sin

(
1
2
π(sk−s0)

κ

))
s0 − κ ≤ sk ≤ s0 + κ

ε0 sk ≥ s0 + κ

s0 = −4 log (cs0p)

(2.7.1)

where cs0 , κ and ε0 are user defined coefficients. The coefficient ε0 controls the magnitude

of the artificial viscosity coefficient ε̃ and the coefficients κ and cs0 control the minimum

value of sk that yields non-zero artificial viscosity. sk for the cell k is given by the resolution

indicator

sk = log10


∫

Ωk

(
Ph − P̃h

)2

dΩk∫
Ωk
P 2
h

 (2.7.2)

where Ph is the pressure computed from equation (2.1.7) using the number of modes in a

discretization of order p and P̃h is computed using the number of modes in a discretization

of order p− 1. The function controlling ε̃k is essentially a smooth min-max function, which

limits the viscosity in the cell between two bounds in a smooth differentiable manner. Notice

that the minimum and maximum values are determined based on the width κ of the smooth

function that goes between the minimum and maximum values. The final artificial viscosity

is given as

ε̂ = λmax
h̄

p
ε̃k

λmax = |u|+ |v|+ a

h̄ =
1

2
(hx + hy)

(2.7.3)
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where λmax is an estimate of the maximum eigenvalue of the Euler equations and hx and hy

are anisotropic mesh size metrics, which are given in Section 2.7.3.

While the basic formulation is taken from reference [34], significant changes to the

artificial diffusion flux given in equation (2.1.10) and to the definition of ε̂k have been made

relative to those in reference [34]. Most notable is the addition of the λmax scaling term,

which allows for the method to automatically adjust the applied viscosity based on local flow

conditions. Additionally, the use of anisotropic mesh size metrics allow for robust behavior

on anisotropic viscous meshes. In contrast, reference [34] sets ε̂ = ε̃kh̄/p and hx = hy = h̄,

which results in a significantly less robust method. The present method in equation (2.7.3) is

capable of capturing shock waves within one element. Note that ε̂ is constant on an element

k.

2.7.2 PDE-Based Artificial Viscosity

The piecewise constant artificially viscosity method can fail due to large jumps in ε̂ be-

tween elements for strong high Mach number shock waves, hence the PDE-based method

of reference [37] was also implemented. The PDE-based artificial viscosity solves a non-

linear Poisson equation for the artificial viscosity coefficient ε, which is appended to the

Navier-Stokes equations. Solving this diffusion equation results in a smooth artificial viscos-

ity distribution throughout the mesh. This equation is discretized to the same order as the

mean flow equations using a Symmetric Interior Penalty (SIP) method. This new system of

equations is solved in a fully coupled manner. The diffusion equation governing the artificial
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viscosity for two dimensional flow is given as:

∂ε

∂t
= ∇ ·

([η
τ

]
∇ε
)

+
1

τ

(
h̄

p
λmaxs̃k − ε

)
τ =

hmin
c1pλmax[η

τ

]
=
c1c2pλmax
hmin

 h2
x 0

0 h2
y


λmax = |u|+ |v|+ a

h̄ =
1

2
(hx + hy)

hmin = min (hx, hy)

c1 = 3

c1c2 = 15

(2.7.4)

In this case the source term s̃k in equation (2.7.4) is given by

s̃k =


0 sk ≤ s0 −∆κ

1
2
ε0

(
1 + sin

(
1
2
π(sk−s0)

2∆κ

))
s0 −∆κ ≤ sk ≤ s0 + ∆κ

ε0 sk ≥ s0 + κ

s0 = − (κ+ cs0 log10 (p))

∆κ =
1

2

(2.7.5)

with ε0, cs0 , and κ are user defined coefficients. The coefficient ε0 controls the magnitude

of the source term. The coefficients κ and cs0 control minimum value of the shock detector

that will trigger artificial viscosity as seen in equation (2.7.5). The value of sk is given by

the jump indicator of reference [67]

sk = log10

(
1

|∂Ωk|

∫
∂Ωk

∣∣∣∣JPhK · ~n{Ph}

∣∣∣∣ ds) (2.7.6)

This indicator is used to drive source term in equation (2.7.4) because it has proven to be

more reliable for very strong shock waves and viscous flows. While using equation (2.7.6) to

drive the piecewise constant artificial viscosity method is possible, using this indicator in the

piecewise constant setting extends the numerical stencil beyond the nearest neighbors and
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hence violates one of the constraints on shock capturing methods. The artificial viscosity

coefficient, which is the solution to equation (2.7.4) is limited to give ε̂. The final expression

for ε̂, which is a limited version of ε, is given as:

ε̂k =


0 ε ≤ ε̂low

1
2

(
1 + sin

(
π
[
ε−ε̂low
ε̂hi−ε̂low −

1
2

]))
ε̂low ≤ ε ≤ ε̂hi

ε̂hi ε ≥ ε̂hi

ε̂low = .01λmax
h̄

p

ε̂hi = λmax
h̄

p

(2.7.7)

which acts as a limiter to bound the viscosity between minimum and maximum threshold

values given by ε̂low and ε̂hi respectively. One should also note that ε = 0 is an exact solution

to the artificial viscosity diffusion equation if the source term vanishes. Thus if p is taken to

infinity or the mesh size to zero the artificial viscosity will vanish, which implies consistency

with the original governing PDEs.

2.7.3 Mesh Metrics

The artificial viscosity method in this work relies on the computation of mesh size metrics.

The mesh size metric is computed based on finding the minimum Cartesian quadrilateral

that encloses the cell. The size is then based on the sizes of the sides of the enclosing

quadrilateral. Figure 2.11(a) and Figure 2.11(b) show graphical representations of the mesh

sizes for triangles and quadrilaterals respectively. The mesh metrics are computed by finding

the maximum distance between the element nodes in each Cartesian i.e. (x, y) direction

separately for a given cell.

2.7.4 Artificial Viscosity Method Comparison

While both piecewise constant and PDE-based artificial viscosity methods are implemented

within the DG solver, the PDE-based method has become the method of choice because

it has demonstrated superior robustness when compared to the piecewise constant method.
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hx

(a) Triangle

hx

hy

(b) Quadrilateral

Figure 2.11: Mesh size metrics for triangles and quadrilaterals.

In this work, robustness is measured in several ways. First of all, an artificial viscosity

method is considered robust if it can adequately remove the Gibbs phenomena, caused by

using high-order discretizations to approximate shock waves, over a large range of Mach

numbers. For aerodynamic problems this range encompasses transonic to hypersonic flow

regimes. Secondly, the method must avoid applying diffusion to smooth phenomena such as

boundary layers (resulting in adverse accuracy implications), while still applying adequate

diffusion to shock waves, even on coarse grids. In references [47] and [68] piecewise constant

artificial viscosity was used in conjunction with hp-adaptation for inviscid transonic flow

and viscous supersonic flow. Attempts to apply this method to a hypersonic flow at a

Mach number M∞ = 6.0 resulted in robustness problems as the piecewise constant artificial

viscosity was unable to simultaneously avoid the boundary layer and adequately smooth the

strong shock wave. However as will be shown, the PDE-based artificial viscosity can be

applied to very high Mach number flows relatively robustly.

There is a third, somewhat more subtle, though just as critical, measure of robustness

that must be considered for artificial viscosity methods in a high-order setting. This measure

of robustness is related to setting the adjustable coefficients of the presented artificial vis-

cosity methods. These coefficients control how aggressively the artificial viscosity attempts

to smooth the discontinuity. The third measure of robustness is related to assigning the

values of the adjustable coefficients as the discretization order p is raised (either adaptively

or uniformly), a process known as p-enrichment. A robust artificial viscosity method should
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be able to maintain the values of the adjustable coefficients across the p-enrichment range.

This is of critical importance when considering grid convergence of functional outputs.

In order to compare the two artificial viscosity methods, the inviscid transonic flow

over a NACA0012 airfoil is considered. The flow conditions are a free-stream Mach number

M∞ = .80 and an angle of attack α = 1.25o. This flow was computed using both piecewise

constant and PDE-based artificial viscosities with p = 1 to p = 4. The computational mesh

for this flow is depicted in Figure 2.12. Figure 2.13(a) through Figure 2.14(b) show the

Figure 2.12: Computational mesh used for the transonic flow around a NACA0012 airfoil employing
piecewise constant and PDE-based artificial viscosity

resulting computed Mach number contours for p = 1 and p = 4 using both artificial viscosity

methods. As the discretization order p is increased the shock wave becomes significantly

sharper, regardless of the artificial viscosity method employed. However, the PDE-based

artificial viscosity spreads the shock wave over a wider area, as is also seen by examining the

artificial viscosity contours in Figure 2.15(a) through Figure 2.16(b). Figure 2.17 shows the

surface pressure distribution using both artificial viscosity methods at p = 4. Clearly the

piecewise constant artificial viscosity yields a sharper shock wave. However, the piecewise

constant artificial viscosity admits some oscillations at the lower surface shock wave, which

is undesirable.

The computed lift coefficient is plotted as a function of the number of degrees of freedom
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(a) p = 1 Discretization (b) p = 4 Discretization

Figure 2.13: Mach number contours for an inviscid flow over a NACA0012 airfoil computed with
piecewise constant artificial viscosity using p = 1 and p = 4.

(a) p = 1 (b) p = 4

Figure 2.14: Mach number contours for an inviscid flow over a NACA0012 computed with PDE-
based artificial viscosity using p = 1 and p = 4.

(NDoF ) is depicted in Figure 2.18. Figure 2.18 clearly demonstrates that the computed lift

coefficient produced by the piecewise constant method does not converge towards a fixed

value as p-enrichment is performed, as the values change dramatically as p-enrichment is

performed. This is due to adjustments in the artificial viscosity coefficients at each refine-
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(a) p = 1 (b) p = 4

Figure 2.15: Artificial viscosity contours for an inviscid flow over a NACA0012 computed with
piecewise constant artificial viscosity using discretization orders p = 1 and p = 4.

(a) p = 1 (b) p = 4

Figure 2.16: Artificial viscosity contours for an inviscid flow over a NACA0012 computed with
PDE-based artificial viscosity using discretization orders p = 1 and p = 4.

ment level, which was required in order to obtain a fully converged solution. Adjusting the

coefficients for the artificial viscosity method has a significant impact on the computed lift

coefficient. Note that the p = 4 solutions using both methods resolve the shock wave within

one element. It is critical that the coefficients remain fixed during refinement procedures.
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Figure 2.17: Surface pressure coefficient Cp comparison at a discretization order of p = 4, using
PDE-based and piecewise constant artificial viscosities.

Figure 2.18: Computed lift coefficient(CL) vs. NDoF for the transonic flow over a NACA0012 airfoil
using both piecewise constant and PDE-based artificial viscosities at a discretization order of p = 4.

Otherwise one can easily end up in a situation where higher discretization order solutions

give nicer “looking” results, while producing no quantitative improvement in output func-

tional accuracy. This is the case in Figure 2.13(a) and Figure 2.13(b) where the solution is

more highly refined, while Figure 2.18 shows no improvement in accuracy of the computed

lift coefficient. Figure 2.14(a) and Figure 2.14(b) show the computed Mach number con-

tours using the PDE-based artificial viscosity with p = 1 and p = 4 respectively. While the
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PDE-based artificial viscosity has smeared the shock wave over a larger distance (best seen

in Figure 2.17 ) the functional is converging towards a fixed value, as the values change less

between refinement levels as the discretization order is increased.

Of the two methods presented, the PDE-based artificial viscosity method has been found

to be more robust than the piecewise constant method. This is due to the large amount and

smooth distribution of the artificial viscosity produced by the diffusion equation controlling

the artificial viscosity. In fact, observations made during the course of this work agree

with those of [37, 69] with regard to the added robustness of smooth artificial viscosity

distributions. The added robustness is also demonstrated by checking the grid convergence

when uniformly raising the polynomial order or p-enrichment of a transonic flow.

As a result of this test, PDE-based artificial viscosity is considered almost exclusively for

the remainder of this work. PDE-based artificial viscosity has proven to be significantly more

robust by all the presented measures. It has excellent detection and limitation properties

and can handle a very large range of Mach numbers, as will be demonstrated. In addition

p-enrichment can be performed without adjusting the coefficients of the method. Two of the

presented examples will make use of the piecewise constant artificial viscosity formulation in

order to make a full assessment of this method.

2.8 Post-Processing

In the previous section, the computed Mach number contour lines are not always smooth and

continuous, such as in Figure 2.14(a). These non-smooth contour lines are the result of post-

processing artifacts, or rather a lack of post-processing of the solution. Most state-of-the-art

CFD solvers store the solution at the element-center or at the nodes in the mesh. Contour

lines are drawn by constructing interpolation functions using these uniquely specified data

values. However, DG methods store the solution in a more general fashion. For example,

this work makes use of modal basis functions, therefore the solution coefficients have no

relevance in physical space. In order to visualize the solution, it must be projected from the

modal space to physical space, which is accomplished by picking a set of output points (ξ, η)
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in the standard element and obtaining the solution at these points via equation (2.2.11). In

this work, a set of equally spaced points is specified for each element and these points are

used to generate sub-elements for visualization purposes, as seen in Figure 2.19. In order

Figure 2.19: Example of output points. The circles are output points, the dashed lines are connec-
tions between output points and the solid lines are element boundaries.

to capture the solution over the full element, output points are specified along the element

edges, which creates doubly valued solutions along the edges in the mesh(an edge is shared

by two elements). The non-continuous behavior of the contours lines is the result of doubly

valued solutions at the output points on the element edges. The post-processor is unable to

display doubly valued data smoothly. However, this representation of the data is actually

a more accurate representation of what the CFD solver produces, since the interpolation

used to construct the contour lines cannot generate unique contour line values for data sets

that contain doubly valued solutions. Therefore, if a figure contains smooth continuous

contour lines such as in Figure 2.14(b), then the data produced by the CFD solver is nearly

continuous at the element edges.
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2.9 Boundary Conditions

A particularly attractive feature of compact high-order methods such as DG discretizations

is the ability to incorporate high-order boundary conditions. However, the boundary con-

ditions must be properly understood and implemented in order to obtain high-order super

convergence of the functional outputs. For example, if the approximate Riemann solver,

which is employed for the interior surface flux Hc, is used on a slip wall then the func-

tional super convergence will be lost, which is the result of dual inconsistency as discussed

in Chapter 3. This section details the various boundary conditions used for the presented

test cases. DG discretizations present a challenge for applying boundary conditions due to

the presence of artificial diffusion and viscous terms on the boundary. Since gradients are

not reconstructed, special boundary conditions are required for these operators such that

they reflect the physics of the boundary while at the same time maintain proper mathemat-

ical treatment. In particular, the boundary conditions on the artificial diffusion operator

are derived since the treatment of this operator at boundaries is often omitted from the

literature [28,34,36–38,70,71].

When considering the mathematical treatment of boundaries one must be mindful of

both accuracy and stability. Reference [3] discusses this issue in detail, with the main theme

that stable boundary conditions are those that satisfy the direction of information propa-

gation based on the characteristics. In this work, the characteristics of the two-dimensional

Euler equations are utilized to derive the boundary conditions. These characteristics are

given as:

λ1 = ~u · ~n− a

λ2 = ~u · ~n

λ3 = ~u · ~n

λ4 = ~u · ~n+ a

(2.9.1)

Figure 2.20 depicts these characteristics for a slip wall boundary condition. The character-

istics enforce the constraints on how the information must be propagated at the boundaries.

An outward(relative to the domain interior) pointing characteristic indicates that informa-
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~u · ~n+ a

~u · ~n− a

~u · ~n

Figure 2.20: Illustration of characteristic directions at the boundary.

tion leaves the domain and hence the boundary state should use information from the interior

of the domain, while an inward pointing characteristic implies the opposite and the bound-

ary state should be fixed based on the physical boundary values. One simply counts the

number of incoming and outgoing characteristics to obtain the correct number of bound-

ary conditions that must be specified by the physical boundary. The constraint is that one

must obey the characteristics and maintain the form of the boundary condition utilized in

equation (2.2.4). Furthermore let ()b represent the boundary state and let ()+ denote the

state inside the element that is on the boundary. The various boundary conditions will

be described individually beginning with a slip wall. The goal of this section is to obtain

boundary conditions of the form

ub
h

(
u+
h

)
(2.9.2)

for each type of boundary condition required for the numerical examples. Here ubh is the

boundary state that is computed from u+
h , which is the solution from the element that lies

on the boundary. The state ubh is evaluated at the quadrature points that lie directly on the

boundary, which means that the state is defined on the boundary, not in a ghost element

that is adjacent to the boundary. The boundary state ubh is then used in computing fluxes

on the boundary using Hb
c, Hb

v, and Hb
ad. In the description of the boundary conditions the

()h will be dropped to simplify the notation.
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2.9.1 Slip Wall

The inviscid slip wall boundary condition is used throughout this work for various applica-

tions in both viscous and inviscid flows. In the case of inviscid flows and curved walls this

represents the wall boundary condition that the Euler equations must satisfy. However, in

the case of viscous flows and walls that are aligned with the coordinate directions this repre-

sents a symmetry boundary condition, which is often used so that only half of the geometry

needs to be specified. The slip wall specifies that the flow should be everywhere tangent to

the surface as shown in Figure 2.21.

~n

~τ

Figure 2.21: Illustration of slip wall boundary condition on velocity.

Flow tangent to the boundary requires that the velocity normal to the wall be zero and

the velocity tangent to the wall be preserved,

~ub · ~n = 0

~ub · ~τ = ~u+ · ~τ
(2.9.3)

where ~n is the vector normal to the surface and ~τ is the vector tangent to the surface as

shown in Figure 2.21. For an arbitrary curved edge the coordinates ~x are represented as
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~x (s) where s is a parameterization variable. This gives the tangent vector as

~τ =

(
dx

ds
,
dy

ds

)
≡ (τx, τy)

T (2.9.4)

and the normal vector ~n is defined such that:

~n · ~τ = 0

~n ≡ (nx, ny)
T

(2.9.5)

The tangent vector components can be written in terms of the normal vector components as

~τ = (ny,−nx) (2.9.6)

which is used to simplify the notation when the tangent vector is employed.

The slip wall boundary condition results in one inward and one outward pointing charac-

teristic as well as two ambiguous characteristics(~u ·~n = 0), which allow for the information to

be specified from either the boundary condition or from the element adjacent to the bound-

ary. In this case the velocities are set according to the requirements of equation (2.9.3) and

the density and total energy are taken from within the element. Enforcing the requirements

on the velocity results in

ubnx + vbny = 0

ubny − vbnx = u+ny − v+nx

(2.9.7)

which are solved to give

ub = u+ −
(
u+nx + v+ny

)
nx

vb = v+ −
(
u+nx + v+ny

)
ny

(2.9.8)

The resulting boundary state vector ub is given as

ub =



ρ+

ρ+ub

ρ+vb

E+
t


(2.9.9)
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For the SA model equation and PDE-based artificial viscosity the quantities are extrapolated

from the interior (as was done with density and total energy).

(ρν̃)b = (ρν̃)+

εb = ε+
(2.9.10)

The viscous and artificial diffusion fluxes have yet to be specified. These are perhaps

the more difficult boundary conditions to apply because no information about the gradient

is given in the boundary condition. However, since this is essentially a symmetry boundary

condition one can infer that no gradients are present at the wall. Rather than enforce the

boundary condition on the gradient of the state variable, instead the boundary condition is

enforced on the fluxes.

Hb
v = 0

Hb
ad = 0

(2.9.11)

This results in no physical or artificial diffusion on the boundary, which is a stable and

accurate boundary condition. Applying appropriate boundary conditions to the artificial

diffusion is critical to maintaining a stable discretization.

2.9.2 No-slip Walls

For viscous flows a no slip boundary condition is applied as the wall boundary condition.

There are two types of no slip wall boundary conditions, the no-slip adiabatic and the no-

slip fixed temperature wall. The adiabatic wall is normally used in aerodynamic simulations

while the fixed temperature wall may be used in aerothermodynamic simulations such as

hypersonic flow. Both boundary conditions specify zero velocity at the wall. For an adiabatic

wall, density is taken from the element and total energy is computed from these values. The

Reynolds stresses are also zero at the wall, which implies that the SA working variable ν̃ is

zero at the wall. Treating the artificial viscosity for the PDE-based artificial viscosity as in
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the slip-wall boundary condition, the boundary flux vector becomes

ub =



ρ+

0

0

E+
t − 1

2
ρ+
(

(u+)
2

+ (v+)
2
)


(ρν̃)b = 0

εb = ε+

(2.9.12)

The viscous and artificial diffusion fluxes are computed using the state gradients from the

element on the boundary with the exception of the energy equation viscous flux, which is

set to zero.

Hb
v (4) = 0 (2.9.13)

In the case of the fixed temperature wall the state vector is given as

ub =



ρb

0

0

(Et)
b


(ρν̃)b = 0

εb = ε+

(2.9.14)

where

P b = (γ − 1)

(
E+
t −

1

2
ρ+
((
u+
)2

+
(
v+
)2
))

Eb =
Twall

γ (γ − 1)

ρb =
P b

γ (γ − 1)

(Et)
b = ρbEb

(2.9.15)

where Twall is the specified wall temperature. In this case the viscous and artificial diffusion

fluxes are computed using this boundary state and the gradient from the element adjacent

to the boundary without modification. For the fixed temperature wall the SA model variable

is set to zero and the artificial viscosity is extrapolated from the interior.
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2.9.3 Characteristic In/Out Flow

Due to the specified form of the boundary condition e.g. ub (u+), the far-field boundary

requires special attention. A typical implementation of the far-field boundary condition

considers using the Riemann solver at the far-field boundary, which is simple and stable.

However, this approach will not satisfy equation (2.9.2). In order to continue to use boundary

conditions of the form specified in equation (2.9.2), a characteristics-based far-field boundary

condition is employed. In this case, the Riemann invariants of an isentropic inviscid flow are

considered, including a scalar transport equation for the turbulence model equations.

In order to find the boundary state ub, the Riemann invariants must be obtained. The

full analysis is too lengthy to be considered in full here. Instead the Riemann invariants will

be presented without derivation for two-dimensional flow with a scalar transport equation

appended to the system. It will be shown how to derive far-field boundary conditions for

sub/supersonic flows using the Riemann invariants. The Riemann invariants are given as:

w1 = S

w2 = ~u · ~τ

w3 = s

w4 = ~u · ~n+
2a

(γ − 1)
≡ Rp

w5 = ~u · ~n− 2a

(γ − 1)
≡ Rm

where

S ≡ entropy

s ≡ scalar

(2.9.16)

and must remain constant across the boundary. The actual boundary conditions will depend

on whether the flow is subsonic or supersonic.

Subsonic Flow

In the case of subsonic flow, the number of characteristics pointing into or out of the domain

depends on whether the boundary is an inflow or outflow boundary. The inflow and outflow
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boundary situations are depicted pictorially in Figure 2.22(a) and Figure 2.22(b) respectively.

In the case of subsonic flow the Riemann invariants are solved to determine the boundary

Farfield             Interior

~u · ~n− a

~u · ~n+ a

~u · ~n

(a) Inflow

Farfield              Interior

~u · ~n + a

~u · ~n− a

~u · ~n

(b) Outflow

Figure 2.22: Inflow and Outflow characteristic information propagation directions for subsonic flow.

state. For an inflow boundary (i.e. ~u · ~n < 0) the Riemann invariants are

S =
P∞

(ρ∞)γ

Rp = (~u · ~n)+ +
2a+

(γ − 1)

Rm = (~u · ~n)∞ −
2a∞

(γ − 1)

(~u · ~τ)b = −u∞ny + v∞nx

sb = s∞

~u · ~n < 0 (2.9.17)
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where ()∞ specifies the far-field or free-stream state. Similarly, the outflow (i.e. ~u · ~n > 0)

Riemann invariants are

S =
P+

(ρ+)γ

Rp = (~u · ~n)+ +
2a+

(γ − 1)

Rm = (~u · ~n)∞ −
2a∞

(γ − 1)

(~u · ~τ)b = −u+ny + v+nx

sb = s+

~u · ~n > 0 (2.9.18)

The Riemann invariants are then used to compute the boundary state. First of all, the

boundary normal velocity and sound speed are given as

ab =
(γ − 1)

4 (Rp −Rm)

(~u · ~n)b =
1

2
(Rp +Rm)

(2.9.19)

which are intermediate quantities. The density is computed as

ρb =

( Sγ
(ab)2

) 1
(γ−1)

(2.9.20)

and the velocities are computed as

ub = nx (~u · ~n)b − ny (~u · ~τ)b

vb = ny (~u · ~n)b + nx (~u · ~τ)b
(2.9.21)

Finally the total energy is given by:

P b = S
(
ρb
)γ

(Et)
b =

P b

(γ − 1)
+

1

2
ρb
((
ub
)2

+
(
vb
)2
) (2.9.22)

Inserting the expressions for velocity, density, and energy into the state vector gives

ub =



ρb

ρbub

ρbvb

(Et)
b


(ρν̃)b = ρbsb

(2.9.23)
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where in this case the scalar sb equals the turbulence model variable ν̃b. Viscous and artificial

diffusion fluxes are set to zero at the outer boundary.

Hb
v = 0

Hb
ad = 0

(2.9.24)

Supersonic Flow

The case of supersonic flow is quite simple since all the characteristics point in a single

direction as shown in Figure 2.23(a) and Figure 2.23(b). For supersonic inflow all information

comes from the far-field conditions and for supersonic outflow all information comes from

the domain interior. Mathematically the supersonic inflow state vector is given by:

ub =



ρ∞

ρ∞u∞

ρ∞v∞

(Et)∞


(ρν̃)b = ρ∞s∞

(2.9.25)

and the supersonic outflow case is given by

ub =



ρ+

ρ+u+

ρ+v+

(Et)
+


(ρν̃)b = ρ+s+

(2.9.26)

The artificial viscosity transport equation far-field boundary condition is different from

that of the Navier-Stokes equations. Following reference [37], the far-field boundary condition

of the artificial viscosity PDE is a Robin boundary condition applied such that

∂ε

∂~n
=
ε∞ − ε+

L
(2.9.27)

where in this work L = 10

√(
~h · ~n

)2

, ~h = (hx, hy) is the mesh size metric in Section 2.7.3,
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Farfield         Interior

~u · ~n + a

~u · ~n

~u · ~n− a

(a) Inflow

Farfield         Interior

~u · ~n

~u · ~n+ a

~u · ~n− a

(b) Outflow

Figure 2.23: Inflow and Outflow characteristic information propagation directions for supersonic
flow.

and ε∞ = 0. One such expression that satisfies this requirement is

∂ε

∂x

b

= − ε+

10

√(
~h · ~n

)2
nx

∂ε

∂y

b

= − ε+

10

√(
~h · ~n

)2
ny

(2.9.28)

Then the flux for the artificial viscosity PDE on the far-field boundary is computed as usual

but the symmetry and penalty terms are set to zero because this is not a Dirichlet boundary

condition.

Hb
ad (fpde−av) =

∂ε

∂x

b

nx +
∂ε

∂y

b

ny (2.9.29)

where fpde−av is the equation number corresponding to the artificial viscosity PDE.
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Chapter 3

Dual Consistency of Discontinuous

Galerkin Discretizations

When considering DG discretizations, dual (or adjoint) consistency is a key property that

must be fulfilled by the discretization in order to obtain optimal error convergence properties

[49, 72]. Dual consistency requires that the adjoint of the discretized equations satisfies the

continuous adjoint equations. Through the dual consistency property one attains the so-

called order doubling of functional error, where the functional error behaves asymptotically

as O (h2p) rather than O (hp). For two dimensional problems, h =
√
NDoF where NDoF

is to the total number of degrees of freedom in the mesh. Dual consistency of the Euler

and Navier-Stokes equations has been studied in references [49,56]. References [20,72] have

studied the dual consistency of the SA turbulence model source terms and reference [71] has

studied the dual consistency of “Bassi-Rebay 2” [73] discretizations of the artificial diffusion

terms.

This work also considers the dual consistency issue, in particular for non-linear Poisson

type diffusion terms such as those encountered in turbulence modeling and artificial diffusion

schemes. The dual consistency of the proposed SIP discretization is analyzed and remedies

for dual inconsistent discretizations are presented when possible. Additionally, the dual

consistency of the Navier-Stokes discretization is studied via numerical experimentation to

ensure that the implementation has been performed correctly. The proof of dual consistency
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for the Navier-Stokes discretization is detailed in reference [49].

This section describes the analysis of dual consistency of the Symmetric Interior Penalty

(SIP) discretization for the artificial diffusion operators in Section 2.1. The section very

closely follows the analysis framework laid out in reference [49]. A non-linear Poisson equa-

tion is used as a model for this analysis, since this equation mimics both the artificial diffusion

terms of the Navier-Stokes equations and the diffusion operator of the PDE-based artificial

viscosity. This equation also mimics the diffusion and source terms of the SA turbulence

model equation, which enables one to draw conclusions regarding the dual consistency of the

turbulence model discretization.

In addition to analyzing the dual consistency of a non-linear Poisson equation, the dual

consistency of the Euler equations is also established. The analysis demonstrates the im-

portance of boundary condition treatment on dual consistency and illustrates the procedure

employed for the dual consistency analysis of boundary conditions. The inviscid wall bound-

ary condition specified in Chapter 2 is analyzed in order to justify the mathematical form of

the boundary conditions in equation (2.9.2).

3.1 The Adjoint of Non-linear Operators

Since the dual or adjoint problem is inherently linear the dual problem of a non-linear

operator must be defined in terms of an appropriate linearization. Consider a general Fréchet

differentiable non-linear operator

Nu = 0 in Ω, Bu = 0 on Γ (3.1.1)

on the domain Ω with the boundary of Ω denoted as Γ. The problem defined in equation

(3.1.1) is known as the primal problem. Let J (u) be a non-linear functional given as

J (u) =

∫
Ω

jΩ (u) dΩ +

∫
Γ

jΓ (Cu) ds (3.1.2)

where Cu is a non-linear operator that takes the solution u and generates derived products

for the output functional. For example, computing heat flux from temperature and thermal
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conductivity is an example of using Cu to derive a product from the solution u. Let the

Fréchet derivative about some point be denoted as,(
∂F

∂u

)
[u]

(w) = F
′

[u] (w) (3.1.3)

where the term in square brackets is the state about which the derivative is taken and w is

the linear variation of u. The linearized functional is given by

J
′

[u] (w) =

∫
Ω

jΩ
′

[u] (w) dΩ +

∫
Γ

jΓ
′

[Cu] (w) ds ≡ JΩ
′

[u] (w) + JΓ
′

[Cu] (w) (3.1.4)

and the linearized non-linear operator as

N
′

[u] (w) = 0 ∀~x ∈ Ω, B
′

[u] (w) = 0 ∀~x ∈ Γ (3.1.5)

Using the linearized functional J
′

[u] (w) and operator N
′

[u] (w), the adjoint operator is defined

as the operator (N∗)
′

[u] (ψ) that satisfies the following duality identity.〈
N
′

[u] (w) , ψ
〉

Ω
+
〈
B
′

[u] (w) , (C∗)
′

[u] (ψ)
〉

Γ
=〈

w, (N∗)
′

[u] (ψ)
〉

Ω
+
〈
C
′

[u] (w) , (B∗)
′

[u] (ψ)
〉

Γ
=〈

w, jΩ
′

[u]

〉
Ω

+
〈
w, jΓ

′

[Cu]

〉
Γ

(3.1.6)

where ψ is the adjoint variable. 〈·, ·〉Ω is an inner product defined on the domain Ω and

〈·, ·〉Γ is an inner product defined on the boundary Γ of the domain. Note that
〈
w, jΩ

′

[u]

〉
Ω

+〈
w, jΓ

′

[Cu]

〉
Γ

is equivalent to J
′

[u] (w). In this identity B is the boundary operator and B∗ is

the adjoint boundary operator. This duality identity is not arbitrary, in fact the identity is

chosen so that the operator controlling the linearized solution w and linearized functional

J
′

[u] (w) satisfy the same duality statement, as seen in equation (3.1.6). This defines the

adjoint which can also be thought of as the sensitivity of the functional with respect to the

non-linear operator Nu. The adjoint is the variable ψ that satisfies the following equation

(N∗)
′

[u] (ψ) = jΩ
′

[u] ~x ∈ Ω, (B∗)
′

[u] (ψ) = jΓ
′

[Cu] ~x ∈ Γ (3.1.7)

which is the so-called continuous adjoint equation. The continuous adjoint equation is used

in dual consistency analysis. Furthermore, an adjoint variable is only defined for a particular

output functional J (u).
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3.2 Definition of Dual Consistency

Dual consistency is the property that the continuous adjoint solution satisfies the discrete

adjoint equation where the discrete adjoint equation is derived from the discretization primal

equation and not by directly discretizing the continuous adjoint. The definition of dual

consistency is such that the discrete adjoint equation derived from the the discrete primal

problem does represent a discretization of the continuous adjoint equation. Obtaining a

discrete adjoint equation via this approach is shown below.

In order to define dual consistency one must first introduce a discretization of the con-

tinuous problem Nu. Consider a discretization of Nu given by:

find uh ∈ Vh such that

N (uh, vh) = 0 ∀vh ∈ Vh (3.2.1)

where N (uh, vh) is a semi-linear form, which is linear in the second argument. The dis-

cretization is said to be consistent if

N (u, vh) = 0 ∀vh ∈ Vh (3.2.2)

where u is the exact solution satisfying equation (3.1.1), which is the same as the mesh size

h going zero(h → 0). Given the linearization of N (uh, vh), denoted as N ′[uh] (wh, vh), the

discrete adjoint problem is given as:

find ψh ∈ Vh such that

N ′[uh] (wh, ψh) = J
′

[uh] (wh) ∀wh ∈ Vh (3.2.3)

Analogous to a consistent discretization, the statement of equation (3.2.2), a dual consistent

discretization satisfies

N ′[u] (wh, ψ) = J
′

[u] (wh) ∀wh ∈ Vh (3.2.4)

where ψ is the exact solution of the continuous adjoint problem in equation (3.1.7). Armed

with this definition of consistency and dual consistency, a simple analysis is carried out in

order to determine the dual consistency properties of the discretization used in this work.
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3.3 Importance of Dual Consistency

While dual consistency is important to primal problem accuracy as shown in reference [74].

The effect of dual consistency on functional accuracy is just as important. The ability

to attain functional error super-convergence(O (h2p)) is a beneficial property of high-order

methods, which should be preserved by a high-order discretization.

To illustrate the importance of dual consistency a linear functional is considered in order

to make the argument formality easier to work with. A similar analysis holds for non-linear

functionals but requires more formality, which only serves to complicate the conclusion.

Consider a weak bi-linear form L (u, v), which defines a linear problem.

L (u, v) = 〈f, v〉Ω ∀v ∈ V (3.3.1)

The corresponding dual problem which defines an output of interest (linear analogue of

equation (3.2.4)) is given by:

L (u, ψ) = 〈j, u〉Ω = J (u) ∀u ∈ V (3.3.2)

The discrete problem is find uh ∈ Vh such that

Lh (uh, vh) = 〈f, vh〉Ω ∀vh ∈ Vh (3.3.3)

By definition, the discrete dual problem for J (uh) is find ψh ∈ Vh

Lh (uh, ψh) = 〈j, uh〉Ω = J (uh) ∀uh ∈ Vh (3.3.4)

Consider the error in the discrete functional

J (u)− J (uh) = L (u, ψ)− Lh (uh, ψh) (3.3.5)

If one assumes that the continuous solution u and continuous adjoint ψ satisfy the discrete

operator Lh then equation (3.3.5) can be written as

J (u)− J (uh) = Lh (u, ψ)− Lh (uh, ψh)

= Lh (u, ψ)− Lh (uh, ψ) + Lh (uh, ψ)− Lh (uh, ψh)
(3.3.6)
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where zero was added in the form of Lh (uh, ψ)− Lh (uh, ψ). This can be collapsed into

J (u)− J (uh) = Lh (u− uh, ψ) + Lh (uh, ψ − ψh) (3.3.7)

Adding zero in the form of Lh (u− uh, ψh)− Lh (u− uh, ψh) results in

J (u)− J (uh) = Lh (u− uh, ψ − ψh) + Lh (uh, ψ − ψh) + Lh (u− uh, ψh) (3.3.8)

Now if Lh is consistent then

Lh (u, vh) = 〈f, vh〉Ω ∀vh ∈ Vh (3.3.9)

and if Lh is dual consistent then

Lh (uh, ψ) = J (uh) ∀uh ∈ Vh (3.3.10)

since ψh ∈ Vh and uh ∈ Vh, then the following is true.

Lh (uh, ψ − ψh) = J (uh)− J (uh) = 0

Lh (u− uh, ψh) = 〈f, ψh〉Ω − 〈f, ψh〉Ω = 0

J (u)− J (uh) = Lh (u− uh, ψ − ψh)

(3.3.11)

From approximation theory the absolute value of the error can be bounded.

|J (u)− J (uh)| ≤ C ‖ u− uh ‖‖ ψ − ψh ‖

‖ u− uh ‖H1 ≤ CO (hp)

‖ ψ − ψh ‖H1 ≤ CO (hp)

|J (u)− J (uh)| ≤ cO (hp)O (hp) ≈ CO
(
h2p
)

(3.3.12)

where ‖ · ‖H1 is a Sobolev norm of order one. It follows that without dual consistency one

cannot form the argument used to generate the O (h2p) functional error estimate. This is the

reason dual consistency is important. One should also notice that primal consistency plays

a role in obtaining the functional error estimate, thus both primal and adjoint consistency

are needed to obtain optimal results. However, dual consistency is often the one that is over

looked in the literature.
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3.4 Dual Consistency of a Non-linear Poisson Equation

One of the strategies to improve solver robustness is the addition of artificial diffusion to the

governing equations. As such one of the principal questions pertains to the effect of artificial

diffusion on the discretization. The analysis of a non-linear Poisson equation serves as a

model for the artificial diffusion used in this work.

As model problem, consider a non-linear Poisson equation

∇ · (ν (u,∇u)∇u) + S (u,∇u) = 0 (3.4.1)

subject to the boundary conditions

u = a, ~x ∈ ΓD

∇u · ~n = aN , ~x ∈ ΓN
(3.4.2)

where the diffusion coefficient ν and source term S are both non-linear functions of the

solution and solution gradient. For this problem let the functional be defined as

J (u) =

∫
Ω

jΩ (u) dΩ +

∫
ΓD
jD (Cu) ds+

∫
ΓN
jN (Cu) ds

Cu = ν (u,∇u)∇u · ~n
(3.4.3)

with the corresponding linearized functional given as

J
′

[u] (w) =

∫
Ω

jΩ
′

[u] (w) dΩ +

∫
ΓD
jD
′

[u] (ν∇w · ~n+ νuw∇u · ~n+ ν∇u · ∇w∇u · ~n) ds+∫
ΓN
jN
′

[u] (νuw∇u · ~n+ ν∇u · ∇w∇u · ~n) ds ≡ JΩ
′

[u] (w) + JΓD
′

[u] (w) + JΓN
′

[u] (w)

(3.4.4)

This equation can model both the artificial diffusion flux for any component of the Navier-

Stokes equations, by setting S (u,∇u) = 0 or the PDE controlling the artificial viscosity by

including both. Furthermore, this model problem allows one to draw some conclusions about

the SA turbulence model, due to the similarity between this equation and the diffusion and

source terms of the SA model.

3.4.1 Continuous Adjoint

The derivation of the continuous adjoint begins by taking the Fréchet derivative, about

the solution u, of the non-linear problem defined in equation (3.4.1). Dropping the formal
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arguments of ν and S for clarity the Fréchet derivative is

N
′

[u] (w) ≡ ν∇2w +
∂ν

∂u [u,∇u]
∇w · ∇u+∇ ·

(
∂ν

∂∇u [u,∇u]
· ∇w∇u

)
+(

∂S

∂u [u,∇u]
w +

∂S

∂∇u [u,∇u]
· ∇w

)
=

(3.4.5)

For simplicity let ∂(·)
∂u [u,∇u]

be represented as (·)u and ∂(·)
∂∇u [u,∇u]

as (·)∇u. Employing the duality

identity of equation (3.1.6), with the inner product defined as an integral for continuous

functions, the continuous adjoint is given as:∫
ψ

[
ν∇2w + νu∇w · ∇u+∇ ·

(
∂ν

∂∇u [u,∇u]
· ∇w∇u

)]
dΩ+∫

ψ [Suw + S∇u · ∇w] dΩ = 0

(3.4.6)

Integration by parts twice results in∫
w [∇ · (ν∇ψ)−∇ψ · νu∇u+∇ · (∇ψ · ν∇u∇u)] dΩ+∮
ψ [ν∇w + νu∇uw + ν∇u · ∇w∇u] · ~nds−

∮
w [∇ψν +∇ψ · ν∇u∇u] · ~nds+∫

w [Suψ −∇ψ · S∇u] dΩ +

∮
ψS∇uw · ~nds = 0

(3.4.7)

Using the duality identity, the continuous adjoint equation and boundary conditions are

∇ · (ν∇ψ)−∇ψ · νu∇u+∇ · (∇ψ · ν∇u∇u) + ψSu −∇ψ · S∇u = −j ′Ω[u]

ψ = j
′

D [u] ~x ∈ ΓD

∇ψ · ~n = j
′

N [u] ~x ∈ ΓN

(3.4.8)

by inspection.
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3.4.2 Discrete Adjoint and Dual Consistency

The DG discretization of the model problem equation (3.4.1) in weak from (i.e. integrated

by parts once) is given by:

N (uh, vh) ≡ −
∑
k∈Th

∫
Ωk

ν∇uh · ∇vh − vhS (uu,∇uu) dΩk+

∑
i∈Ih

∫
Γi
{ν∇uh} · JvhK + {ν∇vh} · JuhK− µ {ν} JuhK · JvhKds+

∑
b∈Bh

∫
ΓD
νb∇u+

h · ~nv+
h + νb∇v+

h

(
u+
h − a

)
· ~n− µνb

(
u+
h − a

)
v+
h ds+∑

b∈Bh

∫
ΓN
νbaNv

+
h ds = 0,∀vh ∈ Vh

(3.4.9)

which is still a semi-linear form. In order to find the discrete adjoint, equation (3.4.9) is

linearized.

N ′[uh] (wh, vh) ≡ NΩ
′

[uh] (wh, vh) +NΓi
′

[uh] (wh, vh) +NΓb
′

[uh] (wh, vh) = 0 ∀vh ∈ Vh (3.4.10)

Where the individual terms are given by:

NΩ
′

[uh] (wh, vh) ≡ −
∑
k∈Th

∫
Ωk

ν∇wh · ∇vh + νuhwh∇uh · ∇vh + ν∇u · ∇wh∇uh · ∇vh−

vhS (uu,∇uu)uh wh − vhS (uu,∇uu)∇uh · ∇whdΩk

(3.4.11)

NΓi
′

[uh] (wh, vh) ≡
∑
i∈Ih

∫
Γi

[{ν∇wh}+ {νuhwh∇uh}+ {ν∇uh · ∇wh∇uh}] · JvhK

− [µ {ν} JwhK + µ {νuhwh} JuhK + µ {ν∇uh · ∇wh} JuhK] · JvhK+

{ν∇vh} · JwhK + {νuhwh∇vh} · JuhK + {ν∇uh · ∇wh∇vh} · JuhKds

(3.4.12)

NΓb
′

[uh] (wh, vh) ≡
∑
b∈Bh

∫
ΓD

[
νb∇w+

h + νbubw
+
h∇u+

h + νb∇uh · ∇w
+
h∇u+

h

]
v+
h · ~n+

νb∇v+
h w

+
h · ~n+ νbubw

+
h∇v+

h

(
u+
h − a

)
· ~n+ νb∇uh · ∇w

+
h∇v+

h

(
u+
h − a

)
· ~n−[

µνbw+
h ~n+ µνbubw

+
h

(
u+
h − a

)
~n+ µνb∇uh∇w

+
h

(
u+
h − a

)
~n
]
v+
h · ~nds+∑

b∈Bh

∫
ΓN
νbubw

+
h aNv

+
h + νb∇uh · ∇w

+
h aNv

+
h ds = 0, ∀vh ∈ Vh

(3.4.13)
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which are the integrals over volumes, interior faces and boundary faces respectively. The

discrete adjoint is given by find ψh ∈ Vh such that

N ′[uh] (wh, ψh) ≡

NΩ
′

[uh] (wh, ψh) +NΓi
′

[uh] (wh, ψh) +NΓb
′

[uh] (wh, ψh) = J
′

[uh] (wh) ∀wh ∈ Vh
(3.4.14)

For simplicity each integral will be handled separately. The discrete adjoint volume integral

in equation (3.4.14) NΩ
′

[uh] (wh, ψh) is integrated by parts to yield

NΩ
′

[uh] (wh, ψh) ≡
∑
k∈Th

∫
Ωk

wh [∇ · (ν∇ψh)−∇ψh · νuh∇uh +∇ · (∇ψh · ν∇u∇uh)] +

wh [ψhSuh −∇ψh · S∇uh ] dΩk + Zi + Zb

Zi =
∑
k∈Th

∮
∂Ωk\Γb

−ν∇ψ+
h w

+
h · ~n−∇ψ+

h · ν∇uh∇u+
hw

+
h · ~n+ ψ+

h S∇uhw
+
h · ~nds

Zb =
∑
b∈Bh

∫
ΓD
−νb∇ψ+

h w
+
h · ~n−∇ψ+

h · νb∇uh∇u
+
hw

+
h · ~n+ ψ+

h S∇uhw
+
h · ~nds

(3.4.15)

The Zi term is added to the surface integrals and the Zb term is added to the boundary

surface integrals. Let ψh → ψ and uh → u, which results in the following for the volume

integral.

NΩ
′

[u] (wh, ψ) ≡
∑
k∈Th

∫
Ωk

wh [∇ · (ν∇ψ)−∇ψ · νu∇u+∇ · (∇ψ · ν∇u∇u)] +

wh [ψSu −∇ψ · S∇u] dΩk + J
′

Ω[u] (wh) = 0

(3.4.16)

The volume integral in equation (3.4.16) evaluated using the continuous adjoint variable is

zero by definition of the continuous adjoint equation given in equation (3.4.8).

The surface integral in equation (3.4.14) given by NΓi
′

[uh] (wh, ψh) is

NΓi
′

[uh] (wh, ψh) ≡
∑
i∈Ih

∫
Γi

[{ν∇wh}+ {νuhwh∇uh}+ {ν∇uh · ∇wh∇uh}] · JψhK

− [µ {ν} JwhK + µ {νuhwh} JuhK + µ {ν∇uh · ∇wh} JuhK] · JψhK+

{ν∇ψh} · JwhK + {νuhwh∇ψh} · JuhK + {ν∇uh · ∇wh∇ψh} · JuhKds

(3.4.17)
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Translating this into an element based integral and adding the Zi terms from equation

(3.4.15) gives

NΓi
′

[uh] (wh, ψh) ≡
∑
k∈Th

∮
∂Ωk\Γb

[
1

2
ν∇wh +

1

2
νuhwh∇uh +

1

2
ν∇uh · ∇wh∇uh

]
· JψhK

−
[
µ

1

2
νJwhK + µ

1

2
νuhwhJuhK + µ

1

2
ν∇uh · ∇whJuhK

]
· JψhK+

{ν∇ψh}w+
h · ~n+ {νuhwh∇ψh} · JuhK + {ν∇uh · ∇wh∇ψh} · JuhK−

ν∇ψ+
h w

+
h · ~n−∇ψ+

h · ν∇uh∇u+
hw

+
h · ~n+ ψ+

h S∇uhw
+
h · ~nds

(3.4.18)

Making use of the following identity

w+
h∇ψ+

h · ~n = {∇ψh} · ~nw+
h +

1

2
J∇ψhKw+

h
(3.4.19)

results in

NΓi
′

[uh] (wh, ψh) ≡
∑
k∈Th

∮
∂Ωk\Γb

[
1

2
ν∇wh +

1

2
νuhwh∇uh +

1

2
ν∇uh · ∇wh∇uh

]
· JψhK

−
[
µ

1

2
νJwhK + µ

1

2
νuhwhJuhK + µ

1

2
ν∇uh · ∇whJuhK

]
· JψhK+

{ν∇ψh}w+
h · ~n+ {νuhwh∇ψh} · JuhK + {ν∇uh · ∇wh∇ψh} · JuhK−

{ν∇ψh}w+
h · ~n−

1

2
Jν∇ψhKw+

h −∇ψ+
h · ν∇uh∇u+

hw
+
h · ~n+

ψhS∇uhw
+
h · ~nds

(3.4.20)

Again let ψh → ψ and uh → u. From the definition of the jump in equation (2.2.6), it is clear

that the jump in both exact solution u and exact adjoint ψ are zero(JψK = 0 and JuK = 0)

canceling many terms in equation (3.4.20). The remaining terms in equation (3.4.20) are

NΓi
′

[uh] (wh, ψ) =
∑
k∈Th

∮
∂Ωk\Γb

w+
h (ψS∇u · ~n−∇ψ · ν∇u∇u · ~n) ds (3.4.21)

This expression should be equal to zero, but it is not due to the source term and viscosity

dependence on state-variable gradients. This is one source of dual inconsistency.

The boundary integral in equation (3.4.14) NΓb
′

[uh] (wh, ψh) plus the boundary term Zb
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resulting from the integration by parts of the volume term in equation (3.4.15) is

NΓb
′

[uh] (wh, ψh) ≡
∑
b∈Bh

∫
ΓD

[
νb∇w+

h + νbubw
+
h∇u+

h + νb∇uh · ∇w
+
h∇u+

h

]
ψ+
h · ~n+

νb∇ψ+
h w

+
h · ~n+ νbubw

+
h∇ψ+

h

(
u+
h − a

)
· ~n+ νb∇uh · ∇w

+
h∇ψ+

h

(
u+
h − a

)
· ~n−[

µνbw+
h ~n+ µνbubw

+
h

(
u+
h − a

)
~n+ µνb∇uh∇w

+
h

(
u+
h − a

)
~n
]
ψh · ~n−

νb∇ψ+
h w

+
h · ~n−∇ψ+

h · νb∇uh∇u
+
hw

+
h · ~n+ ψ+

h S∇uhw
+
h · ~nds+∑

b∈Bh

∫
ΓN
νbubw

+
h aNψ

+
h + νb∇uh · ∇w

+
h aNψ

+
h ds

(3.4.22)

Again let ψh → ψ and uh → u and subtracting the boundary functional definitions,

J
′

ΓD [u]
(wh) in equation (3.4.24) and J

′

ΓN [u]
(wh) in equation (3.4.4). results in the cancel-

lation almost every term, the remaining terms are given by:

NΓb
′

[u] (wh, ψ)− J
′

ΓD [u] (wh)− J
′

ΓN [u] (wh) =

NΓb
′

[u] (wh, ψ)−
∑
b∈Bh

∫
ΓD
jD
′

[u]

(
νb∇w+

h · ~n+ νbuw
+
h∇u · ~n+ νb∇u · ∇w+

h∇u · ~n
)

+

jD
′

[u]

(
−µνbw+

h − µνbubw+
h

(
u+
h − a

)
− µνb∇uh · ∇w

+
h

(
u+
h − a

))
ds−∑

b∈Bh

∫
ΓN
jN
′

[u]

(
νbuw

+
h∇u · ~n+ νb∇u · ∇w+

h∇u · ~n
)
ds =

∑
b∈Bh

∫
ΓD
w+
h (−∇ψ · ν∇u∇u+ ψS∇u) · ~nds

(3.4.23)

where the target functional J
′
Γ[u] (wh) has been modified according to reference [49]. Note

that as ψh → ψ, then ψ → j
′
D on a Dirichlet boundary and ∇ψ · ~n → j

′
N on a Neumann

boundary. Likewise as uh → u on the boundary, then u → a on a Dirichlet boundary and

∇u · ~n→ aN on a Neumann boundary. The modified target function J
′

ΓD [u]
(wh) is given as

J
′

ΓD [u] (wh) = J
′

ΓD [u] (wh) +∑
b∈Bh

∫
ΓD
−µνbw+

h − µνbubw+
h

(
u+
h − a

)
− µνb∇uh · ∇w

+
h

(
u+
h − a

)
ds

(3.4.24)

which adds the penalty term to the functional definition in equation (3.4.4), in order cancel

the penalty contribution to the Dirichlet boundary integral in equation (3.4.22). This mod-

ification is not arbitrary and has an intuitive explanation. Essentially when evaluating the
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functional on the surface one should use the gradient from the element plus the so-called

”penalty gradient” (µ (uh − a)). In other words, in order to obtain a dual consistent dis-

cretization one needs to define the functional based on how the boundary surface integral is

computed for the discretization in equation (3.4.9).

From the above analysis it is clear that dual inconsistency can occur for this problem

and discretization, as seen in equation (3.4.25).

N ′[u] (wh, ψ) ≡ NΩ
′

[u] (wh, ψ) +NΓi
′

[u] (wh, ψ) +NΓb
′

[u] (wh, ψ) =

0 +
∑
k∈Th

∮
∂Ωk\Γb

w+
h (ψS∇u · ~n−∇ψ · ν∇u∇u · ~n) ds+

∑
b∈Bh

∫
ΓD
w+
h (−∇ψ · ν∇u∇u+ ψS∇u) · ~nds ∀wh ∈ Vh

(3.4.25)

However, the sources of inconsistency are relegated to state-variable gradient dependencies of

the viscosity and the source term. If one eliminates the dependence of these terms on state-

variable gradients, then the discretization is dual consistent. Either of the artificial viscosity

methods employed for shock capturing is dual consistent because neither the viscosity or

the source term has any dependence on the state-variable gradient. However, this is not

true of the SA turbulence model(equation (2.1.2)) used to close the RANS equations in

this work. The SA turbulence model has a source term that depends on the state-variable

gradient causing the model to be dual inconsistent. Attempts were made to eliminate the

dual inconsistency by following the methods in reference [42]. Unfortunately, applying these

methods increased computational time by a factor of two and resulted in a significantly less

robust solver.

The viscosity dependence on the state-variable gradient has implications beyond artifi-

cial viscosity. Large Eddy Simulation(LES) often employs a sub-grid scale(SGS) viscosity,

which is algebraic and depends on the gradients of the state-variables. The dual consistency

analysis of the model problem implies that SIP discretizations of LES models employing

algebraic SGS models, which depend on state-variable gradients, will result in a dual incon-

sistent discretization. Hence extending the presented SIP method to LES will not be straight

forward, as optimal accuracy will not be obtained for these types of algebraic SGS models.
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3.5 Dual Consistency of Boundary Conditions for the

Euler Equations

An important aspect of the discretization is the effect of boundary conditions on dual con-

sistency. Dual consistency gives guidelines for constructing optimally accurate boundary

conditions, both from a solution error point of view and functional error point of view. This

section will detail the analysis of the wall boundary condition applied to the Euler equations.

The purpose of this section is to give an example of how the analysis is conducted and what

conclusions can be drawn from this analysis.

Consider the compressible Euler equations written in a general flux form equation

(2.1.12). Recall that bold face symbols are vectors in the number of unknowns and vectors

with arrows over the top are vectors in the number of physical dimensions. Therefore a bold

face symbol with an arrow over it is a rank 2 tensor. Neglecting the temporal derivative ∂u
∂t

and artificial diffusion fluxes ~Fad in equation (2.1.12), the steady-state Euler equations are

written as

∇ · ~F (u) = 0 (3.5.1)

where the subscript c is dropped because it is not necessary for this analysis. Also consider

the following functional,

J (u) =

∫
Γ

j (C (u))ds (3.5.2)

which is defined only on the surface, since for aerodynamic flows this is the principal type

of functional, examples of surface based functionals are lift or drag. Here C (u) is a non-

linear function that can change the state vector into derived products such as pressure or

temperature. j is a surface sampling function indicating what surface to use and how to use

it. For example if the desired target is lift then

C (u) ≡ P (u)

j ≡ ~n · (−sin (α) , cos (α))T = ~n · ~zwall
~zwall = (−sin (α) , cos (α))T

(3.5.3)

where P (u) is the pressure, α is the angle of attack and the integral is done on Γwall, which
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is the wall boundary.

3.5.1 Continuous Adjoint of Euler Equations

The steady-state Euler equations represent a non-linear operator, which is linearized to

obtain the continuous adjoint equation. Linearizing the steady-state Euler equations, given

in equation (3.5.1), around the state u.

∇ ·
(
~F
′

[u] (w)
)

=
(
~F
′

[u]

)
· ∇w = 0 (3.5.4)

Linearizing the functional about u as well, results in the following.

J
′

[u] (w) =

∫
Γ

j
′

[Cu]C
′

[u]wds (3.5.5)

Taking the inner product of the adjoint variable with the linearized PDE results in∫
Ω

ψT∇ ·
(
~F
′

[u] (w)
)
dΩ = 0 (3.5.6)

which is integrated by parts once to obtain

−
∫

Ω

∇ψT ·
(
~F
′

[u] (w)
)
dΩ +

∫
Γ

ψT ~F
′

[u]w · ~nds = J
′

[u] (w) (3.5.7)

and is transposed to give

−
∫

Ω

wT
(
~F
′

[u]

)T
· ∇ψdΩ +

∫
Γ

wT
(
~F
′

[u]

)T
ψ · ~nds = J

′

[u] (w) (3.5.8)

This results in the continuous adjoint equation, found by analogy to the duality identity in

equation (3.1.6) (
~F
′

[u]

)T
· ∇ψ = 0 (3.5.9)

where the right hand side is zero because in this case there are no volume sampled objectives.

The adjoint boundary conditions are a bit more difficult to obtain. Recall the part of the

identity in equation (3.1.6)
〈
C
′

[u] (w) , (B∗)
′

[u] (ψ)
〉

Γ
and recall the definition of C (u) = P (u),

which is the pressure, hence the the linearization of C (u)

C
′

[u] = P
′

[u] (3.5.10)
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The flux at the slip wall boundary is pressure alone and thus∫
Γ

w
(
~F
′

[u]

)T
ψ · ~nds =

∫
Γ

wP
′

[u]

T
~n · ~zwallds (3.5.11)

which allows for the deduction of the continuous adjoint boundary condition. Considering

that at the wall ~F = (0, P~n, 0), one can deduce the continuous adjoint boundary condition

as

~ψ · ~n = ~n · ~zwall (3.5.12)

which pertains to the momentum adjoint variables. The density and energy adjoint variables

have Neumann conditions just like the primal density and energy as in equation (2.9.9).

Now that the continuous adjoint equation and the associated adjoint variable wall boundary

condition are known, a dual consistency analysis is conducted.

3.5.2 Dual Consistency of Discrete Euler Equations

Consider the DG discretized Euler equations with the possibility of employing an approxi-

mate Riemann solver(discussed in Chapter 2) on the boundary. Note that during this anal-

ysis the ()
′

notation will not be used, for the clarity of linearizing the approximate Riemann

fluxes, H. The discretized steady-state Euler equations from Chapter 2 equation (2.2.3) are

given as

N (uh,vh) ≡ −
∑
k∈Th

∫
Ωk

∇vTh · ~F (uh) dΩk +
∑
k∈Th

∮
∂Ωk\Γb

(
v+
h

)T H (u+
h ,u

−
h , ~n

)
ds+

∑
b∈Bh

∫
Γb

(
v+
h

)T Hb

(
u+
h ,u

b
h

(
u+
h

)
, ~n
)
ds = 0 ∀vh ∈ Vh

(3.5.13)
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where the viscous(~Fv), artificial diffusion(~Fad), and source(S) terms in equation (2.2.3) are

set to zero. Equation 3.5.13 is linearized to obtain

N ′[uh] (wh,vh) ≡
∑
k∈Th

∫
Ωk

∇vTh ·
∂~F

∂uh [uh]

whdΩk+

∑
k∈Th

∮
∂Ωk\Γb

((
v+
h

)T ∂H
∂u+

h [u+
h ,u
−
h ,~n]

w+
h +

∂H
∂u−h [u+

h ,u
−
h ,~n]

w−h

)
ds

∑
b∈Bh

∫
Γb

(
v+
h

)T (∂Hb

∂u+
h [u+

h ,u
b
h(u

+
h ),~n]

+
∂Hb

∂ub [u+
h ,u

b
h(u

+
h ),~n]

∂ub
∂u+

h [u+
h ]

)
w+
h ds = 0 ∀vh ∈ Vh

(3.5.14)

which is a bi-linear form for wh. The corresponding discrete adjoint equation is

N ′[uh] (wh,ψh) ≡
∑
k∈Th

∫
Ωk

(
w+
h

)T [ ∂~F
∂uh [uh]

]T
· ∇ψhdΩk+

∑
k∈Th

∮
∂Ωk\Γb

(w+
h

)T [ ∂H
∂u+

h [u+
h ,u
−
h ,~n]

]T
+
(
w−h
)T [ ∂H

∂u−h [u+
h ,u
−
h ,~n]

]Tψ+
h ds

∑
b∈Bh

∫
Γb

(
w+
h

)T (∂Hb

∂u+
h [u+

h ,u
b
h(u

+
h ),~n]

+
∂Hb

∂ub [u+
h ,u

b
h(u

+
h ),~n]

∂ub
∂u+

h [u+
h ]

)T

ψ+
h ds = 0 ∀wh ∈ Vh

(3.5.15)

Following the previous section dual consistency is shown one integral at at time and

the continuous solutions will be inserted into these small pieces. First consider the volume

integral of the discrete adjoint equations in equation (3.5.15).

NΩ
′

[uh] (wh,ψh) ≡
∑
k∈Th

∫
Ωk

wT
h

[
∂~F

∂uh [uh]

]T
· ∇ψhdΩk ∀wh ∈ Vh (3.5.16)

To show dual consistency let uh → u and ψh → ψ

NΩ
′

[u] (wh,ψ) ≡
∑
k∈Th

∫
Ωk

wT
h

[
∂~F

∂u [u]

]T
· ∇ψdΩk = 0 ∀wh ∈ Vh (3.5.17)

by definition of the continuous adjoint equation (3.5.9). The interior surface term in equation

(3.5.15) can be re-written in a face based from.

NΓi
′

[uh] (wh,ψh) ≡
∑
i∈Ih

∫
Γi

(
w+
h

)T [ ∂H
∂u+

h [u+
h ,u
−
h ,~n]

]T
JψhK · ~nds ∀wh ∈ Vh (3.5.18)
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Again let let uh → u and ψh → ψ

NΓi
′

[u] (wh,ψ) ≡
∑
i∈Ih

∫
Γi

(
w+
h

)T [ ∂H
∂u+ [u,u,~n]

]T
JψK · ~nds = 0 ∀wh ∈ Vh (3.5.19)

which is zero by JψK = 0. Finally the boundary terms in equation (3.5.15) are given as

NΓb
′

[uh] (wh,ψh) ≡∑
b∈Bh

∫
Γb

(
w+
h

)T (∂Hb

∂u+
h [u+

h ,u
b
h(u

+
h ),~n]

+
∂Hb

∂ub [u+
h ,u

b
h(u

+
h ),~n]

∂ub
∂u+

h [u+
h ]

)T

ψ+
h ds

∀wh ∈ Vh

(3.5.20)

into which the substitution uh → u and ψh → ψ is made.

NΓb
′

[u] (wh,ψ) ≡
∑
b∈Bh

∫
Γb

(
w+
h

)T (∂Hb

∂u [u,ub(u),~n]
+
∂Hb

∂ub [u,ub(u),~n]

∂ub
∂u [u]

)T

ψds =

∑
b∈Bh

∫
Γb
j
′

[Cu]C
′

[u]whds ∀wh ∈ Vh
(3.5.21)

If the functional definition j (C (u)) is modified so that it is evaluated at the boundary state

then one obtains j
(
C
(
ub
))

as:

j
′

[u] =
∂P

∂ub [u]

∂ub

∂u [u]

T

(0, ~n, 0) · ~zwall (3.5.22)

Recall the continuous adjoint boundary condition ~ψ ·~n = ~n ·~zwall. Therefore on the left hand

side one needs the following to make this equality true.(
∂Hb

∂u [u,ub(u),~n]
+
∂Hb

∂ub [u,ub(u),~n]

∂ub
∂u [u]

)T

=
∂P

∂ub [u]

∂ub
∂u [u]

(3.5.23)

This is only possible if

Hb

(
u+
h ,u

−
h , ~n

)
= ~n · ~F

(
ub
(
u+
h

))
(3.5.24)

which upon linearization and substitution with the continuous solution u, one obtains

(
w+
h

)T (∂Hb

∂u [u,ub(u),~n]
+
∂Hb

∂ub [u,ub(u),~n]

∂ub
∂u [u]

)T

ψ =

∂P

∂ub [u]

∂ub

∂u [u]

T

w+
hψ

(3.5.25)
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Using equation (3.5.25),equation (3.5.22) and the definition of the adjoint boundary condition

equation (3.5.12) in equation (3.5.21) gives

∑
b∈Bh

∫
Γb

[
∂P

∂ub [u]

∂ub

∂u [u]

]T
w+
h (0, ~n, 0) · ~zwallds =

∑
b∈Bh

∫
Γb
j
′

[u]ds =

∑
b∈Bh

∫
Γb

[
∂P

∂ub [u]

∂ub

∂u [u]

]T
w+
h (0, ~n, 0) · ~zwallds

(3.5.26)

N ′[u] (wh, ψ) ≡ NΩ
′

[u] (wh, ψ) +NΓi
′

[u] (wh, ψ) +NΓb
′

[u] (wh, ψ) =

0 + 0 +
∑
b∈Bh

∫
Γb
j
′

[u]ds =
∑
b∈Bh

∫
Γb
j
′

[u]ds ∀wh ∈ Vh
(3.5.27)

Thus the scheme is dual consistent under this type of boundary condition as seen in

equation (3.5.27). While it is technically possible to devise a boundary condition of the form

Hb

(
u+
h ,ub

(
u+
h

)
, ~n
)

that is dual consistent. It is much simpler to form a boundary condition

of the form Hb

(
ub
(
u+
h

)
, ~n
)
, which is dual consistent by the presented analysis.

While the analysis of dual consistency is shown for model problems, the discretization

of the Navier-Stokes equations including stabilization terms and boundary conditions is dual

consistent. The proof of this is presented very nicely in reference [49].

3.6 Numerical Examples

While dual consistency analysis is helpful it does not necessarily prove that the implemen-

tation of the boundary conditions and other terms is dual consistent. Therefore a numerical

example is computed to demonstrate the dual consistency of the actual computer program.

References [56, 74] have shown that dual consistency errors only affect the functional error

convergence rate of even p values i.e. p = 2, 4, 6.... For a dual inconsistent discretization

the even p values show error convergence properties of the odd p value one order lower than

p. For example, a p = 2 dual inconsistent discretization would have a functional error con-

vergence rate of 2 instead of 4. Therefore to demonstrate that a scheme is dual consistent

it is sufficient to show the error convergence rate of a p = 2 discretization, compared to a

p = 1 discretization. In addition to examining function accuracy, some sample contour plots
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of the adjoint solutions are shown. Smooth adjoint solution contours are a qualitative sign

of adjoint consistency [56].

3.6.1 Laminar Viscous NACA0012 Airfoil: Drag Error

To demonstrate the dual consistency of the implementation the laminar viscous flow over a

NACA0012 is considered. Uniform mesh refinement is conducted at p = 1 and p = 2 and

the drag error is computed at each uniform refinement. The flow conditions are free-stream

Mach number M∞ = .5, angle of attack α = 1o, and Reynolds number based on airfoil chord

length Re = 5, 000. The reference drag value is computed at a discretization order of p = 4

with 250, 000 unknowns. Figure 3.1 demonstrates the drag error convergence rate for p = 1

Figure 3.1: Drag error convergence for the flow over a NACA0012 airfoil computed at p = 1 and
p = 2 to demonstrate dual consistency.

and p = 2 discretizations, using uniform mesh refinement. The scheme is dual consistent

since the p = 1 result converges with order 2 while the p = 2 result converges with order 4.
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3.6.2 Example Adjoint Solutions

This section presents some sample adjoint solutions for a viscous laminar flow and an inviscid

transonic flow. These give a qualitative picture of the adjoint variable distributions in space

for two flow problems.

Figure 3.2 shows the contours for the adjoint of drag for the laminar flow over a

NACA0012 airfoil at M∞ = .5, α = 1o, and Re = 5, 000. Notice that all the adjoint

solutions are smooth near the boundary as well as in the wake. The leading edge looks a

little non-smooth, which is a post processing artifact due to coarse mesh resolution at the

leading edge as well as the inability of the plotting program to handle high-order data sets

adequately(Section 2.8). Smooth adjoint contours are a qualitative sign of a dual consistent

discretization, which is free of noisy adjoint variables that give improper error estimates.

Also notice the ”reverse wake” coming off the leading edge of the airfoil. The adjoint shows

that the upstream region is important for the functional of drag. This is non-intuitive, which

is why one appeals to the adjoint for adaptive refinement guidance.

Figure 3.3 shows the lift adjoint contours for an inviscid transonic flow computed with

the PDE based artificial viscosity. The flow conditions are M∞ = .75 and α = 3.5o. Notice

that even in the triangle shaped region upstream of the shock smooth adjoint contours are

obtained. Again the lift shows more sensitivity to the upstream flow field than to the down

stream flow field.
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(a) ρ (b) ρu

(c) ρv (d) Et

Figure 3.2: Drag adjoint contours for laminar flow over a NACA0012 airfoil at M∞ = .5, α = 1o,
and Re = 5, 000.
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(a) ρ (b) ρu

(c) ρv (d) Et

Figure 3.3: Lift adjoint contours for inviscid transonic flow over a NACA0012 airfoil using PDE-
based artificial viscosity, with M∞ = .75, α = 3.5o.
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Chapter 4

Solution Methods

An efficient and robust CFD solver requires the consideration of many coupled tasks. One

such task that is often overlooked or glossed over is the non-linear solver. In high-order

methods research, one often finds explicit time-stepping is used to solve the non-linear equa-

tions, even for steady-state flows [36, 38, 75]. While this is easy to program and generally

robust, explicit time-stepping is prohibitively slow due to the time-step restriction based on

the Courant-Friedrichs-Lewy(CFL) constraint, which becomes more restrictive as the dis-

cretization order increases. Fully implicit solvers offer a significantly faster alternative to

explicit time-stepping because there is no time-step constraint.

Implicit solution techniques are gaining popularity within the high-order methods re-

search community. References [30, 31, 33, 76–78] pioneered the use of multigrid methods for

solving the linear system arising from the application of Newton’s method to the flow prob-

lem, as well as for solving the non-linear problem directly. As a follow-up to the multigrid

solvers, numerical experiments with the application of Krylov methods were conducted in

references [15,57,79].

In this work, implicit solvers are used exclusively for all test problems. Newton’s method

is used to solve the non-linear algebraic system of equations resulting from the spatial dis-

cretization of the steady-state form of the governing equations in equation (2.2.4). In order

to solve the linear problem arising at each Newton iteration, the Generalized Minimum

Residual (GMRES) method is employed. Preconditioning is a key component of any GM-
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RES method, and this section details the results of various preconditioners. In particular,

preconditioning for anisotropic viscous meshes is considered in detail.

High Reynolds number viscous flows form a large part of this work. These flows require

highly anisotropic grids that necessitate curving not only the boundary elements in the

mesh but several layers of interior elements as well. Anisotropic grids induce significant

stiffness into the discrete equations, and one method to alleviate the stiffness is line-implicit

relaxation. The line creation and line-implicit relaxation methods are described in detail. To

make the solver more efficient, mixed-element meshes are employed using quadrilaterals in the

boundary layer and triangles in outer regions. The mixed-element grid generation method is

explained, and comparisons between triangular and quadrilateral meshes for boundary layer

flows are discussed. This chapter establishes the baseline numerical results of the high-order

DG CFD solver.

4.1 Grid Generation and Manipulation

The unstructured meshes in this work are generated using the UMESH2D unstructured

mesh generator of reference [80]. UMESH2D is an advancing front delaunay triangulation

unstructured mesh generator that generates triangular meshes. The meshes can have highly

stretched elements in the boundary layer and wake regions that are suitable for Reynolds

Averaged Navier-Stokes (RANS) computations around single and multi-element airfoils. Fig-

ure 4.1 shows an example mesh generated for a typical multi-element airfoil configuration.

In order to improve transformation computation cost and relieve stretched mesh stiffness,

mixed-element meshes with quadrilaterals in the boundary layer are employed.

4.1.1 Mixed-element Meshes

In the finite-volume literature, mixed-element meshes are employed to improve the accuracy

of gradient reconstruction in the boundary layer [81]. This is not the case with DG methods,

as gradients are computed via the derivatives of the basis functions and do not rely on the

neighbor stencil (gradients do however rely on the transformation metrics). However, the use
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Figure 4.1: Unstructured mesh around multi-element airfoil configuration generated using
UMESH2D.

of quadrilateral elements for DG discretizations can still be beneficial, since quadrilaterals

enable equivalent accuracy with fewer elements (a single quadrilateral can replace two similar

triangles). Figure 4.2 shows the mesh from Figure 4.1 with the boundary layer and wake

region triangles merged into quadrilaterals, resulting in an example of a mixed-element mesh

employed in this work.

Figure 4.2: Unstructured mixed-element mesh around multi-element airfoil configuration generated
using UMESH2D with boundary layer and wake regions merged into quadrilaterals.

Additionally, quadrilateral elements are more flexible for computations involving curved

geometries in anisotropic regions of the mesh. In this work, super-parametrically mapped

elements are employed, where the element boundaries are mapped geometrically to order

p+ 1 for a solution of order p. In the case of anisotropic meshes, this often necessitates the

curving of interior elements to avoid inconsistent mesh cross-overs. A variety of strategies
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exist for curving the interior elements of anisotropic meshes. For example, references [20,82]

have used elasticity-based node movement schemes. These methods have the advantage

that they can produce highly stretched meshes with positive element transform Jacobians

everywhere. On the other hand these elasticity-based methods lead to the entire mesh being

mapped to higher-order. This is unnecessary as once the mesh has become isotropic and

does not touch a curved boundary, straight-sided elements corresponding to linear mappings

are sufficient. As such this work employs a simpler approach.

To generate curved elements in anisotropic meshes, mappings of each of the curved

boundary faces are generated. Previously formed lines (for the line-implicit Jacobi smoother

described subsequently in Section 4.3.2) are then used to copy this curvature straight up the

line away from the surface as seen Figure 4.3. This approach ensures that only a small subset

of the mesh is mapped to higher than p = 1, saving computational cost when computing the

transformation quantities. This method does however have a disadvantage, since the element

Jacobian can become negative, especially for triangular meshes, which is the result of edge-

crossing for highly curved triangles. It is for this reason that quadrilaterals are employed in

the boundary layer. Quadrilateral elements can tolerate much higher curvature and aspect-

ratios without negative transform Jacobians. In fact, this curvature method has yet to

produce a mesh in this study where quadrilaterals have generated negative transformation

Jacobians. Employing mixed element meshes for DG discretizations allows for minimal

transformation computational cost and the use of highly curved high aspect-ratio elements.

4.1.2 Merging Triangular Meshes

Since UMESH2D generates purely triangular meshes, the mixed-element meshes employed

in this work are generated by post-processing the UMESH2D meshes. This post-processing

proceedure is known as merging and is designed to recover quadrilaterals in highly anisotropic

regions of the mesh. The merging proceedure employed is based on the one proposed in

reference [83]. In this work, the distance between triangle circumcenters relative to the

Vornoi perimeter is used as the metric to merge triangular elements. The circumcenter is
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Figure 4.3: Example of stretched curved mesh where several layers of cells near the boundary must
be curved in order to prevent edge cross over.

the center of the circumcircle of the triangle, which is the circle that contains all three nodes

of the triangle. An example circumcircle and the corresponding circumcenter is shown in

Figure 4.4. The Vornoi perimeter is the perimeter of the dual cell centered at the nodes of

the mesh. An example Vornoi perimeter is shown in Figure 4.5.

For highly stretched elements that are built in layers, the circumcenters are nearly

coincident. This means that the distance between circumcenters along certain edges of the

Vornoi diagram will make up a very small fraction of the Vornoi perimeter for the nodes that

define the edge. Hence these edges can be removed to form quadrilaterals. The algorithm

loops over the grid and removes all the edges where the ratio between circumcenter distance

and Vornoi perimeter of either node which defines the edge is less than 0.1. For example,

any edge in the isotropic stencil shown in Figure 4.5 would not be removed since each edge

makes up an almost equal portion of the Vornoi perimeter. Contrarily, Figure 4.6(a) shows

an example stencil where one of the edges is removed by the algorithm, as this edge makes up

a small portion of the Vornoi perimeter of each node defining the edge. Figure 4.6(b) shows
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Figure 4.4: Example of a circumcircle for a single triangle.
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Figure 4.5: Example of a Vornoi perimeter for the node at the center of the stencil.

the results of removing the marked edge in Figure 4.6(a). The algorithm proceeds through

each edge in the mesh and removes similar edges, until all such edges have been removed.

To ensure that no poorly shaped quadrilaterals are generated the algorithm is not allowed
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to remove any edges that would cause an internal angle of the resulting quadrilateral to be

greater than 115o.

XX

X

X

XX

(a) Before merge: red edge to be removed

(b) After merge: red edge removed

Figure 4.6: Example of stencil where an edge has a vanishing Vornoi perimeter contribution. The
red edge in (a) would is removed via the mering algorithm.

4.2 Implicit Solver Formulation

The steady-state flow equations are solved using a Newton method where the linear system

is solved approximately at each Newton step with a GMRES solver. By neglecting the

temporal derivative in equation (2.2.3) the system of equations becomes

Rh(uh) = 0 (4.2.1)
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where Rh(uh) is the non-linear residual in equation (2.2.4), which represents the spatial

discretization. This set of non-linear equations is solved using Newton’s method:[
∂Rh

∂ûh

]n
∆ûn+1

h = −Rh(u
n
h)

ûn+1
h = ûnh + ∆ûn+1

h

(4.2.2)

Newton’s method will diverge if the initial guess is too far from the final solution. Thus

the flux Jacobian matrix is augmented with a damping term to increase robustness. The

damped Newton iteration is given as:[
[M ]

∆tne
+
∂Rh

∂ûh

]n
∆ûn+1

h = −Rh(u
n
h)

ûn+1
h = ûnh + ∆ûn+1

h

Mije =

∫
Ωe

φiφjdΩe ∀e ∈ Th

(4.2.3)

where Mije is the mass matrix resulting from spatial discretization of the temporal derivative.

The mass matrix defined per-element where φi is the solution basis function described in

Section 2.3. ∆te is an element-wise timestep used as a damping factor:

CFL = min

(
CFLmin

(‖ Rh (u0
h) ‖2

‖ Rh (unh) ‖2

)r
, CFLmax

)
∆tne =

CFL|Ωe|
|∂Ωe|(|~ue|+ ae)

∀e ∈ Th
(4.2.4)

where the CFL is the Courant-Friedrichs-Lewy number and a is the sound speed. Due to

the block-sparse nature and size of the matrix an iterative method will be used to solve

the linear system arising from Newton’s method. In this work the CFL is used to aid in

selecting stable damping parameters for startup, not as a true time-step restriction that must

be satisfied throughout the solution process. Typical settings are

CFLmin = 1.0

r = 1.25

CFLmax = 1.0e16

which can be adjusted as needed for a particular problem. The absolute minimum CFLmin

in any test case in this work is 1.0e−2 and CFLmax = 1.0e16 for all test cases.
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4.3 Linear Solvers

The matrix arising from Newton’s methods consists of a sparse block matrix. Since the

matrix is quite large, iterative methods become the method of choice for inverting the linear

system at each Newton iteration. Consider the linear system [A]x = b where [A] , x, b are

short hand for the damped flux Jacobian, linear solution update and right hand side of

equation (4.2.3) respectively. One way to derive iterative methods is to consider splitting

the matrix [A]. Nastase and Mavriplis [31] review some approximations and splittings of the

flux Jacobian. For this work three splittings are employed, namely the so called linearized

element Jacobi splitting [31], line-implicit Jacobi splitting and line-implicit colored Gauss-

Seidel splitting. Consider the linear system [A]x = b and let [A] be split as [A] = [M ] + [N ].

Thus for iteration k one can write the update to x as

xk+1 = (1− ω)xk + ω [M ]−1 (b− [N ]xk
)

(4.3.1)

where ω is an under relaxation factor ω ∈ (0, 1]. The forms of [M ] and [N ] give different

iterative methods.

In this work three splittings are considered. In the first, [M ] is taken as the block

diagonal of the full Jacobian matrix and [N ] corresponds to all the block off-diagonals,

which yields the so-called linearized element Jacobi (LEJ) [31] scheme. The second splitting

yields the line-implicit Jacobi(LIJ) scheme where [M ] is now taken as the part of the flux

Jacobian corresponding to the diagonal and off-diagonal blocks contained in a set of lines

drawn through the highly stretched anisotropic regions of the mesh, and [N ] represents all

remaining off-diagonal block elements. Note that in regions of isotropic cells (lines containing

a single element) this splitting reverts to the LEJ splitting since the line length reduces to

a single element. The final splitting is the line-implicit colored Gauss-Seidel(CGS) splitting,

which uses the same lines as the LIJ splitting but treats the off-diagonal entries contained in

[N ] in a different manner. Any of these splittings can be used as a solver by itself. However,

reference [57] has shown that they are better utilized as smoothers for multigrid methods,

as preconditioners, or as part of preconditioners for Krylov subspace methods (GMRES).
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4.3.1 Linearized Element Jacobi (LEJ)

The linearized-element Jacobi splitting consists of the following

[M ] = [D]

[N ] = [O]

xk+1 = (1− ω)xk + ω [D]−1 (b− [O]xk
) (4.3.2)

where [D] represents the diagonal block and [O] represents the off diagonal blocks of the

Jacobian matrix on the left hand side of equation (4.2.3). Thus only the diagonal block is

factorized and inverted. In this case direct LU factorization is employed with forward/back-

ward substitution to give the effect of [D]−1. The LEJ smoother is especially simple to

construct but does not provide adequate convergence rates on highly stretched meshes. In

order to over come this a more involved splitting is devised.

4.3.2 Line-Implicit Jacobi (LIJ)

In order to maintain fast convergence rates on anisotropic meshes a line-implicit smoother can

be used [84]. With this in mind, a line creation algorithm and line-implicit Jacobi smoother

have been devised and implemented to enable efficient solution techniques on anisotropic

meshes.

Line creation is accomplished using a two pass approach. Since the anisotropic cells are

used to capture boundary layers, anisotropic regions are found attached to the boundary

faces of the mesh that are solid surfaces. The line creation algorithm begins by considering

all the boundary faces in the mesh attached to solid surfaces. Lines that originate from

the solid surfaces are formed by taking each surface face and computing the corresponding

normal vector. Then the angle between the surface normal and all other faces attached to

the boundary element are computed. If any of the angles are less then 10 degrees then that

face is added to the line and the neighboring element across that face becomes the element to

be searched. The processes is repeated until all the current element’s face normals make an

angle with the surface normal greater than 10 degrees. This is repeated for each boundary

face in the mesh that is a solid surface.
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Once the lines attached to the solid surfaces are formed there can still be areas in the

mesh that are highly anisotropic (i.e. wake regions). Lines in these regions are created using

a weighted graph algorithm [85], which has been slightly modified for cell-centered rather

then node-centered discretizations. This algorithm assigns a weight to each graph edge (in

this case a graph edge is a line connecting two cell-centers). This edge-weight is taken

as the inverse of the graph edge length. The ratio of maximum to average edge-weight is

precomputed for each cell in the mesh. The cells are then ordered according to this ratio and

stored as a heap-list. The top element in the heap is chosen as the starting point for a line,

provided the element is not already part of a line. The most strongly connected neighbor is

added to the line provided that it is not already part of a line and that the ratio of maximum

to minimum connection strength is greater then β (β = 3 for all cases). The element that

was just added to the line now becomes the current element. The line is terminated when the

current element’s ratio of maximum to minimum connection strength violates the threshold

on β. As these lines are not attached to a surface the process is repeated for the original

seed element with the second most strongly connected neighbor and proceeding as before,

adding to the same line. Figure 4.7(a) and Figure 4.7(b) shows the grid and corresponding

lines created around a NACA0012 airfoil. Figure 4.7(c) and Figure 4.7(d) show the lines

created on a flat plate geometry of zero thickness. These two examples demonstrate the

ability of the line creation algorithm to find lines through all the anisotropic regions of the

mesh. Examination of Figure 4.7(b) shows that the combined algorithm has generated both

lines connected to the surface and and in the wake. Note that for the flat plate mesh in

Figure 4.7(d) the weighted graph algorithm has formed lines in the convective direction off

the solid surface. This is due to the cell clustering at the plate leading edge. In fact, if

these lines are not created the convergence rate of the solver degrades significantly, showing

that lines are needed in highly anisotropic regions of the mesh regardless of the physical

phenomena present in those regions.

Once the lines have been created the line-implicit smoother is straight-forward to im-

plement. Implicit lines form a block tri-diagonal matrix for each line. Each row of this

block tri-diagonal matrix contains the block diagonal matrix of an element and at least one
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(a) NACA0012: Grid (b) NACA0012: Lines

(c) Flat plate: Grid (d) Flat plate: Lines

Figure 4.7: Illustration of lines used in line-implicit Jacobi smoother, as well as the grids from
which the lines are generated.

(usually two) block off-diagonal matrices. This is how [M ] and [N ] in equation (4.3.1) are de-

fined. [M ] contains all the block matrices in a line and [N ] contains those block off-diagonal

matrices that are not in a line. Figure 4.8 shows an example of three lines drawn vertically

through a sample stencil.
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Figure 4.8: Sample line-implicit stencil with three lines defined vertically in the figure.

A sample of the split matrices [M ] and [N ] for lines in Figure 4.8 are given as:

[M ] =



. . .[
∂Rhn1

∂uhn1

] [
∂Rhn1

∂uhi

]
0 . . .[

∂Rhi

∂uhn1

] [
∂Rhi

∂uhi

] [
∂Rhi

∂uhn3

]
0 . . .

0
[
∂Rhn3

∂uhi

] [
∂Rhn3

∂uhn3

]
0 . . .

. . .


(4.3.3)

[N ] =



. . .

. . . 0 0 0 0 0
[
∂Rhn1

∂uhn6

] [
∂Rhn1

∂uhn7

]
0 . . .

. . . 0
[
∂Rhi

∂uhn2

]
0
[
∂Rhi

∂uhn4

]
0 0 0 0 . . .

. . . 0 0 0 0
[
∂Rhn3

∂uhn5

]
0 0

[
∂Rhn3

∂uhn8

]
. . .

. . .


(4.3.4)

101



In Figure 4.8 the stencil is centered about cell i with neighbors n1 to n8. The [M ] matrix

is made up of lines connecting the diagonal of an element with two of the element’s off-

diagonal blocks as shown in equations equation (4.3.3). The [N ] are the remaining off-

diagonal elements not in [M ] for each element in a line.

Using this matrix splitting the linear system is now solved using a block variant of the

Thomas algorithm [9]. Consider a block tri-diagonal matrix given as

[[Ai] , [Bi] , [Ci]]xi = ri ∀i = 1, N (4.3.5)

where [Ai] is a block matrix in the ith row of the full matrix and xi is a block vector in the ith

row of the full vector. The ri vector on the right hand side is a place holder for all the right

hand side terms in the LIJ splitting. The block Thomas factorization algorithm is given by

Algorithm (1). For a given number of iterations the factorization is performed only once

Algorithm 1 :Block Thomas Factorization[
B
′
1

]
= [B1][

B
′
1

]
= LU

([
B
′
1

])
for j = 2, N do[

B
′
j

]
= [Bj]− [Aj]

([
B
′
j−1

]−1
[Cj−1]

)
[
B
′
j

]
= LU

([
B
′
j

])
end for

and reused for several iterations of the solver. Algorithm (2) shows the solution algorithm

utilized for the LIJ splitting.

The line-implicit smoother is used to ensure that the convergence rate observed for

isotropic meshes is maintained for similar anisotropic meshes. To verify that this is the

case, the LIJ smoother is implemented within a linear multigrid algorithm and used to solve

Poisson’s equation. Two meshes each of which contain N = 1, 102 elements are used. The

first mesh is made of isotropic evenly spaced triangles and the second is made of anisotropic

stretched triangles(maximum aspect ratio = 26912 : 1). The results of solving Poisson’s

equation with a p = 3 DG discretization using linear multigrid are shown in Table 4.1, where

the average rate refers to the average decrease in the linear system residual ‖ b − [A]x ‖2
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Algorithm 2 :Block Thomas Iteration

for k = 1, Niteration do

y1 =
[
B
′
1

]−1
r1

for j = 2, N − 1 do

yj =
[
B
′
j

]−1
(rj − [Aj] yj−1)

end for
yN =

[
B
′
N

]−1
(rN − [AN ] yN−1)

xN = yN
for j = N − 1, 1 do

xj = yj −
([
B
′
j

]−1
[Cj]

)
xj+1

end for
end for

Table 4.1: Comparison of convergence rates for Poisson problem, using N = 1, 102 elements with
and without stretching for p = 3.

Mesh/Smoother Average rate
Isotropic/LEJ .49

Anisotropic/LEJ .98
Anisotropic/LIJ .55

over the convergence history. Mathematically this is given by

Average rate =

Niter∑
n=1

(∣∣‖ b− [A]x ‖n2 − ‖ b− [A]x ‖n+1
2

∣∣
‖ b− [A] ‖n2

)
(4.3.6)

where Niter is the total number of linear iterations utilized to solve the problem. These

results very clearly show that without the line-implicit smoother the convergence rate drops

significantly. On the other hand, if the line-implicit smoother is employed the convergence

rate is almost unchanged from the isotropic case.

Additionally a line-implicit colored Gauss-Seidel relaxation method has also been im-

plemented as a stand alone solver and single-level preconditioner to GMRES.

4.3.3 Colored Gauss-Seidel(CGS)

In order to apply a Gauss-Seidel relaxation strategy in parallel the mesh must be “colored”.

Coloring is a process by which elements in the mesh are numbered in groups that are indepen-

dent of one another. Gauss-Seidel smoothing is then performed over the groups. Algorithm
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Algorithm 3 :Colored Gauss-Seidel Algorithm

for k = 1, Niteration do
for c = 1, Ncolor do

Line smooth over lines on boundary: xk+1
c = [M ]−1 (b− [N ]xkc

)
Post non-blocking send and receives
Line smooth over all interior lines: xk+1

c = [M ]−1 (b− [Ncolor>=c]x
k
c − [Ncolor<c]x

k+1
c

)
MPI WAITALL
Solution is now updated correctly on each processor

end for
end for

(3) illustrates how the colored Gauss-Seidel(CGS) algorithm is used to solve the linear system

in a parallel computing framework using the message passing interface (MPI). One should

immediately notice that special attention has been paid to overlapping communication with

computation. Additionally, CGS allows for a fully parallel Gauss-Seidel method provided

the colors are created such that no element within one color requires data from the same

color.

Lines are colored via a greedy algorithm, which loops over all the lines formed for the

line-implicit solver assigning color integers to the lines. The algorithm begins by looping

over lines and assigning colors one at a time to lines that have not been colored and whose

neighbors have not been flagged due to a coloring. If a line has not been colored and has no

neighbor, that has been tagged from a coloring, then the line is given a color(in the form of

an integer). Once a line is given a color the line and the neighbors of the line are tagged and

not allowed to be colored again by this same color. Once all lines have been checked the color

index increases and the process loops over the lines again for the next color proceeding as

before. This is shown by Algorithm (4). The algorithm continues to create new colors until

all the lines in the mesh have been assigned a color. This results in lines that are colored

such that no color has lines that are neighbors in the mesh. An example of a colored mesh

with lines that are of length 1 and higher is given in Figure 4.9. In Figure 4.9 there are

several elements that have the same color. These are elements in the same line.
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Algorithm 4 :Coloring

Nline-colored = 0
color2line (:) = 0
Ncolor = 0
while Nline-colored < nline do
line-touch (:) = 0
Ncolor = Ncolor + 1
for l = 1, Nlines do
color = .true.
if color2line(l) == 0 then

Check neighbors line-touch, if line-touch (neighbor) > 0 then color = .false.
end if
if color == .true. then
color2line (l) = Ncolor

line-touch (l) = 1
Nline-colored = Nline-colored+ 1
For all neighbors set line-touch (l) = 1

end if
end for

end while

Figure 4.9: Colors generated for a mixed-element stretched mesh around a NACA0012 airfoil.
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Once the mesh is colored, the Gauss-Seidel iteration proceeds similarly to the LIJ it-

eration. The factorization is the same but the [N ] matrix multiplies the most up to date

neighbor information. For some elements the vector x is at the kth iteration and for other

elements the vector x is at the (k + 1)th iteration. The elements that belong to a color

value less than c use information from iteration k + 1 and color values greater than c use

information from iteration k as seen in Algorithm (3), where k is the linear iteration index

and c is the color index.

4.4 Multigrid Methods

Multigrid methods are known as efficient techniques for accelerating convergence to steady-

state for both linear and non-linear problems [86, 87], and can be applied with a suitable

existing relaxation technique. The rapid convergence property relies on an efficient reduction

of the solution error on a nested sequence of coarse grids.

4.4.1 The hp-Multigrid Approach

The spectral multigrid approach [30, 76] is based on the same concepts as a traditional h-

multigrid method, but makes use of “coarser” levels which are constructed by reducing the

order of accuracy of the discretization, rather than using physically coarser grids with fewer

elements. Thus, all grid levels contain the same number of elements, which alleviates the need

to perform complex interpolation between grid levels and/or to implement agglomeration-

type procedures [87]. Furthermore, the formulation of the interpolation operators, between

fine and coarse grid levels, is greatly simplified when a hierarchical basis set is employed

for the solution approximation. The main advantage of a hierarchical basis set is that the

lower-order basis functions are a subset of the higher-order basis (i.e. hierarchical) and the

restriction and prolongation operators become simple projection operators into a lower- and

higher-order space, respectively [88]. Therefore their formulation is obtained by a simple

deletion or augmentation of the basis set. The restriction from fine level to coarse level is

obtained by disregarding the higher-order modal coefficients and transferring the values of
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(a) p-Multigrid (b) h-Multigrid

Figure 4.10: Illustration of hp-multigrid levels.

the low-order modal coefficients exactly. Similarly, the prolongation from coarse to fine levels

is obtained by setting the high-order modes to zero and injecting the values of the low-order

coefficients exactly. Figure 4.10(a) shows various p-levels for a reference triangular element.

Multigrid strategies are based on a recursive application of a two-level solution mecha-

nism, where the second (coarser) grid is solved exactly, and used to accelerate the solution

on the finer grid [86]. The exact solution of the coarse grid problem at each multigrid cycle is

most often prohibitively expensive, therefore the recursive application of multigrid to solve

the coarse grid problem offers the preferred approach for minimizing the computational cost

of the multigrid cycle, thus resulting in a complete sequence of coarser grids. For spectral

(p)-multigrid methods, the recursive application of lower-order discretizations ends with the

p = 0 discretization on the same grid as the fine level problem.

For relatively fine meshes, the (exact) solution of this p = 0 problem at each multigrid

cycle can become expensive, and may impede the h-independence property of the multigrid

strategy. The p = 0 problem can either be solved approximately by employing the same
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number of smoothing cycles on this level as on the finer p levels, or the p = 0 problem can be

solved more accurately by performing a larger number of smoothing cycles at each visit to this

coarsest level. In either case, the convergence efficiency will be compromised, either due to

inadequate coarse level convergence, or to excessive coarse level solution cost. An alternative

is to employ an h-multigrid procedure to solve the coarse level problem at each multigrid

cycle. In this scenario, the p-multigrid scheme reverts to an agglomeration multigrid scheme

once the p = 0 level has been reached, making use of a complete sequence of physically

coarser agglomerated grids, thus the designation hp-multigrid. Agglomeration multigrid

methods make use of an automatically generated sequence of coarser level meshes, formed

by merging together neighboring fine grid elements, using a graph algorithm. Figure 4.10(b)

shows various h-levels for a Cartesian quadrilateral mesh. Figure 4.11 shows a sequence

of coarse meshes generated using the graph agglomeration approach. First-order accurate

(p = 0) agglomeration multigrid methods for unstructured meshes are well established and

deliver near optimal grid independent convergence rates [89].

The hp-multigrid procedure [31,33] has been shown to result in an h- and p-independent

solution strategy for high-order accurate discontinuous Galerkin discretizations of the Euler

equations, in both two- and three-dimensions [31, 33]. For robustness it is important to

augment the resulting multi-level hp-multigrid scheme with a full multigrid (FMG) technique,

in order to provide a good initial guess for the fine level problem. Moreover, the use of FMG

is critically important in the case of the linear multigrid scheme for it is known that the

Newton iteration will diverge if the initial guess is not close enough to the final solution.

In the hp-multigrid approach, the solution process begins at the coarsest grid level (p = 0),

using all the h-levels available, and ends at the fine level where all the p- and h-levels are

used to advance the solution to the desired accuracy, as depicted in Figure 4.12.

4.5 Newton-GMRES

Krylov Subspace Methods represent an alternative technique for solving the linear system

given by Newton’s method. Since the linear system is non-symmetric, the Generalized Min-
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(a) Fine (b) Coarse Level 1

(c) Coarse Level 2 (d) Coarse Level 3

(e) Coarse Level 4 (f) Coarse Level 5

Figure 4.11: Coarse mesh levels generated via agglomeration of a slotted airfoil mesh.
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Figure 4.12: Illustration of full hp-multigrid (FMG) levels for p = 3 and h = 2 (– restriction, - -
prolongation, • smoothing, ◦ update).

imal Residual method (GMRES) is employed. The convergence of GMRES is often acceler-

ated using a preconditioner. In this work, the previously described linear multigrid algorithm

and colored Gauss-Seidel(CGS) are used as preconditioners. Reference [57] has shown that

this combination is a nearly optimal method for isotropic meshes, and showed some promis-

ing preliminary results for triangular anisotropic meshes. In this work the GMRES bases

solver of reference [57] is extended to hybrid anisotropic meshes.

The linear-system in equation (4.2.3) is again written as

[A]x = b (4.5.1)

where [A] is the flux Jacobian, x is the Newton update and b is the negative of the flow

residual. GMRES seeks to minimize the L2 norm of the residual of the linear system(r =

[A]x− b) over the space span{r0, [A]r0, [A]2r0, . . . , A
k−1r0}. There are many excellent texts

on Krylov subspace methods [90–92] where details on the theory of Krylov subspace methods

are presented. For a right-preconditioned system one obtains the following

[A] [P ]−1 y = b, x = [P ]−1 y (4.5.2)

where [P ] is the preconditioner. In this case the Krylov subspace is

span{r0, [A] [P ]−1 r0, ([A] [P ]−1)2r0, . . . , ([A] [P ]−1)k−1r0}. To compute the Krylov subspace

basis a linear system of the form

[P ] z = q (4.5.3)

must be solved, where q and z are the Krylov and preconditioned Krylov vectors respectively.

This equation is solved approximately using a few cycles of multigrid. Using multigrid as the
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preconditioner yields an algorithm denoted as multigrid preconditioned GMRES (MGPC-

GMRES). Note that the preconditioning matrix is the full flux Jacobian and is never fully

inverted. Also note that GMRES requires additional storage for the Krylov basis. However,

it is expected that the multigrid preconditioner will be very effective so the size of the Krylov

basis will remain small. The details of the GMRES solver are given in Algorithm (5).

In this work the GGS linear solver is also used a preconditioner for the GMRES method.

Using the CGS linear solver has no impact on the GMRES algorithm beyond changing how

the approximate solution to equation (4.5.3) is generated.

4.6 Robustness Enhancement via Local Order-Reduction

One of the principal concerns when developing DG solvers is the robustness of the solver.

The author and others [20] have noted that under mesh-resolved regions of the flow can

adversely impact the convergence of the flow solver. If regions of smooth extrema are under

resolved, the smooth extrema can become non-smooth extrema. When these extrema become

non-smooth the DG discretization may produce unphysical oscillations, which may lead to

solver failure(as is shown in Section: 4.7.3).

A simple way of dealing with under-mesh resolved regions is to refine the mesh in the

under resolved region, thus causing the extrema to become smooth again. However, the

merits of direct limitation are also worth investigating. To decrease the oscillations that

result from these under-resolved areas, one can add additional diffusion to the equations to

smooth out the solution. There are a variety of ways to add additional diffusion to the discrete

equations. For example, artificial diffusion can be added, similar to the way shock waves are

treated in this work (Section 2.7). Yet another approach, is to recognize that as the jumps

between elements increase, so does the artificial diffusion associated with the upwinding.

In order to increase the jumps between elements a local element order-reduction technique

based on the element resolution detector developed in reference [34] is used. Decreasing the

discretization order of the element increases the inter-element jumps and thus the artificial

diffusion of the flux function. At the same time, reducing the discretization order p reduces
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Algorithm 5 :Multigrid preconditioned fGRMES algorithm

N = # of Krylov vectors, M = # of linear iterations
Given x1, compute r1 = b− [A]x1

i = 1
while i <= M .and. ‖ri‖ > tol do

set q1 = r1
‖r1‖

set ζ(:) = 0
set ζ(1) = ‖r1‖
n = 1
while n <= N .and. res > tol do

Solve [P ] zn = qn using linear multigrid
[Z(:, n)]i = zn
v = [A] zn
% Compute new Krylov basis vector via Arnoldi procedure
for j = 1, n do
h(j, n) = v · qj
v = v − h(j, n)qj

end for
h(n+ 1, n) = ‖v‖
qn+1 = v/h(n+ 1, n)
% Make the upper Hessenberg matrix upper triangular via givens rotations
for j = 1, n− 1 do
temp = cs(j)h(j, n) + sn(j)h(j + 1, n)
h(j + 1, n) = −sn(j)h(j, n) + cs(j)h(j + 1, n)
h(j, n) = temp

end for
% Compute the nth givens rotation matrix( a very standard approach given in) [93]
call get rot(h(n,n), h(n + 1, n), cs(n), sn(n))
h(n, n) = cs(n)h(n, n) + sn(n)h(n+ 1, n)
temp = cs(n)zeta(n)
ζ(n+ 1) = −sn(n)zeta(n)
ζ(n) = temp

res = |ζ(n+1)|
‖b‖

end while
solve [h] y = ζ
xi+1 = xi + [Zi] yi
% where the nth column of [Zi] is zn
i = i+ 1
ri = b− [A]xi

end while
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the oscillations because p is lower. The detector for an element is given in equation (2.7.2)

with density used as the detection quantity instead of pressure. The value of sk for each

element k in the mesh is computed and if log10(sk) is greater then -4 for an element, the

discretization order of that element is reduced to pk = max(pk − 1, 1) (here p = 1 is the

lowest possible value to retain all of the discrete viscous terms). This approach is used here

to test the concept of treating these kinds of under resolved regions as though they were

flow discontinuities. Furthermore, this highly simplified approach gives an example of how

a limiter would behave if one were applied.

4.7 Numerical Results

The flow solver is validated and tested using three separate test cases, a laminar flat plate,

a NACA0012 airfoil, and a two-element airfoil. The laminar flat plate test case is used to

validate the Navier-Stokes terms in the flow solver. The efficiency of the MGPC-GMRES

solver is tested using a NACA0012 airfoil and a two-element airfoil.

4.7.1 Laminar Flat-Plate

The laminar viscous flow solver is validated using a zero pressure gradient flat plate bound-

ary layer at the following conditions M∞ = .1, α = 0o, and and Reynolds number based

on chord Re = 200, 000. This flow is computed using discretization orders p = 0 through

p = 3 for both a triangular mesh and a quadrilateral mesh with N = 6, 372 and N = 3, 186

elements respectively. The results are compared against the well known Blasius boundary

layer solution. The triangular mesh is built from the quadrilateral mesh with each quadri-

lateral divided into two triangles, in order to maintain the spacing normal to the wall and

the cell height to length ratios between the two meshes. The meshes for this case are shown

in Figures 4.13(a) and 4.13(b).

Figures 4.14(a) through 4.15(b) show the computed u-velocity profiles with the Blasius

solution plotted as a reference. The computed velocity profiles agree very well for discretiza-

tion orders p = 1 and greater. For p = 0 the velocity profile is extremely inaccurate. This is
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due to the fact that the DG discretization of the viscous operator reduces to an inconsistent

edge-only approximation for the viscous terms. These results are included simply to show

that p = 0 is not sufficient to fully capture the viscous operator. The u-velocity profile

matches the Blasius profile for all discretization orders higher than p = 1. The v-velocity

profile is the harder of the two profiles to capture accurately. The second-order result on

the triangular mesh shows a considerable deviation from the Blasius solution in this profile,

while higher-order results show improved agreement. Additionally, note that above p = 1,

there is essentially no difference in the agreement between the computed velocity profiles

on the triangular and quadrilateral meshes. Also note that for p = 3 the quadrilateral

meshes contains 25% fewer degrees of freedom(DoFs) than the triangular mesh. Therefore,

quadrilateral meshes are capable of delivering equivalent or better accuracy compared to

self-similar triangular meshes at a lower computational cost.

(a) N = 6, 372 triangles (b) N = 3, 186 quadrilaterals

Figure 4.13: Meshes used for computing the laminar flow past a flat plate.
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(a) Triangular Mesh (b) Quadrilateral Mesh

Figure 4.14: Laminar flat plate u-velocity profile computed using a DG discretization for p = 0 to
p = 3 compared to the Blasius u-velocity profile.

(a) Triangular mesh (b) Quadrilateral mesh

Figure 4.15: Laminar flat plate v-velocity profile computed using a DG discretization for p = 0 to
p = 3 compared to the Blasius v-velocity profile.
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4.7.2 NACA0012 Airfoil

The effectiveness and efficiency of the MGPC-GMRES algorithm is studied using two test

cases. The first is a NACA0012 airfoil at M∞ = .5, α = 0o, and Re = 5, 000, which is used

to verify the h-independence and p-independence of the solver for purely triangular meshes.

In each case an iteration represents one Newton iteration. For each Newton iteration the

MGPC-GRMES solver convergences the linear system obtained via Newton’s method to the

tolerance given by equation (4.7.1) or until 15 Krylov vectors are generated.

tol = max

(
min

( ‖b‖L2

2.5(n−nc−p) , .1‖b‖L2

)
, 1.0e− 14

)
nc = 8 + 2 (p− 1)

(4.7.1)

In equation (4.7.1) p is the discretization order, b is the right-hand side of the linear system,

and n is the Newton iteration number. For each Krylov vector the preconditioning system

given by equation (4.5.3) is solved with four cycles of the linear multigrid solver using the

LIJ solver as the multigrid smoother.

Two purely triangular meshes are used for this case and contain N = 2, 250 and N =

7, 750 triangles, with a maximum aspect ratio of 82:1 and 238:1, and with average line

lengths of 10 and 25 cells respectively. Due to the variance in aspect ratio, a slight h-

dependence is expected, since aspect-ratio can affect the stiffness of the problem. Figures

4.17(a) and 4.17(b) show the respective convergence rate obtained and demonstrate relatively

h-independent and p-independent behavior. These figures demonstrate that the MGPC-

GMRES solver gives nearly h-independent and p-independent results, despite the difference

in aspect-ratio. To ensure that the above results are also valid for mixed-element anisotropic

meshes, the NACA0012 airfoil test case is computed on a mixed-element anisotropic mesh

containing N = 4, 964 elements (Figure 4.18(a)) with a maximum aspect-ratio of 65:1 for

DG discretization orders p = 1 to p = 4. Figure 4.18(b) depicts the convergence history

using this mixed-element mesh. This figure demonstrates that the MGPC-GMRES solver

retains its p-independence on mixed-element anisotropic meshes.
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Figure 4.16: NACA0012 mesh with N = 2, 250 elements.

(a) h-independence (b) p-independence

Figure 4.17: MGPC-GMRES convergence rates for the solution of the NACA0012 case on two
meshes with N = 2, 250 and N = 7, 750 elements and for DG discretization orders p = 1 to p = 4.

4.7.3 Two-Element Airfoil

The third test case consists of the flow over a two-element airfoil depicted in Figure 4.19(a).

The flow conditions for this case are M∞ = .3, α = 0o, and Re = 5, 000. Solutions for

discretization orders p = 1 through p = 4 are computed using a mesh of N = 7, 902 elements

(5,266 triangles and 2,636 quadrilaterals), with a maximum aspect ratio of 265:1 and using
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(a) Mixed-element mesh with N = 4, 964 elements (b) p-independence

Figure 4.18: Mixed-element mesh containing N = 4, 964 elements (220 quadrilaterals and 4,744
triangles) and MGPC-GMRES convergence rates for the solution of the NACA0012 case for DG
discretization orders p = 1 to p = 4.

(a) Mesh with N = 7, 902 elements (b) Surface curvature close-up

Figure 4.19: Two-element airfoil mixed element mesh used for solver comparison and local order-
reduction robustness improvement.

252 lines with an average length of 15 cells per line. This two-element airfoil test case is used

to compare the performance of linear multigrid vs. MGPC-GMRES linear solvers. Addition-

ally, a CPU time comparison between the LEJ smoother and LIJ smoother in the context
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of the linear multigrid solver is conducted. The presented results are generated in a manner

different from the NACA0012 airfoil test case. To ensure accurate CPU time comparisons

both the linear multigrid and MGPC-GMRES solvers are run such that each Newton iter-

ation consisted of ten multigrid cycles. For the linear multigrid solver this constitutes ten

multigrid cycles while for the MGPC-GMRES solver this constitutes five Krylov vectors with

two cycles of multigrid for preconditioning each Krylov vector.

Solver Comparison

(a) Linear multigrid (b) MGPC-GMRES

Figure 4.20: Convergence rate of the two-element airfoil case for orders p = 1 to p = 4 using linear
multigrid and MGPC-GMRES.

First consider the p-independence of the solvers. Figure 4.20(a) shows the convergence

of such a solver for p = 1 through p = 4. The number of iterations required to solve

p = 2 and higher is nearly twice that of p = 1, indicating a relatively strong p-dependence

between p = 1 and higher-order (p ≥ 2) solutions. The same problem is solved using

MGPC-GMRES and the convergence is depicted in Figure 4.20(b). The p-independence

for the MGPC-GMRES solver shows a slight improvement over that of the linear multigrid

solver because the convergence history of the p = 2 solution is closer to that of the p = 1

solution. The overall p-independence is not improved very much for several reasons. The
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p = 3 and p = 4 solutions required the application of the local order-reduction technique,

which combined with the fixed small number of linear iterations caused a degradation of the

p-independence compared to the NACA0012 case. Furthermore, each solver has a similar

number of rises in the residual over the convergence history, which affects the MGPC-GMRES

solver more severely because a single Newton iteration represents double the percentage of

the total number of Newton iterations compared to the linear multigrid solver. However, the

NACA0012 airfoil results and the p = 2 result here show very good p-independence, leading

one to conclude that the results for p = 3 and p = 4 cases are affected by the under-resolved

stagnation point and/or the application of local order-reduction without which the p = 3

and p = 4 solutions could not converge.

Though the MGPC-GMRES solver does not obtain textbook p-independence, this solver

is preferred to the linear multigrid solver because it is faster in terms of overall CPU time. A

CPU time comparison between the linear multigrid and MGPC-GMRES solvers is shown in

Figures 4.21(a) through 4.21(d). These figures clearly demonstrate that the MGPC-GMRES

solver is faster in terms of overall CPU time than the linear multigrid solver. On average the

MGPC-GMRES solver is about 15% faster than the linear multigrid solver with the p = 2

case showing the most dramatic improvement. Figures 4.21(a) through 4.21(d) also illustrate

the iterative convergence obtained from these cases when the line-implicit Jacobi smoother

is replaced by the LEJ smoother in the linear multigrid solver. Clearly, not employing the

line-implicit smoother yields a very slow and inefficient solver for DG discretizations on

anisotropic meshes.

Robustness Enhancement

This case is also used to test the local order-reduction technique for enhanced robustness.

This particular mesh demonstrates the under mesh-resolved phenomena discussion in Section

4.6. Near the stagnation point at the leading edge of main airfoil the mesh is too coarse

to smoothly capture the high density and pressure gradients. As a result, for discretization

orders p = 3 and p = 4 the extrema become non-smooth resulting in solver failure. To

alleviate this problem the local order-reduction technique outlined in Section 4.6 is applied.
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(a) p = 1 (b) p = 2

(c) p = 3 (d) p = 4

Figure 4.21: CPU time comparison between MGPC-GMRES (line-implicit Jacobi smoother), linear
multigrid (line-implicit Jacobi smoother) and linear multigrid (LEJ smoother) for solution of the
two-element airfoil case for using DG discretization orders p = 1 to p = 4

By applying this technique, the solver is able to generate solutions for discretization orders

p = 3 and p = 4 where it was previously unable to do so. Figures 4.22(a) and 4.22(b) show

the cells and density contours where the discretization order is reduced for the p = 4 case.

The under mesh-resolved cell has large density variations across it and the density contours

show some oscillations. One should make note of the rises in the residual convergence history

for the p = 3 and p = 4 case. These rises correspond to the iterations where the discretization
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order is being reduced. In these test cases density is the quantity used in the detector given

by equation (2.7.2).

In conclusion, the MGPC-GMRES solver represents a significant improvement over

linear multigrid methods for DG discretizations due to the faster overall CPU time. Figures

4.23(a) and 4.23(b) show the Mach contours and stream lines for a p = 2 solution and

Figures 4.24(a) and 4.24(b) show the same for a p = 4 solution. Note that the wake is very

well preserved due to the anisotropic mesh and high-order accurate solutions. This case

also demonstrates the enhanced robustness given by the local order-reduction technique,

allowing the p = 3 and p = 4 solutions to converge. While local order-reduction is not the

most elegant technique it has proven sufficient this problem and warrants further study for

resolving other more challenging phenomena.

(a) Element discretization order (b) Density contours

Figure 4.22: Close-up of the two-element airfoil under mesh-resolved leading edge showing the
reduced-order cell and density contours for p = 4.

4.8 Summary

This work has investigated and developed efficient solution strategies for steady-state vis-

cous flows using high-order DG discretizations in the presence of curved, hybrid-element
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(a) Mach contours

(b) Streamlines

Figure 4.23: Illustration of computed solution using DG for the laminar viscous flow over the
two-element airfoil at M∞ = .3, α = 0o, and Re = 5, 000 for p = 2.

anisotropic unstructured meshes. The solution strategy is based on the hp-multigrid ap-

proach previously developed for inviscid flows. A line creation algorithm and line-implicit

Jacobi smoother were developed and implemented to enable efficient solution techniques

on anisotropic meshes. Further improvement has been demonstrated through the use of a

preconditioned Newton-Krylov technique.

Two-dimensional results are presented for a flat plate boundary layer, flow over a

NACA0012 airfoil and a two-element airfoil. Current results demonstrate convergence rates

which are nearly independent of the degree of anisotropy, discretization order p and level of

mesh resolution (h). It was shown that the MGPC-GMRES algorithm outperforms standard

multigrid techniques both in terms of CPU time and optimality. The MGPC-GMRES solver
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(a) Mach contours

(b) Streamlines

Figure 4.24: Illustration of computed solution using DG for the laminar viscous flow over the
two-element airfoil at M∞ = .3, α = 0o, and Re = 5, 000 for p = 4.

exhibits better h- and p-independence when the linear problem is fully converged as in the

NACA0012 airfoil case. However, this might prove impractical for more realistic cases (i.e

the two-element airfoil). A more practical scenario is to limit the number of multigrid cycles

per Newton iteration. In this case MGPC-GMRES has been shown to be faster than linear

multigrid in terms of CPU time for the same number of multigrid cycles.

One of the principal issues with high-order discretizations is the robustness of these

methods in dealing with discontinuous, non-smooth, or under-resolved features. In this

work, an element-wise order-reduction technique for addressing such robustness issues has

been investigated. By detecting and reducing the discretization order of “troubled” cells

for the two-element airfoil problem, the solver was able to overcome the under resolved
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stagnation point. For this case, the issue stems from an under mesh-resolved leading edge

where gradients in flow quantities are high. By under resolving the geometry at the leading

edge, what should be smooth extrema become non-smooth, resulting in the solver creating

overshoots that then cause failure. By locally reducing the discretization order, the increased

dissipation allows the solver to handle the overshoot and converge with this under-resolved

region. Based on these results, a robustness enhancement method that can increase the mesh

resolution until the extrema again become smooth should be investigated. One possible

strategy is apply an adaptive proceedure that will increase mesh resolution before applying

high-order discretizations to under mesh resolved regions.
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Chapter 5

Goal Oriented Adaptive Mesh

Refinement

The use of goal oriented adaptive mesh refinement has become a prevalent technique in

CFD [16–18, 20, 43, 45, 47, 71]. Rather than perform adaptive mesh refinement based on

local indicators or flow features, goal-oriented mesh refinement targets a specified output of

the simulation. However, goal oriented adaptive mesh refinement requires a posteriori error

estimates in the output of interest. Herein the output error estimates will be derived as will

the use of these estimates to drive mesh adaptation. The adaptive method employed is known

as hp-adaptation and combines grid refinement (i.e. h-refinement) and order enrichment (i.e.

p-enrichment) into a single adaptive method.

Due to the mixed-element meshes employed, h-refinement is more complicated than sim-

plex(triangle) only refinement. Mixed-element mesh refinement involves hanging nodes which

complicate surface integrations and interior element curvature methods. The combination of

h-refinement and order or p-enrichment, denoted as hp-adaptation, will be introduced both

as a method to enhance solver efficiency and also to enhance solver robustness. To demon-

strate both properties, hp-adaptation will be applied to several test cases including laminar

subsonic flows through supersonic viscous flows. Shock capturing will be accomplished using

the piecewise constant artificial viscosity formulation, combined with hp-adaptation.
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5.1 Motivation

A posteriori error estimation for functional outputs is becoming a mature technique for es-

timating the contribution of discretization error to simulation outputs [16–18,44,45]. These

error estimates are based on solutions to the so called adjoint (dual) problem. Such error es-

timates provide a method to guide adaptive refinement techniques to optimally place degrees

of freedom within a mesh. Recently these techniques have been used to perform adaptive

mesh refinement (i.e. h-refinement only) in the context of DG discretizations of the RANS

equations [20,43,46]. Reference [17] has used these techniques for the hp-adaptation of high

speed shocked flows using a DG discretization of the compressible Euler equations.

In this work, hp-adaptation is used to adaptively enrich the discretization order and

refine the mesh for DG discretizations of the Navier-Stokes equations on mixed-element

meshes, i.e. meshes containing triangles and quadrilaterals. A discrete adjoint formulation

is used to obtain the error estimates in the functional of interest. The formulation is based on

a discrete adjoint approach using a fully dual (adjoint) consistent discretization. References

[20,56,72] have shown numerically that using dual inconsistent discretizations can lead to sub-

optimal convergence of the primal solution, whereas using dual consistent or asymptotically

dual consistent discretizations leads to optimal convergence(O (hp+1)) of the primal problem

while producing more accurate adjoint-based error estimates. Furthermore, Section 3.3 has

shown that dual consistent discretizations result in the super convergence of the output or

functional error.

Discontinuous Galerkin (DG) methods are capable of generating high-order accurate

solutions to the Euler and Navier-Stokes equations. However, this is only attained if the

solution is smooth. Unfortunately, for aerodynamic applications, solutions are rarely smooth.

Non-smooth solutions can result from the expected discontinuities such as shock waves and

contact discontinuities as well as from additional sources, which are not covered as thoroughly

in the literature. For example, if the leading edge of an airfoil has been discretized with too

few cells, oscillations can develop due to under-resolution of smooth phenomena and cause

the solver to fail as shown in Section 4.7.3.

A unique property of DG discretizations is that the order of accuracy and the number
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of degrees of freedom (DoFs) are coupled (hereafter referred to as resolution coupling). This

is in contrast to traditional finite-volume or finite-difference techniques that instead rely

on extended stencils to increase the discretization order. Resolution coupling is the reason

that developing limiters for DG discretization is more difficult than for traditional CFD

methods. Furthermore resolution coupling poses a rather serious drawback for computing

discontinuous solutions with DG.

While for non-adaptive techniques the coupling between discretization order and the

number of degrees of freedom poses a rather serious problem for limiting the solution as

shown numerically in reference [15], the coupling is actually an advantage in the context of

an adaptive method. This property of DG discretizations allows for a flexible procedure by

which resolution can be added to a problem. This work examines the use of hp-adaptation

for two purposes: the first of which is to place degrees of freedom within the domain as

optimally as possible, the second of which is to improve solver robustness by avoiding the use

of high-order polynomial approximations in regions of the mesh where it is not appropriate.

In regions where the solution is smooth, p-enrichment is utilized, whereas in regions where

the solution is not smooth, h-refinement is employed. Furthermore, the constant presence of

discontinuous solutions in practical problems of interest motivates one to examine adaptation

techniques that take this into account as robustly as possible.

While the application of standard limiting methods from the finite-volume literature

have been attempted [35,67,75,94,95], these methods are either, not aware of the resolution

coupling properties of DG or extend the stencil beyond the nearest neighbors. Either of these

properties is sub-optimal in the author’s opinion. Rather than attempt this type of limiting,

hp-adaptation will be used to mimic the properties of a limiter. hp-adaptation can be viewed

as a resolution coupling aware limiting approach, a so-called bottom up limiter that starts

the solution at low discretization order and only increases the discretization order where

appropriate, based on solution smoothness. In regions where the solution is discontinuous

or non-smooth, h-refinement is invoked so that resolution is increased in a stable manner.

In contrast, traditional slope limitation assumes that second or higher-order accuracy is

appropriate everywhere in the domain and then reduces the order in non-smooth regions
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without adding additional unknowns. This can be thought of as a top down approach to

limiting. Thus hp-adaptation and slope limitation are very similar processes but operate

in reverse directions of each other and when resolution coupling is present the bottom up

approach of hp-adaptation is preferred.

5.2 Output Error Estimation

In this work the adaptation procedure is driven by local error estimates or by estimating the

error in an output functional of interest. For output-based error estimation, the predicted

error may also be used to give a correction to the functional value. In this section the

derivation for output-based error estimation is presented along with the simplifications that

lead to local error estimates.

5.2.1 Formulation

The following formulation is based on the approach described in reference [45]. Consider

the functional of interest L (u) evaluated with the discrete flow-field variables, where the

argument to the functional satisfies the following non-linear operator.

R (u) = 0 (5.2.1)

Furthermore, consider a coarse mesh TH and flow solution uH which satisfies the non-linear

residual on the coarse mesh.

RH (uH) = 0 (5.2.2)

The solution uH is used to evaluate the functional LH (uH) on the coarse (i.e. current)

mesh. Given this flow solution and functional, one seeks an estimate of the functional on a

globally refined mesh Th, without computing the flow solution on the globally refined mesh.

Therefore, the fine grid functional is expanded in a Taylor series about a solution projected

from the coarse mesh to the fine mesh denoted by uhH .

Lh(uh) = Lh(uhH) +

(
∂Lh
∂uh

)
uhH

(uh − uhH) + · · · (5.2.3)
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where Lh(uhH) is the fine mesh functional evaluated with the coarse mesh solution projected

to the fine mesh. The vector
(
∂Lh
∂uh

)
uhH

is the sensitivity of the functional with respect to the

solution evaluated at the same projected state. To eliminate the term involving the solution

on the fine mesh
(
uh − uhH

)
, one appeals to the constraint equation. The residual defined

by equation (5.2.1) evaluated on the fine mesh can also be expanded about the projected

solution as:

Rh(uh) = Rh(u
h
H) +

[
∂Rh

∂uh

]
uhH

(uh − uhH) + · · · (5.2.4)

The fine level residual is constrained to be zero which allows one to re-arrange equation

(5.2.4) to solve for the quantity involving the unknown fine solution as

(uh − uhH) ≈ −
[
∂Rh

∂uh

]−1

uhH

Rh(u
h
H) (5.2.5)

Upon substitution of equation (5.2.5) into equation (5.2.3) one obtains the following expres-

sion for the estimate of the error in the functional

Lh(uh)− Lh(uhH) ≈ −
(
∂Lh
∂uh

)[
∂Rh

∂uh

]−1

uhH

Rh(u
h
H) (5.2.6)

where the flow residual on the fine mesh Rh(u
h
H) is non-zero since the coarse mesh flow

solution projected to the fine mesh does not satisfy the discrete equations on the fine mesh.

Next the fine mesh adjoint variable Λh is defined as the variable satisfying[
∂Rh

∂uh

]T
uhH

Λh =

(
∂Lh
∂uh

)T
(5.2.7)

Therefore the functional error can now be defined in terms of the adjoint variable

Lh(uh)− Lh(uhH) ≈ −(Λh)
TRh(u

h
H) (5.2.8)

The solution of the adjoint problem should be expected to cost as much as the flow solution

and thus it is undesirable to compute the fine grid adjoint variable Λh directly. Therefore

the coarse level adjoint solution is obtained via[
∂RH

∂uH

]T
uH

ΛH =

(
∂LH
∂uH

)T
(5.2.9)
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which is solved on the coarse mesh. In this work, the fine mesh (level) employed for error

estimation contains the same number of elements as the original mesh but employs a dis-

cretization order of p+1 where the coarse mesh employs a discretization order of p. Therefore

the transition of mesh levels H → h is equivalent to the transition of discretization orders

p→ p+1. The coarse adjoint solution is projected onto the fine mesh by injection. Injection

is the process of initializing the fine mesh solution with the coarse mesh solution without

performing any interpolation to obtain the fine mesh solution. Since the fine mesh employs

a discretization order of p + 1, the injection operator is defined by setting the modes from

1 to Mp of Λh
H = ΛH and setting the remaining high-order modes to zero, where Mp is the

number of modes in a discretization of order p. The injection operator is followed by a small

number (<= 5) of linear solution iterations on the fine mesh to generate the approximate

fine mesh adjoint variable Λh
H . Reference [17] has used a patch-wise least-squares method

to reconstruct the adjoint solution on the fine mesh. However, the reconstruction procedure

is more complicated in the current context, which involves mixed-element non-conforming

meshes. Furthermore, several solution cycles on the fine mesh results in a relatively low cost

operation and gives an approximate fine level adjoint solution, which is based on the discrete

fine mesh equations. Introducing the approximate fine level adjoint solution results in the

error estimate:

Lh(uh)− Lh(uhH) ≈ − (Λh
H)TRh(u

h
H)︸ ︷︷ ︸

εc

− (Λh −Λh
H)TRh(u

h
H)︸ ︷︷ ︸

εa

(5.2.10)

where εc is the computable error and εa is the error due to the approximate fine level adjoint.

The magnitude of the contribution to the computable error from a particular element k is

εck =
∣∣∣(Λh

H

)T
Rh

(
uhH
)∣∣∣
k

(5.2.11)

Additionally a so-called local discretization error estimate can be obtained by using the

estimated fine level residual as an error indicator. This gives the local error estimate as

εlk =
∣∣Rh

(
uhH
)∣∣
k

(5.2.12)

Essentially, the local error is measure of how well the current solution satisfies the discrete

equations of one order of accuracy higher than the current order of accuracy. The local error
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estimate is not a goal oriented error estimation approach and does not target any output of

the solver.

In this work the element-wise contributions of computable error εck or local error εlk are

used as the adaptation criteria. Following reference [18], the mesh is adapted by targeting for

refinement elements that contribute a certain fraction of the total error in the mesh, usually

> 90%. For this work 99% of the total error is targeted. The process forms a sorted list of

the elements according to the magnitude of their contribution to the total error, from the

highest to the lowest values. A loop over the queue is performed and elements are flagged

for refinement until the total amount of error processed exceeds the specified percentage of

the total error. This ensures that only the elements with the highest contribution to the

total error are refined for highly non-uniform error distributions. When the error has become

more uniformly distributed near-uniform refinement will occur. Once the elements have been

tagged for adaptation they are refined via either a p-enrichment or h-refinement procedure,

depending on the measured local smoothness of the solution uH .

The computable error εc can be used to provide a more exact coarse level functional, by

providing a correction to the coarse level functional Lh
(
uhH
)

given by:

Lh
(
uhH
)
corr

= Lh
(
uhH
)

+ εc (5.2.13)

Lh
(
uhH
)
corr

is the so-called corrected functional. The corrected functional will be a good

approximation of Lh (uh) provided the linear Taylor series approximation employed to es-

timate the functional error is valid. A linear Taylor series is a valid approximation if the

behavior between coarse and fine level functionals is close to linear, which is not guaranteed.

5.3 hp-Adaptation

Discontinuous Galerkin methods increase the order of accuracy by adding additional modes

to the expansion in equation (2.2.11), hence increasing the discretization order adds addi-

tional unknowns to the mesh. This gives DG methods additional flexibility with regard

to the placement of the degrees of freedom by an adaptation strategy. In particular, DG

methods have two paths by which to increase resolution: h-refinement and p-enrichment.
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References [20, 46] have developed an unsteady mesh adaptation procedure within the con-

text of high-order DG discretizations. However, the mesh adaptations are performed at

a fixed discretization order and thus only exploit one method of adding resolution to the

problem. References [17, 59] have developed an hp-adaptive approach for DG discretiza-

tions of the compressible Euler equations on purely triangular meshes and demonstrated the

effectiveness of this approach for computing both purely smooth flows and flows with discon-

tinuities. Herein the work of references [17,59] is extended to viscous flows on mixed-element

meshes. Additionally, the discontinuity capturing ability of hp-adaptation is enhanced, us-

ing a similar combined h-refinement and p-enrichment approach and artificial diffusion for

shock capturing. In what follows, each method of adaptation is described in isolation, and

the techniques developed for combining h-refinement and p-enrichment methods to achieve

hp-adaptation are presented.

5.3.1 h-Refinement

Reference [15] has shown that using quadrilateral elements in the highly stretched regions

of the mesh is advantageous, as demonstrated and discussed in Chapter 4. As a result, the

refinement process becomes more complicated than the simpler case of conforming triangular

meshes [17, 59]. For meshes containing quadrilateral elements it is convenient to allow for

non-conforming interfaces (i.e. hanging nodes) in the mesh. Therefore, triangles are now also

refined such that triangles can have non-conforming interfaces. Refinement of both element

types is done on a four-to-one basis with no more than a two-to-one discrepancy between the

size of neighboring elements. Furthermore, while it is commonplace to smooth the refined

meshes after they are generated, no mesh smoothing is applied in this work because mesh

smoothing can corrupt the structure of the anisotropic boundary layer mesh.

The refinement pattern for triangles is depicted in Figure 5.1. The triangle is refined

using mid-point subdivision where a node is inserted at the mid-point of each edge on the

triangle. This results in four children (4:1) for each subdivided element. Quadrilaterals

are refined in an analogous manner as depicted in Figure 5.2 with the exception that an

additional node is placed at the center of the refined quadrilateral. The present method
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h,p

h,p

h,p

h,p

H,p H,pH,p

Figure 5.1: Illustration of the triangle h-refinement pattern.

h,ph,p

h,p h,p

H,p H,pH,p

Figure 5.2: Illustration of the quadrilateral h-refinement pattern.

allows for the presence of hanging nodes for both triangular and quadrilateral elements as

shown in Figures 5.1 and 5.2.

In an attempt to enforce a no more than 4:1 refinement rule, any element with all but

one of its edges flagged for refinement will have its final edge refined. If an element has an

edge marked for refinement and that edge is connected to a hanging node, then the element

is flagged for a full refinement. While in this work de-refinement is not implemented, one

could also apply de-refinement in this situation to enforce a no more than 4:1 refinement

rule.

The presence of hanging nodes complicates the inter-element surface integral compared

to a conforming mesh. In this approach an edge connected by any two nodes is defined

as a unique edge in the mesh. Thus triangles with a hanging node actually have four

edges (similarly quadrilaterals can have up to six edges). The surface integral between

non-conforming elements where one has a hanging node is accomplished by computing each

edge integral separately and then adding these individual edge fluxes back into the elements

on each side of the edge. While for the element with the hanging node the two edges

that surround the hanging node have unique identification numbers in physical space, they
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have the same local edge number on the non-conforming element in the transformed space.

Essentially, the edges surrounding a hanging node make up equal portions of a single edge

in the transformed space, as depicted in Figure 5.3. The quadrature points for the non-

Mesh Node

Quadrature Point

S

SS2

S1

Figure 5.3: Diagram of the surface integral done at a non-conforming interface.

conforming side, i.e. the points viewed from the element on the left are linearly mapped to

reside on half of a standard edge i.e. S → S1 or S → S2. These points are compressed and

translated via the following formulas

S1 =
1

2
S − S

S2 =
1

2
S + S

(5.3.1)

Thus for the element on the right side S ∈ [−1, 1], however for the element on the left side

S is split into S1 ∈ [−1, 0] and S2 ∈ [0, 1]. Thus for conforming edges the edge integral is

performed over the full edge length in transformed space(S ∈ [−1, 1]), while the edge integral

for the non-conforming element is split over two halves of the edge in transformed space, i.e

S1 ∈ [−1, 0] and S2 ∈ [0, 1]. The volume integrals are unaffected by the presence of hanging

nodes.

5.3.2 Non-conforming Mesh Adaptation Mechanics

The presence of hanging nodes in the mesh necessitates setting some standard rules for the

adaptation. When there are non-conforming interfaces the element surface integrals can
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become complicated. In order to simplify the surface integrals, a rule of no-more than 2:1

in standard element edge length is permitted for non-conforming interfaces. In order to

accomplish this, rules are placed on the mesh refinement strategy. Firstly, if all but one

edge of an element is split by refinement then the element is flagged for refinement. This

has two consequences. The first is to keep the number of non-conforming interfaces to a

minimum for each element type (one for triangles and two for quadrilaterals). The second is

to help provide smoother cell size distributions throughout the mesh by removing potential

un-refined holes from the pattern of mesh refinement. Figure 5.4 depicts this process for

triangular elements and Figure 5.5 for quadrilateral elements. Initially the two red elements

have been flagged for refinement but the light blue one has not been flagged. The algorithm

detects that all but one neighbor of the light blue element has been flagged for refinement

and then tags the light blue element for refinement as well.

Flagged For Refinemt

Refined Due to Neighbor 

Figure 5.4: Refinement rule for triangles.

The second measure put in place prevents the subdivision of half length non-conforming

edges. This keeps all non-conforming interfaces within a 2:1 edge length ratio, thus requiring

only the simple non-conforming edge integration rule described previously. Non-conforming
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Figure 5.5: Refinement rule for quadrilaterals.

edges that are less than half length are prevented by ensuring, that if a half length edge is

to be divided then the cell containing the non-conforming edge is also divided. Figure 5.6

shows a graphical example of this for triangles and Figure 5.7 shows a graphical example for

quadrilaterals.

In this case the red elements are flagged for refinement but the green elements are not.

Since refinement of the red element alone would result in an edge that makes up one quarter

of a full edge for the non-conforming element, the green element is also refined, which ensures

that all the non-conforming edge length ratios are 2:1. Enforcing this type of rule ensures

that the quadrature rule illustrated in Figure 5.3 is performed correctly based on remapping

the quadrature points according to equation (5.3.1). This measure also aids in generating

a smooth element size distribution in the adapted mesh by ensuring that refinement does

not proceed in too highly localized an area i.e. one element is continually refined while the

element’s neighbors never receive any refinement. It should be noted that large resolution

discrepancies can induce artificial oscillations in the solution and as such efforts to provide

smooth mesh resolution throughout the adaptive process are important.

5.3.3 Non-conforming Mesh Curvature

In order to attain optimal accuracy curved elements must be employed on the boundaries

of the domain that are curved surfaces, such as the surface of an airfoil. Furthermore, in
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Flagged For Refinemt

Refined Due Non−conforming Interface

Figure 5.6: Non-conforming refinement rule for triangles.

Figure 5.7: Non-conforming refinement rule for quadrilaterals.

order to maintain the integrity of anisotropic meshes, interior mesh elements must also be

curved, which is a result of curving the elements on the physical boundary. The strategy

used to curve the boundary elements is described in Section 2.4 and curving the interior mesh

is discussed in Section 4.1.1. When considering non-conforming meshes, special attention

must be paid to how the elements that have hanging nodes are curved. The presence of
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non-conforming interfaces between elements means that there is a mismatch between the

number of unknowns used to curve the elements on each side of the interface. However, this

does not preclude using non-conforming meshes to refine curved elements.

There are two possible ways to curve an adaptively refined mesh. The first method takes

the initial mesh, applies the desired refinement and then re-curves the mesh edges. For non-

conforming meshes this can result in a situation such as the one depicted in Figure 5.8. In this

case, one cannot guarantee that the non-conforming interfaces will be aligned after curving

the mesh. This is due to the fact that the refined edges on a non-conforming interface

Curved Edge Element 1

Curved Edge Element 2

Quadrature Point

Node

Figure 5.8: Example of unconstrained element curvature for non-conforming element interface. The
red and green curves should be coincident at all points otherwise the mesh has a whole in it.

contain more mapping degrees of freedom, which if left unconstrained, will result in the

situation depicted in Figure 5.8. However, this can be overcome by applying a constraint to

ensure that the edges defined from both sides of the interface conform to the same mapping

as shown in Figure 5.9. This mapping is generated by constraining the two quadrature
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Curved Edge Element 1

Curved Edge Element 2

Quadrature Point

Node

Figure 5.9: Example of constrained element curvature for non-conforming element interface. In
this case the edges defined from both elements are coincident at all points, since one cannot see the
green curve, which is under the red curve.

points(squares) to lie on the red curve in Figure 5.8, which essentially forces the two smaller

curved edges shown as green curves to lie on the red curve in Figure 5.8. In practice, this is

accomplished by curving the initial mesh in the adaptation to the maximum order required

for all adaptive meshes. Then new nodes are placed on this curvature and rather than on

the original geometry definition obtained from the mesh generator, which is where one would

normally place additional surface mesh points. This establishes the required constraint in

an indirect and easy to implement fashion. Using the mesh curvature definition to add new

nodes during adaptation is acceptable since the initial mesh was curved using the geometry

information from the mesh generator.
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5.3.4 p-Enrichment

In contrast to h-refinement, p-enrichment refines the element in question by maintaining the

current element size and connectivity. The p-enrichment procedure is much simpler than

the h-refinement procedure and consists of simply increasing the discretization order from

p to p + 1 on the element flagged for refinement. p-enrichment is implemented for both

element types as depicted in Figures 5.10(a) and 5.10(b), and a jump of no more than one

discretization order is permitted between elements. This is enforced by looping over the mesh

elements and checking to see if this rule is violated. If the rule is violated then the order

of the offending element is raised as illustrated in Figure 5.11. This looping is performed

iteratively until no more offending elements are found.

H,p H,p + 1

(a) Triangle

H,p H,p + 1

(b) Quadrilateral

Figure 5.10: Illustration of p-enrichment on both triangles and quadrilaterals.

While p-enrichment induces no additional geometrical complexity, one does need to

address how many quadrature points must be used to integrate the fluxes along the edges.

In previous work the edge fluxes are integrated to 2p+ 1 accuracy. When using a grid with

variable discretization order it is necessary to use an integration rule that integrates the edge

fluxes to 2(max(p+, p−)) + 1 accuracy where p+ and p− denote the element order on each

side of an edge. The solutions on either side of an edge are evaluated using the number of

modes available from each individual element sharing the edge. The volume integrals remain

unaffected by the variable discretization order throughout the mesh.
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P = 2

P = 2

P = 2P = 1P = 1

P = 2

P = 3

P = 3 P = 3P = 1 P = 3

P = 3

P = 3

Flagged For Refinement

Refined Due to Neighbor

Figure 5.11: Order enrichment rule applied to quadrilaterals, triangles are treated exactly the same
way.

5.3.5 hp-Adaptation

It is well known that using high-order polynomials in the vicinity of discontinuities results

in unphysical numerical oscillations or Gibbs phenomena, which for the Navier-Stokes/Euler

equations can cause solver failure. Hence a combination of h-refinement and p-enrichment is

employed to account for the presence of discontinuities in the solution. This proceedure uses

h-refinement near discontinuities and p-enrichment in smooth flow regions. The objective

is to allow discontinuities to be captured using a low-order discretization while using high-

order discretizations in smooth flow regions where the use of high-order discretizations is

appropriate.

hp-adaptation is a hybridization of h-refinement and p-enrichment techniques. These

two techniques are used in tandem such that if an element is to be refined, a decision must

be made as to whether to use h-refinement or p-enrichment. The current implementation
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examines the smoothness of the primal solution to determine which type of adaptation is

used for each element. The smoothness is determined by examining the jump indicator of

reference [67]. The value of the jump indicator for an element is given by

(s̃k)f =
1

|∂Ωk|

∫
∂Ωk

∣∣∣∣JqK · ~n{q}

∣∣∣∣ ds (5.3.2)

where q is taken as the pressure and the average({}) and jump(JK) operators are defined in

equation (2.2.5) and equation (2.2.6) respectively. This indicator is essentially a summation

of the inter-element jumps in pressure for each element. For a shock wave the jump indicator

will return a value of O (1) because the jump of pressure and average pressure are of the

same order of magnitude for a shock wave, while for smooth regions the jump in pressure

is much smaller than the average. The choice between whether to refine an element with

h-refinement or p-enrichment is made by s̃k >
1
K , h-refinement

s̃k <
1
K , p-enrichment

(5.3.3)

where K = 25 is used throughout this work, as in reference [17]. In addition to selecting

the refinement strategy based on the solution smoothness, a maximum discretization order

pmax is also enforced. When an element reaches the prescribed maximum discretization order

and further refinement is required, h-refinement is substituted for p-enrichment even if the

solution within the cell is smooth.

Though hp-adaptation is designed to place degrees of freedom optimally for a given

objective functional, hp-adaptation can also be viewed as a technique to enhance the ro-

bustness of the DG solver. In essence hp-adaptation seeks to design the mesh based on

the solution, which for cases of under-resolved phenomena such as those encountered in

reference [15] should ultimately result in a mesh of sufficient local resolution such that a

high-order discretization can be used throughout. For flow features that will most likely

remain under-resolved for the entire simulation (e.g. shock waves and contact discontinu-

ities) the hp-adaptive scheme is capable of adding degrees of freedom while maintaining low

discretization order in such a way as to avoid Gibbs phenomena, providing a natural way

for the present DG solver to handle non-smooth solutions robustly.
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5.4 Numerical Results

The proposed hp-adaptive method has been evaluated using four test cases. The first two

test cases consist of the laminar viscous flow over a NACA0012 airfoil and a two-element air-

foil. The first test case is presented to compare hp-adaptation with h-refinement at second-

order(p = 1) as well as with uniform h-refinement and uniform p-enrichment. The two-

element airfoil case represents a practical application of the hp-adaptive method to a more

complicated geometry. The third test case consists of the inviscid transonic flow over a

NACA0012 airfoil, which is presented to demonstrate the accurate and robust shock cap-

turing abilities of the hp-adaptive method. The results of the hp-adaptation are compared

with uniform p-enrichment using the piecewise constant artificial viscosity method of Section

2.7.1. Additionally, the piecewise constant artificial viscosity is combined with hp-adaptation

in order examine how these two robustness enhancement measures interact. The fourth and

final test case consists of supersonic viscous flow over a half cylinder geometry. In this case

hp-adaptation with integrated surface heating as the objective is employed. This case is a

culmination of the previous test cases as the objective depends strongly on both the shock

wave and boundary layer structures, e.g. on smooth and non-smooth flow physics.

Where appropriate the computational grid may contain both triangles and quadrilaterals

within the same domain. Mixed-element meshes are addressed by the adaptive algorithm by

allowing for non-conforming interfaces between elements of all types. For all test cases the

adaptation is terminated when the functional of interest is grid converged i.e. the functional

changes by less than .5% from one adaptation step to the next. The performance of the

method is measured by considering the number of degrees of freedom (DoFs) required to

yield a grid converged functional. The number of DoFs is determined as the total number

of unknowns per equation in the domain. For example, a purely triangular mesh of 100

elements with a uniform discretization order of p = 1 would have 300 DoFs, which is 3 DoFs

per triangle. The computational cost of generating these results is demonstrated by showing

functional or functional error versus wall clock time (i.e. CPU-time or computational time).

All results except the half cylinder have been computed using the Riemann solver of

Roe [52] on the cell interfaces. All test cases are steady-state solutions and the flow and
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adjoint equations have been converged such that the residuals have been reduced by 12

orders of magnitude at each stage of the adaptive process. In some sense this represents the

worst case scenario for timing adaptive methods because one would probably only partially

converge the intermediate steps before moving on to the next adaptive cycle.

5.4.1 NACA0012 Airfoil: Drag-based Adaptation

The first test case consists of the laminar flow over a NACA0012 airfoil. The flow conditions

are a free-stream Mach number M∞ = .5, angle of attack α = 1o, and Reynolds number

based on chord length Re = 5, 000. Adjoint-based hp-adaptation and h-refinement with

p = 1(second-order) are utilized for the adaptive mesh refinement of this flow. Additionally,

uniform h-refinement and uniform p-enrichment are performed in order to draw comparisons

between uniform and adjoint-based goal-oriented refinement strategies. All refinements are

initialized on a mesh consisting of N = 1, 148 elements, with a uniform discretization order

of p = 1 resulting in 3,930 DoFs. When employing the hp-adaptive approach for this case,

the maximum discretization order in the grid is set at pmax = 5(i.e. 6-th order accurate).

Thus any cell that requires refinement and already has a discretization order of p = 5 will

be subdivided using h-refinement regardless of how smooth the solution is within that cell.

This test case is shown to illustrate the high efficiency of the hp-adaptive approach, i.e. hp-

adaptation can produce very accurate functionals with respect to the reference solution using

relatively few degrees of freedom when compared against uniform refinement/enrichment

and/or h-refinement alone. Drag is chosen as the target functional for the adjoint-based

goal oriented adaptations. The MGPC-GMRES solver described in Chapter 4 is utilized to

converge both the flow and discrete adjoint equations for this test case.

Figures 5.12(a)-5.14(b) depict the initial and final grids using both adjoint h-refinement

and adjoint hp-adaptation as well as computed Mach number contours on those grids. Note

that the adjoint-based strategies target both the surface of the airfoil as well as the wake

region downstream from the trailing edge. Refinement has also been applied upstream of

the leading edge of the airfoil (recall the adjoint contours in Figure 3.2). Furthermore,

note that the computed Mach contours resulting from h-refinement and hp-adaptation look
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(a) Initial mesh: N = 1, 148 elements, p = 1

(b) Mach contours: initial mesh

Figure 5.12: Initial mesh and Mach contours of the laminar flow over a NACA0012 airfoil with
p = 1, M∞ = .5, α = 1o, and Re = 5, 000.

very similar at the final stage. However, examination of Figures 5.15 and 5.16 show that

the hp-adaptation results contain approximately one third the number of DoFs compared

with the h-refinement results. Figure 5.17 depicts the iterative convergence of the discrete

flow equations using the MGPC-GMRES solver for the final adaptive step of the adjoint

h-refinement and adjoint hp-adaptation. Note that the residuals are reduced by 12 orders of

magnitude in both cases in order to eliminate any algebraic error that may contaminate the

functional values.

Figure 5.15(a) depicts the computed drag versus the number of DoFs using adjoint-based

h-refinement, adjoint-based hp-adaptation, uniform h-refinement and uniform p-enrichment.

The reference value in Figure 5.15(a) was computed using the same DG solver with approx-
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(a) Adjoint h-refinement: final mesh, N = 174, 145, p = 1

(b) Adjoint h-refinement: Mach number on the final mesh

Figure 5.13: Final mesh and Mach number contours of the laminar flow over a NACA0012 airfoil
using adjoint h-adaptation with discretization order p = 1, M∞ = .5, α = 1o, and Re = 5, 000.

imately 250,000 DoFs at a uniform discretization order of p = 4 (i.e. 5-th order accuracy).

Figure 5.15(a) clearly shows that the hp-adaptive method yields a grid converged drag result

with the fewest number of degrees of freedom compared to any of the refinement methods

presented. Comparison of the hp-adaptive approach with the h-refinement approach shows

that the hp-adaptive approach yields a grid converged drag result with approximately one

third the number of DoFs used in the h-refinement approach. Figure 5.15(b) depicts the

drag versus the number of DoFs using the computable error predicted according to equation

(5.2.10) to correct the coarse level drag. The arrows in Figure 5.15(b) point from the coarse

level corrected drag to the fine level drag that the correction is estimating. The corrected

drag value is computed via equation (5.2.13). While initially the corrected coarse level drag
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(a) Adjoint hp-adaptation: final mesh N = 6, 776, p = 1 to p = 5

(b) Adjoint hp-adaption: Mach number on the final mesh

Figure 5.14: Final mesh and Mach number contours of the laminar flow over a NACA0012 airfoil
using adjoint-based hp-adaptation with discretization order p = 1 to p = 5 , M∞ = .5, α = 1o, and
Re = 5, 000.

does not agree with the fine level computed drag, as the refinement process continues and

the drag becomes closer to grid converged, the corrected coarse level drag values show im-

proved agreement with the fine level computed drag values. For the last two refinement

levels, the adjoint correction yields corrected coarse level drag values that closely match the

corresponding fine level computed drag values. The increased effectiveness of the correc-

tion is explained by the fact that the error is predicted as a linear Taylor series expansion

(equation (5.2.3)) about the coarse level solution and thus as the computed drag becomes

closer to being grid converged, the linear Taylor series becomes a better approximation of the

functional behavior between coarse and fine mesh levels. The adjoint hp-adaptive method

clearly gives the most accurate drag result (i.e closest to the reference solution) for a given
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(a) Drag vs. NDoF (b) Adjoint corrected drag vs. NDoF

Figure 5.15: Computed drag coefficient versus NDoF for the laminar flow over a NACA0012 airfoil
using various adaptation methods, with and without adjoint-based computable error correction.

(a) Drag error vs. NDoF (b) Drag error vs. wall clock time

Figure 5.16: Computed drag error for the laminar flow over a NACA0012 airfoil using various re-
finement methods, including adjoint-based goal oriented hp-adaptation and h-refinement targeting
drag.

number of DoFs. Note that the h-refinement computation was terminated early because the

number of DoFs became impractically high and it was clear that the hp-adaptation result

had become grid converged using far fewer DoFs.
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Figure 5.17: Flow solver iterative convergence using the MGPC-GMRES solver from Chapter 4 for
the laminar flow over a NACA0012 airfoil.

Figures 5.16(a) and 5.16(b) show the drag error versus the number of DoFs(NDoF )

and the wall clock time required for each computation. Figure 5.16(a) shows that the hp-

adaptive method gives the lowest drag error per degree of freedom. The asymptotic slope of

these error curves was computed for both the h-refinement and hp-adaptation computations.

Theoretically for a dual consistent discretization using a uniform discretization order p, super-

convergence of the functional error at a rate of order O(h2p)(where h =
√
NDoF ) should be

observed [49]. This asymptotic functional error bound was proven in Chapter 3 and the final

result is shown by equation (3.3.12). Computation of the asymptotic slope of the drag error

versus h for the h-refinement computation yields the expected value of 2. If the scheme were

dual inconsistent then the asymptotic slope of the drag error versus h curve would be 1 i.e.

O(hp) (see Section 3.3). Computation of the asymptotic slope of the drag error versus h

for the hp-adaptation computation results in a slope of 8.8, which is a striking result. Even

though only a fraction of the grid contains cells with a p = 5 discretization hp-adaptation is

able to obtain very close to the theoretical slope of 10. Figure 5.16(b) depicts the drag error
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versus the wall clock time, which shows that hp-adaptation yields lower drag error using

a fraction of the wall clock time compared to h-refinement at second-order accuracy. The

comparison of functional error versus wall clock time is another metric that demonstrates

the efficiency of hp-adaptation. Recall that the wall clock time shown for the adjoint based

adaptation methods includes the fully converged adjoint and flow solutions at each refinement

level. In practice one would probably partially converge the flow and adjoint solutions during

the early stages of adaptive refinement.

5.4.2 Two-element Airfoil: Drag-based Adaptation

The second test case considers the laminar viscous flow over a two-element airfoil with the

following flow conditions, M∞ = .3, α = 1o, and Re = 5, 000. The initial mesh consists

of N = 6, 921 elements at a uniform discretization order of p = 1, which results in 22,401

DoFs. Based on the results of the previous test case, which have shown that hp-adaptation

is the most efficient method for obtaining a grid converged output functional, this case is

computed using only the hp-adaptive method where the maximum discretization order is

fixed at p = 5, as with the NACA0012 airfoil case. As in the previous case, drag is chosen

as the target functional for the adjoint-based adaptation.

Figures 5.18(a)-5.19(b) depict the initial and final meshes along with the computed Mach

number contours on each mesh. Comparison of the computed Mach number contours in the

wake region between the initial and final meshes shows that the adjoint-based hp-adaptation

has increased the resolution in the wake, as seen by the increased distance over which the

wake is captured in Figure 5.19(b). Also notice that hp-adaptive method did not subdivide

any elements because the initial mesh is relatively fine and the smoothness indicator given

by equation (5.3.2) did not detect any non-smooth phenomena, i.e. in this case changing the

discretization order was sufficient to yield a grid converged result. The final mesh consists

of the same number of elements as the original mesh, but with variable discretization orders

ranging from p = 1 to p = 5 throughout the domain as depicted in Figure 5.19(a). Figure

5.20(a) shows the drag versus NDoF for this case. Clearly a grid converged drag value has

been obtained after four adaptive steps using approximately 80,000 DoFs. Figure 5.20(b)
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(a) Initial mesh: N = 6, 921 elements, p = 1

(b) Mach contours: initial mesh

Figure 5.18: Initial mesh and Mach number contours of the laminar flow over a two-element airfoil
with p = 1, M∞ = .3, α = 1o, and Re = 5, 000.

shows the drag versus wall clock time for this case indicating that a grid converged drag

value is generated in 53 min of computational time. Figure 5.21 depicts the convergence of

the discrete flow equations using the MGPC-GMRES solver of Chapter 4 for all adaptation

cycles.
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(a) Adjoint hp-adaptation: final mesh with N = 6, 921, p = 1 to p = 5

(b) Adjoint hp-adaptation: Mach number on the final mesh

Figure 5.19: Final mesh and Mach number contours of the laminar flow over a two-element airfoil
using adjoint hp-adaptation with p = 1 to p = 5 , M∞ = .3, α = 1o, and Re = 5, 000.
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(a) Adjoint hp-adaptation: drag vs. NDoF (b) Adjoint hp-adaptation: drag vs wall clock time

Figure 5.20: Computed drag versus NDoF and versus wall clock time for the laminar flow over a
two-element airfoil using hp-adaptation.

Figure 5.21: Flow solver iterative convergence for the laminar flow over a two-element airfoil.
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For this test case the corrected drag coefficient values computed via equation (5.2.13)

match the fine level computed drag values throughout the adaptive process. This agree-

ment is obtained because the adaptive process was started on a much finer mesh than the

NACA0012 airfoil case, hence the adaptive process was started much closer to grid conver-

gence than the NACA0012 airfoil case. The reason that the initial mesh contains so many

cells is that the small tolerances induced by the gap between the two airfoil elements forces

the generation of relatively small cells in the initial mesh.

5.4.3 Inviscid Transonic NACA0012 Airfoil: Lift-based Adapta-

tion

As an example of computing discontinuous solutions, the hp-adaptive method is applied to

an inviscid transonic flow over a NACA0012 airfoil at M∞ = .8 and α = 1.25o. While the

previous two test cases contained smooth flow solutions, this case has both a strong and

a weak shock wave. This case represents a scenario where the hp-adaptive approach not

only yields high efficiency but also enhanced robustness. For comparative purposes three

refinement scenarios are employed for this test case. In the first scenario the grid initially

contains N = 1, 566 triangles with a uniform discretization order of p = 0, resulting in

1, 566 DoFs, and is subsequently refined using hp-adaptation in the absence of any artificial

diffusion. The second scenario uses uniform p-enrichment on a grid with N = 3, 086 triangles

and artificial diffusion to stabilize the high-order solutions in the presence of the shock

waves. The final scenario employs hp-adaptation where the grid initially contains N = 1, 566

triangles with a uniform discretization order of p = 1, which requires artificial diffusion to

stabilize the p = 1 discretization in the vicinity of the shock wave. The objective function

in all cases is the computed lift coefficient. A reference solution was computed using a

second-order finite volume method with a 200, 000 element mesh (Courtesy Dr. Karthik

Mani [19]). The goal of this case is to compare adaptation using p = 0 at the shock without

artificial diffusion, adaptation using p = 1 at the shock with artificial diffusion, and uniform

p-enrichment using artificial diffusion. It should be noted that using the piecewise constant

artificial viscosity with high discretization orders can be difficult due to the need to change
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the artificial viscosity settings from as the discretization order is varied, as mentioned in

Section 2.7.4.

(a) Initial mesh: N = 1, 556 elements, p = 0 (b) Mach contours: initial mesh

Figure 5.22: Initial mesh and Mach number contours for the inviscid transonic flow over a
NACA0012 airfoil with p = 0, M∞ = .8 and α = 1.25o.

(a) Final mesh: N = 26, 407, p = 0 to p = 5 (b) Final mesh: Mach number

Figure 5.23: Final mesh and Mach number contours on the final mesh for the inviscid transonic
flow over a NACA0012 airfoil (M∞ = .8 and α = 1.25o) using adjoint hp-adaptation with lift as
the objective, the discretization order varies from p = 0 to p = 5.
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(a) Adjoint hp-adaptation: lift vs. NDoF (b) Iterative convergence

Figure 5.24: Computed lift coefficient versus NDoF using using hp-adaptation without artificial
viscosity and iterative convergence of the flow solver for inviscid transonic flow over a NACA0012
airfoil using the MGPC-GMRES solver.

Figure 5.25: Error estimate in the computed lift coefficient over the hp-adaptation history employing
p = 0 at the shock and no artificial viscosity.

Figures 5.22(a)-5.23(b) depict the grids and computed Mach number contours for this

case, at the initial and final stages of the adaptive process using hp-adaptation with p = 0

at the shock. The computed Mach number contours in Figure 5.23(b) show that the shock

wave is very sharply resolved using the final hp-adapted mesh. Figure 5.24(a) depicts the
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computed lift coefficient versus NDoF and it is clear that a grid converged lift coefficient

that closely matches the reference value is obtained using approximately 60,000 DoFs. The

hp-adaptive algorithm has used less than one third the number of DoFs used to compute

the reference solution. Figure 5.24(b) depicts the iterative convergence using the MGPC-

GMRES solver for all adaptive cycles indicating that a fully converged solution is obtained

at every stage of the adaptive process. Furthermore, this approach is relatively robust,

requiring less than 100 Newton iterations for the flow solution at all adaptation cycles in

Figure 5.24(b). Although there are p = 0 elements directly involved in the computation of

the lift coefficient, a grid converged result is achieved efficiently.

While the computed the lift coefficient achieves grid convergence as shown in Figure

5.24(a), the corrected coarse level lift coefficient does not match the fine level computed lift

coefficient at any point during the hp-adaptation proceedure. Examination of Figure 5.25,

which depicts the adjoint error estimate εc in equation (5.2.10), shows that the computable

error is not converging towards zero, as was the case with the previous laminar viscous test

cases. This contradicts the computed lift coefficient result, which is trending toward a fixed

value as seen in Figure 5.24(a). If the computed lift coefficient is trending towards a fixed

value then the difference between the computed and exact lift coefficient must be decreasing

as the mesh is adapted. Examination of equation (5.2.10) shows that for |εc| to decrease

over the adaptation, the approximate fine level residual Rh

(
uhH
)

must decrease, since the

magnitude of the adjoint variable Λh
H cannot decrease, due the dual consistent discretization,

as discussed in Chapter 3. Therefore, if |εc| is not decreasing then the residual Rh

(
uhH
)

must

not be decreasing. Examination of the residual norm ‖ Rh

(
uhH
)
‖2 over the adaptation

confirmed that the fine level residual estimate is not reduced during hp-adaptation. This

is a result of using injection of the p = 0 solution into the p = 1 finite-element space to

estimate the fine level solution uhH , which induces Gibbs phenomena in the fine level solution

estimate uhH . The presence of Gibbs phenomena in uhH cause the fine level residual estimate

Rh

(
uhH
)

to behave irregularly as the mesh is refined. The method for removing the Gibbs

phenomena from the fine level solution estimate uhH and thus correcting or regularizing the

fine level residual estimate Rh

(
uhH
)

is discussed subsequently.
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While no explicit limiter has been used to generate these results, one can view the hp-

adaptive approach as a form of limitation. Tradition slope limiters effectively reduce the

order of accuracy locally. The idea behind slope limitation is to assume that a high-order

discretization is appropriate everywhere in the grid and then to remedy those areas where

a high-order discretization is not appropriate, corresponding to a top down approach. hp-

adaptation can be viewed as a bottom up approach to limitation because hp-adaptation

starts with a low-order discretization and moves towards a high-order discretization where

appropriate. In the context of DG discretizations, the bottom up approach has an advantage

because it takes the coupling between order of accuracy and resolution into account naturally,

by applying h-refinement in the regions of the domain which are non-smooth.

As a point of comparison, this flow is also computed using the piecewise constant artifi-

cial viscosity method from Section 2.7.1. The computations are performed using discretiza-

tion orders p = 1 to p = 4 on a triangular mesh with N = 3, 189 elements, which corresponds

to approximately 10, 0000 to 50, 000 DoFs. The flow solutions are converged using a CGS

preconditioned GMRES solver described in Section 4.3.3 and Section 4.5.

(a) Initial A.V. and mesh: N = 3, 086, p = 1 (b) Initial mesh: Mach number

Figure 5.26: Initial artificial viscosity and Mach number contours for transonic flow over a
NACA0012 airfoil with p = 1, M∞ = .8 and α = 1.25o.
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(a) Final A.V. and mesh: N = 3, 086, p = 4 (b) Final mesh: Mach number

Figure 5.27: Final artificial viscosity and Mach number contours for transonic flow over a
NACA0012 airfoil (M∞ = .8 and α = 1.25o), using uniform p-enrichment with discretization
order is p = 4.

(a) Lift vs. NDoF (b) Iterative convergence

Figure 5.28: Lift versus NDoF for transonic flow over a NACA0012 airfoil using using artificial
diffusion with p = 1 to p = 4 and iterative convergence of the flow solver using a CGS preconditioned
GMRES solver.
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Figures 5.26(a)-5.27(b) depict the grid, artificial viscosity contours and Mach number

contours for this flow, computed with uniform p-enrichment and using the piecewise constant

artificial viscosity. Note that the shock wave sharpens when uniform p-enrichment is applied,

indicating that increasing the discretization order p has increased the resolution of the flow

field. Figure 5.28(a) depicts the lift versusNDoF , illustrating that the computed lift coefficient

does not converge to a fixed value as the discretization order p is increased. The conclusion

is that while the resolution is certainly increased, the piecewise constant artificial viscosity

has compromised the grid convergence of the higher-order result. Figure 5.28(b) depicts

the iterative converge for this case using the CGS preconditioned GMRES solver. One

can immediately see from the number of Newton steps required to converge the discrete

flows equations(up to 500), that computing shock waves with this method can become quite

expensive especially when compared with the adjoint hp-adaptation convergence history in

Figure 5.24(b). Additionally, for each order of accuracy adjustments to the artificial viscosity

parameters(up to a factor of 2) were required in order to obtain a convergent solution process

. The variations in the artificial viscosity parameters are the root cause of the poor computed

lift coefficient convergence behavior in Figure 5.28(a). This can be remedied by using a more

robust artificial viscosity method as seen in Section 2.7.4.

As a third and final comparison, this test case is computed using adjoint hp-adaptation

combined piecewise constant artificial viscosity and a minimum discretization order of p = 1.

As shown in Section 4.7.1 a minimum discretization order of p = 1 is required for SIP based

DG discretizations of the viscous terms. Therefore, it is of interest to examine the viabil-

ity of employing a minimum discretization order of p = 1 for shocked flows. Furthermore,

it is of interest to investigate if hp-adaptation can remedy the poor objective convergence

observed(Figure 5.28(a)) when employing uniform p-enrichment with piecewise constant ar-

tificial viscosity for this flow.

Figures 5.29(a)-5.30(b) depict the grid and Mach number contours for this flow, com-

puted with adjoint hp-adaptation and piecewise constant artificial viscosity. One clearly sees

that h-refinement is applied in the region around the shock and p-enrichment is applied else-

where. Figure 5.30(b) shows that the shock wave thickness is reduced dramatically during
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(a) Initial grid: 1,556 elements, p = 1 (b) Initial grid: Mach number

Figure 5.29: Initial mesh and Mach number contours for inviscid transonic flow over a NACA0012
airfoil with p = 1 and artificial diffusion, M∞ = .8 and α = 1.25o.

(a) Final mesh: with N = 8, 346, p = 1 to p = 4 (b) Final mesh: Mach number

Figure 5.30: Final mesh and Mach number contours for inviscid transonic flow over a NACA0012
(M∞ = .8 and α = 1.25o) airfoil using adjoint hp-adaptation and piecewise constant artificial
viscosity, the discretization order varies from p = 1 to p = 4.

the adaptive process. Figure 5.31(a) shows the lift versus NDoF for this case, where one

can immediately notice that hp-adaptation remedies the functional convergence problems

shown in Figure 5.28(a). Employing h-refinement rather than p-enrichment in regions where
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(a) Adjoint hp-adaptation: lift vs. NDoF (b) Iterative convergence

Figure 5.31: Inviscid transonic NACA0012 airfoil: computed lift coefficient versus NDoF using using
hp-adaptation combined with piecewise constant artificial viscosity. Iterative convergence using the
CGS preconditioned GMRES solver.

Figure 5.32: Error estimate in the computed lift coefficient over the hp-adaptation history employing
a discretization order of p = 1 and piecewise constant artificial viscosity in the vicinity of the shock
wave.

artificial viscosity is applied results this improved functional convergence behavior for this

test case. The localized mesh refinement in the vicinity of the shock wave allows the artificial

viscosity coefficients (Section 2.7.1) to remain fixed throughout the refinement process, which

is significantly more effective at increasing functional convergence than p-enrichment, which
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requires altering these coefficients as refinement is applied. Comparison of Figure 5.31(a)

and Figure 5.24(a) shows that using hp-adaptation with a minimum discretization order of

p = 1 combined with artificial viscosity uses significantly fewer degrees of freedom than hp-

adaptation using p = 0 as the minimum discretization order. This improvement in efficiency

is due to the uniform second-order accuracy in the regions of smooth flow features, resulting

in a significantly better initial solution. Thus hp-adaptation with artificial diffusion is even

more efficient than hp-adaptation using p = 0 to resolve the shock wave. Figure 5.31(b)

depicts the iterative convergence of the flow solver using the CGS preconditioned GMRES

solver. Note that the hp-adaptation results require far fewer Newton steps than the uniform

p-enrichment results(Figure 5.28(b)), especially for the final refinement.

Furthermore, combining artificial viscosity with hp-adaptation has resulted in improved

agreement between coarse level corrected lift coefficients (equation (5.2.13)) and the fine

level computed lift coefficient as seen in Figure 5.31(a). Examination of the computed lift

error estimate in Figure 5.32 shows that the error estimate is decreasing over the adaptation

history. Comparing Figure 5.32 with Figure 5.25 shows that the addition of artificial viscosity

has significantly improved the behavior of the error estimate. The addition of artificial

viscosity eliminates the Gibbs phenomena in the fine level solution estimate uhH , allowing

the fine level residual estimate Rh

(
uhH
)

in equation (5.2.10) to recover a decreasing trend as

hp-adaptation is applied. Therefore artificial viscosity is a suitable regularization technique

for the fine level solution estimate uhH , allowing for accurate error estimation.

Figure 5.33(a) depicts the computed lift coefficient versus the wall clock time, which

clearly shows that hp-adaptation generates more accurate lift coefficient values at a reduced

cost compared to higher-order shock capturing with piecewise constant artificial viscosity.

However, the most efficient method involves combining the piecewise constant artificial vis-

cosity with hp-adaptation employing a minimum discretization order of p = 1. This combi-

nation produces a grid converged functional in the least amount of computational time as

shown in Figure 5.33(a). Furthermore, hp-adaptation has remedied the poor functional con-

vergence observed for the piecewise constant artificial viscosity with uniform p-enrichment

computations.
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(a) Lift vs. wall clock time

Figure 5.33: Comparison of the computed lift versus wall clock time for inviscid flow over a
NACA0012 airfoil using using piecewise constant artificial viscosity with uniform p-enrichment
and hp-adaptation.

The combination of piecewise constant artificial viscosity and hp-adaptation has proven

to be more robust than either of these methods in isolation. Employing hp-adaptation

without artificial viscosity requires that the shock wave not enter a high-order element during

the solution process. However, the combination of hp-adaptation and piecewise constant

artificial viscosity allows this constraint to be relaxed because if a shock wave were to move

into a higher-order element during the flow solution process, the artificial viscosity will

become active and stabilize the element. Therefore, when considering the robustness of

combining hp-adaptation and artificial viscosity, no special care must be taken to avoid shock

waves entering high-order elements. However, the results indicate that additional accuracy

is achieved if h-refinement is employed in the vicinity of the shock wave. Therefore when

the combination of hp-adaptation and piecewise constant artificial viscosity is employed, the

decision between h-refinement and p-enrichment in equation (5.3.3) should be made such that

elements with non-zero artificial viscosity values are targeted with h-refinement. This can

be accomplished if the resolution indicator of equation (2.7.2) is used as the hp-adaptation

smoothness indicator and 1
K in equation (5.3.3) is set as 1

K = s0 − κ, which will target all

elements with non-zero artificial viscosity using h-refinement.
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While the hp-adaptive approach is not the most elegant shock capturing method for DG

discretizations, hp-adaptation has some significant advantages; hp-adaptation gives robust

and fast iterative convergence, and with each refinement the functional accuracy improves

and eventually grid converge of the functional is achieved. The results indicate that the

piecewise constant artificial viscosity should be combined with at least h-refinement at a

minimum discretization order of p = 1, in order to achieve grid converged functional values.

In particular, this work has shown hp-adaptation to be a very effective choice when used

in combination with artificial viscosity. Based on these results, the recommended strategy

for shock capturing is to combine hp-adaptation with artificial viscosity and to maintain the

discretization order at p = 1 in the vicinity of the shock wave.

5.4.4 Supersonic Viscous Cylinder: Surface Heating Based Adap-

tation

The fourth and final test case considers supersonic viscous flow over a half cylinder geometry.

The flow conditions are M∞ = 3.0, α = 270o, and Re = 10, 000. The initial mesh consists

of N = 1, 711 quadrilateral elements and is initialized to a uniform discretization order of

p = 1, which results in 6,844 DoFs. Since the end goal of this work is to develop a robust and

accurate high-order flow solver, this case is designed to test the hp-adaptation strategy for

viscous shocked flows. In this case the piecewise constant artificial viscosity of Section 2.7.1

is employed as the shock capturing method. As previous test cases have shown, using high

discretization order(p) combined with piecewise constant artificial viscosity has proven to

be ineffective at reducing functional error. Hence adjoint based hp-adaptation is employed

to simultaneously increase solver robustness and accuracy. In this case the target of the

adjoint-based adaptation is the surface heating coefficient CH defined as:

CH =
µb
Pr

∇Tb · ~n
1
2
ρbU3

∞

U∞ =
√
u2
∞ + v2

∞

(5.4.1)

where Pr = .72 is the Prandtl number, µb is the viscosity at the surface, Tb is the surface

temperature, ~n is the surface normal vector, ρb is the surface density, u∞ is the free-stream
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u-velocity, and v∞ is the free-stream v-velocity. Furthermore, p = 3 is set as the maximum

allowable discretization order for this case.

(a) Initial mesh: N = 1, 711 elements, p = 1

(b) Initial mesh: temperature contours

Figure 5.34: Initial mesh and temperature contours for supersonic viscous flow over a half cylinder
using a uniform discretization order of p = 1.

Figure 5.34(a) through Figure 5.35(b) depict the meshes and temperature distributions

at the initial and final stages of the hp-adaptive process, which show that a substantially more

resolved shock wave is obtained on the final hp-adapted mesh. The surface heating objective

has targeted only a portion of the shock wave, which is refined using h-refinement as shown

in Figure 5.35(a). Similarly, a portion of the region behind the shock wave, known as the

shock layer, is targeted for refinement using p-enrichment due to the smooth flow features

in this region. Lastly, the boundary layer along the surface of the cylinder is also targeted

using p-enrichment since this is also a smooth flow feature. The portion of the shock wave
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(a) Adjoint hp-adaptation final mesh: N = 6, 253, p = 1 to p = 3

(b) Final mesh: temperature contours

Figure 5.35: Final mesh and temperature contours for supersonic viscous flow over a half cylinder,
the discretization order varies from p = 1 to p = 3.

that is relevant to surface heating is captured very sharply and robustly by hp-adaptation.

Figure 5.37 depicts the temperature extracted along the stagnation streamline on the intial

and final hp-adapted meshes and shows that hp-adaptation has increased the resolution of

the shock wave significantly on the final mesh. Figure 5.36(a) depicts the artificial viscosity

distribution on the initial mesh and Figure 5.36(b) depicts the artificial viscosity distribution

on the final mesh. On the initial mesh the artificial viscosity targeted only elements in the

vicinity of the shock wave and vanished in regions of smooth flow features. Figure 5.36(b)

shows that on the final adapted mesh the artificial viscosity has been activated in the vicinity

of the shock wave as well as in the shock layer near the y = 0 lines. Comparing Figure 5.36(a)

and Figure 5.36(b) illustrates that as h-refinement is applied in the vicinity of the x = 0
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(a) Initial mesh: artificial viscosity

(b) Final mesh: artificial viscosity

Figure 5.36: Artificial viscosity on initial and final meshes for supersonic viscous flow over a half
cylinder.

line, the artificial viscosity is confined to a thinner region than on the initial mesh.

Figure 5.38(a) depicts the integrated surface heating over the adaptation history, which

becomes grid converged after 5 adaptive cycles. The corrected coarse level surface heating

given by equation (5.2.13) correctly predicts the fine level surface heating for all but the

first two adaptive cycles. Furthermore, the application of hp-adaptation has substantially

reduced the adjoint error estimate over the adaptation process as shown in Figure 5.38(b).

Figure 5.38(b) depicts the computed functional error estimate versus NDoF (i.e. h2). The

convergence rate of the function error versus h =
√
NDoF is 6.2 and is very close to the

optimal value of 6.0. This combination of hp-adaptation and piecewise-constant artificial

viscosity is both robust and accurate and clearly demonstrates the advantages of using high-
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Figure 5.37: Temperature profile extracted along the stagnation streamline on the initial and final
hp-adapted meshes.

(a) Computed surface heating: CH (b) Computed surface heating error estimate

Figure 5.38: Computed surface heating and adjoint error estimate of computed surface over the
hp-adaptation history.

order methods in this fashion, where as one achieves the desired functional error convergence

properties without using high-order elements in the vicinity of the shock wave.
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5.5 Summary

An hp-adaptive high-order discontinuous Galerkin solver for the Navier-Stokes equations has

been developed and applied to four test cases. The adaptive method presented is driven by

a goal-oriented approach which makes use of adjoint-based error estimation and is capable

of adapting both the grid and discretization order locally. The solver adapts the grid non-

conformally to allow for h-refinement of mixed-element meshes such as those shown in the

numerical results. The use of hp-adaptation has demonstrated high efficiency by computing

high accuracy functionals using fewer degrees of freedom than the reference solution or

uniform refinement solutions. Furthermore, applications of hp-adaptation to transonic and

supersonic flows has demonstrated the robustness of this method for shock capturing. The

use of hp-adaptation is essential for obtaining grid convergence of functionals for flows with

shock waves when the piecewise constant artificial viscosity method is employed.

While hp-adaptation alone is a form of limitation, the best overall results are shown when

both hp-adaptation and piecewise constant artificial viscosity are combined. A supersonic

test case demonstrates that high accuracy surface heating can be obtained with shock waves

captured using p = 1 elements. While these results employ the piecewise constant artificial

viscosity, the remainder of this work employs the PDE-based artificial viscosity of Section

2.7.2. The PDE-based artificial viscosity is considered for the remainder of this work because

it has proven to be more robust for Mach numbers higher than M∞ = 3. The PDE-based

method is more robust because this method spreads the artificial viscosity distribution over

a wider region than the piecewise constant method and also results in a smooth artificial

viscosity distribution. Numerical experiments have shown that a smooth artificial viscosity

distribution is critical to robust shock capturing as also pointed out in references [37,69].
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Chapter 6

Application of DG to Turbulent Flows

using the RANS Equations

In this work, a robust discontinuous Galerkin (DG) solver for turbulent aerodynamic flows

using the turbulence model of Spalart and Allmaras(SA) [41] is developed. The SA tur-

bulence model equation, which governs the so-called turbulence model working variable ν̃,

is given in equation (2.1.2). Initial attempts to solve the SA turbulence model equation

using a high-order DG discretization resulted in solver failure due to robustness issues. The

most pressing robustness issue is related to an artificial sharp interface or discontinuity in

the turbulence model working variable. As such, this work focused on improving the ro-

bustness and efficiency of the discontinuous Galerkin solver for turbulent flows governed by

the Reynolds Averaged Navier-Stokes(RANS) equations coupled to the one equation tur-

bulence model of Spalart and Allmaras. Herein a first-order finite-volume discretization

is implemented for the turbulence model convection term, which is a standard practice in

the finite-volume methods context. Section 2.6 describes the finite-volume discretization

of the SA turbulence model equation. Computational results will show that, despite the

first-order discretization of the turbulence model convection term, there is still benefit to

employing high-order DG discretizations for the mean flow equations, and, at the very least,

high-order accurate discontinuous Galerkin(DG) solutions to the RANS equations are ob-

tained robustly. The combination of a high-order DG discretization for the RANS (mean
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flow) equations and the first-order finite-volume discretization of the SA turbulence model

equation will be denoted as a hybrid discretization in this work. The hybrid discretization

is applied to realistic aerodynamic flows including a subsonic turbulent airfoil flow and two

different high-lift multi-element airfoil configurations at high angles of attack.

6.1 Issues Facing RANS and High-order Methods

Non-smooth solutions present a significant challenge to discontinuous Galerkin discretiza-

tions. The most pressing source of non-smooth behavior is associated with the turbulence

models used to close the Reynolds Averaged Navier-Stokes (RANS) equations. Recent work

has shown that higher than first-order accurate discretizations of the convection term of the

turbulence model of Spalart and Allmaras(SA)(equation (2.1.2)) produce a non-smooth be-

havior or a discontinuity in the turbulence model working variable ν̃. The working variable

discontinuity is located near the edge of boundary layers and wakes. This same phenomena

has also been observed by Oliver and Darmofal in references [20, 46, 74]. The discontinu-

ity results in oscillations of the high-order solution of the turbulence model equation, which

leads to negative values of the working variable that can easily cause the presented DG solver

to fail (i.e diverge). Numerical experiments with the presented DG solver have shown that

some flows are more susceptible to solver failure than others. For example, solver failure is

more likely to occur to for high-lift configurations, where the negative values of the working

variable have particularly high magnitudes than for simple flat-plat boundary layer flows. In

general, the higher the magnitude of the negative working variable values, the more likely the

solver is to fail due to the turbulence model working variable discontinuity. However, results

from the AIAA drag prediction workshops have shown that discretization error negatively

impacts the state-of-the-art of second-order finite-volume CFD solvers [13, 14]. However, it

is well known that one of the most effective methods for removing discretization error is to

increase the order of accuracy [17, 20, 29, 47, 56, 96]. Therefore competing interests exist for

the computation of turbulent flows. On one hand additional accuracy is required and on

the other hand the turbulence model equations have so far proven difficult to solve robustly
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using higher than a first-order discretization of the convection term. Hence the primary goal

of this work is to examine whether increasing the mean flow discretization order, while main-

taining a first-order discretization for the turbulence model equation, constitutes a viable

strategy. Additionally, the robustness of the current solver will be demonstrated by applying

the solver to challenging test cases that are relevant to aerodynamics. The DG solver in this

work is capable of discretizing the SA model equation using both a finite-volume discretiza-

tion with a first-order accurate convection term discretization and an arbitrarily high-order

DG discretization, enabling comparisons between these two discretizations. The first-order

finite-volume discretization is described in Section 2.6 and the DG discretization, which is

also applied to the mean flow equations is described in Section 2.2.

While there are a several examples of successful high-order DG RANS solutions [15,20,

42, 43, 70], significant robustness issues remain. For example, the flow over a flat-plate can

be computed successfully using a high-order DG discretization of the SA turbulence model

equation as in Section 6.2.1. However, the present DG solver has never been able to solve

the flow over a high-lift multi-element airfoil configuration, such as the three-element airfoil

configuration considered in Section 6.5.2, using a high-order DG discretization of the SA

turbulence model equation. Furthermore, the current solver using a DG discretization of the

SA turbulence model equation is able to replicate nearly all the results of references [15,20,42,

43,70]. However, high-order DG discretizations of the SA turbulence model equation are not

robust enough for high-lift calculations on arbitrary grids. Many production level solvers such

as, CFL3D [66], FUN3D [65], and NSU3D [64] employ finite-volume discretizations of the

turbulence model equations with first-order accurate convection terms for all implemented

turbulence models. Furthermore, Spalart and Allmaras employ a first-order convection term

discretization of the SA turbulence model equation in reference [41]. Borrowing from this

idea, the presented DG solver is modified to use the same discretization of the turbulence

model equation as references [5,64]. High-order DG discretizations are implemented for the

mean flow equations in order to remove as much discretization error from the mean flow

equations as possible.

There have been a few attempts to stabilize high-order solutions of the SA turbulence
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model equations [15, 46, 70]. Unfortunately, these stabilization methods have proven unsat-

isfactory in one way or another: either the stabilization method allows for negative values

of the turbulence model working variable ν̃ or it adversely impacts the solution accuracy of

turbulence model. In particular, one effect is the under-production of the turbulence model

working variable, which results in eddy viscosity values that are too low to utilize in the

Boussinesq approximation, which is hereby referred to as inadequately modeling turbulent

flow physics. Numerical experiments using the present DG solver and the turbulence model

stabilization methods of references [15, 46, 70] have shown that these stabilization methods

suffer from the effects described above.

In order to determine whether the discontinuity in the the SA working variable is a purely

numerical artifact resulting from DG discretizations, tests using a finite-volume solver are

conducted in order to determine whether a higher than first-order accurate discretization of

the turbulence model may be employed in the finite-volume context. Using the finite-volume

solver as a base-line, the turbulence model discretization options and the manner in which

these options affect the possibility of discretizing the SA turbulence model equation with

high-order DG methods are discussed. Specifically, the choice of the convective numerical flux

discretization is analyzed in detail to determine the most appropriate convective numerical

flux for the hybrid discretization.

Just as perplexing is the determination of the optimum strategy for the coupling of the

turbulence model and mean flow equations. If the turbulence model is solved using a de-

coupled flow Jacobian, there are some techniques [41] that can be used to help with the SA

working variable discontinuity. However, using a decoupled flow Jacobian may prevent the

solver from being able to fully converge the discrete equations as seen in this work and refer-

ence [97]. Fully converging the discrete equations is a very important issue for higher-order

discretizations because the discrete equations must be converged to tight tolerances(usually

9 or more orders of magnitude), in order to ensure that the solver outputs such as computed

lift coefficient are computed to the desired error tolerances. For example, the first AIAA

international high-order methods workshop has specified an error tolerance of .01 counts

(1.0e−6) in the computed lift, drag, or moment coefficients for most test cases.
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6.2 DG Discretizations of the Mean Flow and Turbu-

lence Model

Although solving the turbulence model equation using high-order DG discretization is very

difficult due to the presence of the turbulence model working variable non-smooth behavior,

it is possible to obtain a solution in isolated incidences. In particular, it is possible to

obtain high-order DG solutions to the turbulence model equation for simple flows such as a

flat plate or an airfoil at low angles of attack. Numerical experience with computing high-

order discretization turbulence model solutions has shown that, as the angle of attack, Mach

number and Reynolds number are increased, the turbulence model discontinuity becomes

stronger, resulting in higher magnitude negative values of the working variable. Higher

magnitude negative values of the turbulence model working variable more readily cause solver

failure. This section details the preliminary results of applying high-order DG discretizations

of the mean flow and turbulence model equations to flow problems where a solution can be

obtained. Additionally, the local-order reduction technique of Section 4.6 is applied to asses

the merits of using this technique to enhance the robustness of the DG discretization of the

turbulence model equation. The results presented are computed such that the turbulence

model and mean flow equations all have the same discretization order, as well as the same

convective numerical flux function for an element. This is the most rigorous option for

discretizing the total RANS-SA system.

6.2.1 Turbulent Flat-Plate

The first test case consists of the the incompressible zero pressure gradient turbulent flow

over a semi-infinite flat plate at M∞ = .1, α = 0o, and Re = 10, 000, 000. In this case the

RANS equations are coupled to the one-equation turbulence model of Spalart and Allmaras

(SA model). The computational mesh is made up of N = 540 quadrilateral elements, as

shown in Figure 6.1 and employs discretization orders p = 1 to p = 4. The computed results

are compared with experimental data [98], which represents a verification of the RANS

implementation for discretization orders p = 1 to p = 4. The MGPC-GMRES solver is used
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to solve the discrete flow equations.

The u+-velocity profiles versus y+ for all discretization orders are plotted along with

the experimental u+-velocity data from reference [98] in Figure 6.2(a). The non-dimensional

velocity u+ and the non-dimensional coordinate perpendicular to the wall y+ are given by:

y+ =
uτy
µ
ρ

u+ =
u

uτ

uτ =

√√√√(µρ + µT
ρ

)
∂u
∂y

ρ

∣∣∣∣∣∣∣∣
wall

(6.2.1)

where the term uτ is the so-called friction velocity defined via the total wall shear stress.

Additionally, the computed skin friction coefficient as well as experimental skin friction

coefficient data versus x/c are plotted in Figure 6.2(b). The results show that good agreement

between computed and experimental results is obtained for both the u+-velocity profile at

the mid-chord of the plate x/c = .5 and the skin friction coefficient along the plate length

(i.e. versus x/c). Figure 6.3 shows the turbulence model working variable plotted versus

y/c at the mid-chord of the plate x/c = .5 for discretization orders p = 1 and p = 4. Note

the oscillations at the boundary layer edge, indicating the presence of non-smooth behavior,

with more oscillatory behavior for the p = 4 result. References [20, 74] have also noted

that high-order discretizations of the SA turbulence model equation yield oscillations at the

boundary layer edge.

The convergence history for a discretization order of p = 2 is depicted in Figure 6.4. The

MGPC-GMRES solver achieves convergence in under 80 Newton iterations for both the flow

and turbulence model equations. Note the very sharp rise in the turbulence model residual

around the 50th Newton iteration. This is the point in the solution convergence history

when the model begins to develop negative working variable values and the source term

modifications given in Section B.1 become active. If not properly damped, this secondary

transient will cause solver failure. Despite employing the modifications to the source terms in

Section B.1, negative working variable values are still present in the final converged solution.
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Furthermore, the secondary transient has proven difficult to overcome for more complex flow

problems.

Figure 6.1: Computation mesh used for computing turbulent flow over a flat plate with the Spalart-
Allmaras turbulence model consisting of N = 540 quadrilaterals.

(a) u-velocity profile (b) skin-friction coefficient

Figure 6.2: Comparison of computed solution using a DG discretization with the Spalart-Allmaras
turbulence model for a flat plate boundary layer compared with experimental data using p = 1 up
to p = 4.
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Figure 6.3: Computed profile of Spalart Allmaras working variable for turbulent flow over a flat
plate at x/c = .5 (plate mid-chord) illustrating non-smooth behavior at the boundary layer edge
for p = 1 and p = 4. Note that solution is more oscillatory when employing a discretization order
of p = 4

Figure 6.4: Convergence history of the density and turbulence model variable for turbulent flow
over a flat plate using the Spalart-Allmaras turbulence model for a p = 2 DG discretization using
MGPC-GMRES solver.

6.2.2 Turbulent NACA0012 Airfoil

The second test case consists of the turbulent flow over a NACA0012 airfoil using the Spalart-

Allmaras turbulence model. The flow conditions are M∞ = .25, α = 0o, and Re = 1, 685, 000

and discretization orders p = 1 to p = 3 are employed on a mesh with N = 3, 579 elements
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(1, 302 quadrilaterals and 2, 277 triangles). The maximum aspect ratio of any element in

the mesh is 4650:1. The mesh for this test case is shown in Figure 6.5(a). The solution is

converged using the MGPC-GMRES solver and each higher p solution is initialized with a

fully converged solution of order p−1. This flow is significantly more challenging to solve than

the flow over the flat-plate as the magnitude of the negative values of the turbulence model

working variable become substantially larger. As with the flat plate, this case demonstrates

the oscillations in the turbulence model working variable at the edges of boundary layers.

Additionally, this flow demonstrates that the edge of the wake contains the same oscillations,

which are more severe than at the edge of the boundary layer and generate higher magnitude

negative working variable values. This test case also demonstrates a need for additional

smoothness and/or limiting of the turbulence model solution to increase the robustness of

the DG discretization.

The convergence history for the p = 3 solution is depicted in Figure 6.5(b), which clearly

shows that the convergence rate is slower than that of both laminar cases in Chapters 4 and 5

and the flat-plate case previously presented. The slow convergence rate in the initial part of

the convergence history is due to transients induced by the model source terms. However, the

slow convergence rate during the later portion of the convergence history is due to Newton

damping requirements imposed by the presence of negative turbulence model variable values.

In fact for the p = 3 DG discretization of this test case, the maximum CFL number was set

to CFLmax = 1000, which is at least 4 orders of magnitude lower than any other presented

test case in this work. Figures 6.6(a) and 6.6(b) show the computed Mach number and

turbulent viscosity contours for a p = 3 discretization. Figure 6.8 illustrates the surface

pressure distribution for orders p = 1 to p = 3. Figure 6.8 clearly shows an increase in

solution quality and smoothness as the discretization order is increased. Figure 6.7 depicts

the ν̃ contours in the negative value regime, which demonstrates that the negative ν̃ increase

in magnitude in the wake region of the domain.

As a preliminary attempt at increasing robustness of the DG RANS discretization the

local-order reduction technique of Section 4.6 is applied to the p = 2 solution of this problem.

In order to apply local-order reduction, the indicator given in equation (2.7.2) was used with
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the turbulence model working variable as the quantity of interest. While the quantity used

to trigger local-order reduction is based on the turbulence model working variable ν̃, the

discretization order p is reduced for all equations in an element that is flagged for local-order

reduction. Figure 6.9(a) shows the cells in which the discretization order p is reduced, which

are all at the edge of the boundary and wake, (i.e. turbulent and non-turbulent interfaces)

confirming that this region exhibits non-smooth behavior. Although the application of local-

order reduction increased the robustness of the solver, local-order reduction also degraded

the quality of the solution. Figure 6.9(b) shows the surface pressure distributions for this

test case employing a discretization order of p = 2 with and without local-order reduction.

The p = 2 solution with local-order reduction results in a surface pressure profile that is

significantly less smooth than the p = 2 without local-order reduction. In fact, comparison

of Figure 6.8 and Figure 6.9(b) shows that the local-order reduction surface pressure result

more closely resembles the p = 1 surface pressure result than the p = 2 result without

local-order reduction. By using p = 1 elements at the edge of the boundary layer, the

pressure (which is approximately constant through the boundary layer) at airfoil surface has

been compromised, indicating that the accuracy of quantities such as lift and drag can be

degraded using this approach. Applying local-order reduction to all the equations has shown

that the resolution and smoothness requirements of the mean flow and SA turbulence model

equations are at odds with one another. Clearly, a robustness enhancement technique that

isolates the turbulence model equation from the mean flow equations is required in order to

yield the requisite smoothness of the model variable, while simultaneously avoiding adverse

effects on the mean flow equations, since the mean flow equations are not the cause of solver

failure. Furthermore, this case demonstrates that the mean flow resolution requirements are

at odds with the SA turbulence model resolution requirements. Regions where the mean

flow equations can benefit from high p discretization order cannot be discretized with high

p discretization order due to turbulence model equation robustness problems.
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(a) Mesh: N = 3, 579 (b) Convergence history: p = 3

Figure 6.5: Mesh and convergence history for turbulent flow over a NACA0012 airfoil with a DG
discretization of both RANS and the Spalart-Allmaras turbulence model equations.

6.3 hp-Adaptation with High-order DG Discretization

of the Spalart Allmaras Turbulence Model

The results of applying local-order reduction have shown that there is a discrepancy in the

type of resolution required by the turbulence model compared to the type of resolution re-

quired by the mean flow. Thus hp-adaptation is performed to enhance the robustness of solv-

ing turbulent flows using high-order DG by accounting for this resolution discrepancy. The

idea is simple; anywhere the turbulence model working variable is non-smooth h-refinement

is applied, while p-enrichment is applied otherwise. Since a uniform second-order accurate

discretization is required globally, this results in some turbulence model working variable neg-

ative values. However, provided the initial solution is attainable then hp-adaptation should

be able to increase turbulent flow resolution and accuracy, enabling high-order methods to

attain grid converged functionals and exhibit more robust behavior.
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(a) Mach

(b) µT

µ∞

Figure 6.6: Computed Mach number and turbulent viscosity contours for turbulent flow over a
NACA0012 airfoil with a DG discretization of both RANS and the Spalart-Allmaras turbulence
model equations.

Figure 6.7: Computed ν̃
ν∞

contours, levels are bounded from 0 to -40 to show the negative turbulence
model working variable values.
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Figure 6.8: Computed surface pressure coefficient of a NACA0012 using RANS coupled to the
Spalart-Allmaras turbulence model with orders p = 1 to p = 3.

6.3.1 Turbulence Model Grid Resolution Requirements

In order to improve the computational efficiency of the solver, the hp-adaptation algorithm

detailed in Section 5.3 will be applied using both high-order DG and first-order finite-volume

discretizations of the SA turbulence model equation. When applying hp-adaptation to high-

order DG discretizations, the hp-adaptation algorithm chooses between h-refinement or p-

enrichment by examining the smoothness of the solution within a cell. Applying this method

to turbulent flows requires examining both the smoothness of the pressure and the turbu-

lence model working variable ν̃. However, experiments applying the smoothness detector of

equation (5.3.2) to the turbulence model working variable for turbulent flows have shown

that the turbulence model is non-smooth in a very large portion of the domain including

at the wall and at the edges of boundary layers and wakes. Figures 6.10(a) and 6.10(b),

which are from the computation of a turbulent flat-plate flow at the same flow conditions

used in Section 6.4.1, show the smoothness indicator values of equation (5.3.2) for the mean

flow and turbulence model respectively, where the cells that have color are deemed as non-

smooth. Notice, that while the mean flow is sufficiently resolved in the region adjacent to

the wall, the smoothness detector has determined that the turbulence model working vari-

able is non-smooth in this region. While the non-smooth behavior at the edges of boundary
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(a) Discretization order

(b) Computed surface pressure coefficient

Figure 6.9: Results of applying local-order reduction to the DG discretization of RANS equations
for turbulent flow over a NACA0012 airfoil using the Spalart-Allmaras turbulence model.

layers and wakes is be expected, based on the results in this work as well as the results of

references [15,20,46,70,74], the detection of non-smooth behavior at the wall is unexpected.

The results shown in Figure 6.10(a) and Figure 6.10(b) indicate that the SA model requires

higher grid resolution at the wall than the mean flow equations.

Unfortunately the region adjacent to the wall is an area where the mean flow equations

would benefit form high-order polynomial representation, in order to resolve the smooth high

gradient mean flow field in this region. In order to isolate the region adjacent to the wall from

the smoothness detection required for the non-smooth behavior at the edge of the boundary
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(a) Mean flow smoothness indicator (b) Turbulence model smoothness indicator

Figure 6.10: Close-up of near wall cells smoothness indicator for the turbulent flow over a flat-plate
at M∞ = .1, Re = 10, 000, 000. White cells are detected as smooth and colored cells as non-smooth.
DG discretization is employed for the turbulence model with Roe approximate Riemann solver for
the convective numerical flux

layer, various indicator quantities for turbulence model smoothness were examined. This

work was unable to find an indicator quantity that was able to simultaneously avoid the

region adjacent to the wall and also detect the edge of the boundary layer. Furthermore,

a search of the literature found that only two references [46, 70] have considered turbulence

model smoothness detection and neither of the detection strategies in these references was

able to overcome this problem.

This work also makes use of a hybrid discretization approach where the mean flow

equations are discretized using a high-order DG discretization and the turbulence model is

discretized using a first-order finite-volume discretization. Since this discretization removes

the non-smooth behavior of the turbulence model, turbulence model smoothness becomes a

non-issue for this hybrid discretization approach. However, use of a first-order finite-volume

discretization of the turbulence model means that increasing the discretization order p does

not increase the resolution of the turbulence model. In order to effectively utilize the hp-

adaptation strategy, modifications to the decision process that chooses between p-enrichment

and h-refinement are required. Rather than basing the decision between p-enrichment and
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h-refinement based on turbulence model solution smoothness alone, the contribution from

the turbulence model equation to the functional error estimate for a given element (equation

(5.2.11)) is quantified, and used as a metric to determine if an element should be refined

via h-refinement or p-enrichment. If the contribution of turbulence model equation to the

functional error estimate is large enough relative to the total functional error estimate for

a given cell, h-refinement is chosen for that cell, which allows for increased resolution of

the turbulence model. The smoothness of the pressure is still used to detect non-smooth

cells for the mean flow equations. In practice, the smoothness of the mean flow equations

is determined for each element and then the contribution from the turbulence model to the

output functional error estimate is determined and used to override the mean flow smoothness

detector in elements where this contribution is high enough. For this work, if the turbulence

model contributes more than 50% to the functional error estimate in a given cell, then the

cell is refined via h-refinement, regardless of the smoothness of the mean flow field.

6.3.2 Flat-plate: hp-adaptation

The first hp-adaptation test case consists of the turbulent flow over a semi-infinite flat-plate

at M∞ = .1, α = 0.0o, and Re = 10, 000, 000. For this test case, the turbulence model is

discretized using a DG discretization with the same discretization order as the mean flow

equations. Adjoint based hp-adaptation is performed with drag as the objective. Due to the

discontinuity of the turbulence model working variable, the functional convergence is not

guaranteed to be regular. Figure 6.11(a) shows a close up of the initial mesh, which contains

N = 540 elements and employs a discretization order of p = 1.

Three cycles of hp-adaptation using computed drag coefficient as the objective are per-

formed, at which point the computed drag coefficient is deemed grid converged. The final

hp-adapted mesh is shown in Figure 6.11(b) which has N = 1, 116 elements employing vari-

able discretization orders of p = 1 to p = 4. Figure 6.12(a) shows the computed drag

coefficient values over the adaptive history. Clearly the drag becomes grid converged over

the adaptive history since on the last refinement step the drag value changes by less than

.5%. Figure 6.12(b) shows the adjoint error estimate of drag over the adaptation history.
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(a) Initial mesh N = 540 elements, p = 1 (b) Final hp-adapted mesh N = 1, 116 elements,
p = 1 to p = 4

Figure 6.11: Initial and final meshes for drag driven hp-adaptation of the turbulent flow over a
flat-plate. Note the expanded y-axis scale for clarity.

In this case, the drag error estimate continues to drop over the entire adaptation history

and reaches a value .03 counts (3.0e-6) at the final adaptation step, indicating that grid

convergence of drag comes at very low error levels at least for the viscous drag component,

which is the only drag component present in this flow. Furthermore, the average slope of the

drag error estimate versus h(h =
√
NDoF ) over the adaptation history is 8. Figure 6.13(a)

shows the computed skin friction distribution on the plate for the initial and final meshes,

illustrating a significant increase in skin friction at all points along the plate. Since the drag

has become grid converged, it is interesting to examine the distribution of ρν̃ at the bound-

ary layer edge as shown in Figure 6.13(b). Figure 6.13(b) shows that, despite the significant

increase in resolution, the profile of ρν̃ at the edge of the boundary layer has not become

smooth. While the final hp-adapted mesh shows a drop in negative value magnitude, the

overall behavior is still oscillatory and the model equation is still producing negative values

of ρν̃. The fact that the boundary layer edge has not become smooth leads one to question

whether this artifact will vanish with increasing mesh resolution. This subject will be the

consideration of future work as the goal of the present work to determine if turbulent flows

can be solved on reasonable meshes i.e. meshes that are not designed around turbulence
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(a) Drag vs. NDoF (b) Adjoint estimate of drag error

Figure 6.12: Computed drag and drag error estimate vs. NDoF for the hp-adaptation of turbulent
flow over a flat-plate.

(a) Skin fiction coefficient (b) Boundary layer edge close-up

Figure 6.13: Computed Skin friction coefficient on initial and final mesh and close up of boundary
layer edge working variable at x = .5.
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model discontinuities.

6.3.3 NACA0012 Airfoil: hp-adaptation

The second hp-adaptation test case consists of the turbulent flow over a NACA0012 airfoil.

This test case investigates the robustness enhancement properties of hp-adaptation for a

more challenging test case with larger magnitude negative turbulence model working variable

values. Furthermore, this test case also investigates the the grid convergence of lift, which is a

more challenging functional due to the strong dependence of lift on inviscid flow phenomena.

The flow conditions for this test case are M∞ = .25, α = 2.0o, and Re = 1, 685, 000.

Six cycles of hp-adaptation are performed with lift as the objective and p = 4 is set as

the maximum allowable discretization order. The turbulence model equation is discretized

to the same order as the mean flow equations using a high-order DG discretization. The

approximate Riemann solver of Roe is used for the convective numerical flux of both the

mean flow and turbulence model equations. Additionally, the flow is solved using a fully

coupled flow Jacobian with the GMRES method preconditioned by the CGS algorithm. The

initial mesh shown in Figure 6.14(a) contains N = 5, 082 elements at a discretization order

p = 1, yielding 18, 706 DoFs.

Figure 6.14(b) shows the final hp-adapted mesh after 6 cycles of hp-adaptation with

the computed lift coefficient as the objective. Note the highly refined wake and boundary

layer regions. The edge of the wake where the turbulence model is non-smooth is targeted

exclusively with h-refinement while the core of the wake is targeted with p-enrichment. Fur-

thermore, p-enrichment is applied upstream and around the airfoil outside of the boundary

layer where the turbulence model is smooth and has little influence on the solution. The only

reason that h-refinement is applied is due to turbulence model non-smoothness or because

an element has been p-enriched to the maximum allowable discretization order, which for

this case is set to a discretization order of p = 4.

Figure 6.15(a) through Figure 6.16(b) show the computed Mach number and eddy vis-

cosity contours on the intial and final meshes. Notice that the wake is significantly more

resolved on the final mesh, as is the inviscid flow region above and below the airfoil. Figure
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(a) Initial mesh: N = 5, 082 elements, p = 1

(b) Final hp-adapted mesh: N = 92, 358, p = 1 to p = 4

Figure 6.14: Initial and final meshes for lift-driven adjoint-based hp-adaptation of turbulent flow
over a NACA0012 airfoil.

6.17(a) and Figure 6.17(b) depict the pressure and skin friction distributions on the final

hp-adapted mesh respectively. Smooth pressure and skin friction distributions are obtained

at the final adaptive step.

Figure 6.18(a) shows the computed lift coefficient versus NDoF over the adaptation

history. Examination of this figure shows that the computed lift coefficient does not become

grid converged despite using over 600, 000 DoFs for this relatively simple flow. Furthermore,

Figure 6.18(a) shows that the coarse level corrected lift coefficient does not match the fine

level computed lift coefficient it is designed to predict at any point during the hp-adaptation

history. The poor correction of the coarse level lift coefficient is not surprising based on

the adjoint error estimate behavior shown in Figure 6.18(b). Figure 6.18(b) shows that the
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(a) Initial mesh: Mach number contours

(b) Final mesh: Mach number contours

Figure 6.15: Computed Mach number contours on the initial and final meshes of the hp-adaptation
of turbulent flow over a NACA0012 airfoil.

adjoint error estimate is not reduced by performing hp-adaptation. The error estimate is

not converging to zero because of an effect similar to the one discussed in Section 5.4.3.

However, for this test case, it is not the mean flow equations that are corrupting the fine

level residual estimate but rather the turbulence model equation due to the discontinuity of

the turbulence model working variable and the dual inconsistency discussed in Chapter 3.

The discontinuity in the turbulence model working variable causes Gibbs phenomena, which

as discussed in Section 5.4.3 impacts the fine level residual estimate Rh

(
uhH
)

used to obtain

the computable error εc in equation (5.2.10).

These results lead to several questions: why is the error estimate so poor? What is

affecting the functional convergence? Why was this not the case with the flat-plate? The
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(a) Initial mesh: µT

µ∞
contours

(b) Final mesh: µT
µ∞

contours

Figure 6.16: Computed eddy viscosity contours on the initial and final meshes resulting from the
hp-adaptation of turbulent flow over a NACA0012 airfoil.

answer to all of these questions is related to the turbulence model working variable discon-

tinuity. The turbulence model working variable discontinuity adversely impacts functional

converge, due to significant changes in the turbulence model working variable, which do not

converge to fixed values as adaptation is performed. The turbulence model working variable

discontinuity causes inaccurate error estimation in the same fashion as a p = 0 discretization

at the shock wave does in the hp-adaptation case presented in Section 5.4.3. Essentially, the

fine level residual estimate is corrupted due to the Gibbs phenomena that result from the

turbulence model working variable discontinuity. In the case of the transonic flow in Section

5.4.3, artificial viscosity is able to regularize fine level solution estimate uhH and hence correct

the Gibbs phenomena.
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(a) Cp (b) Cf

Figure 6.17: Computed coefficient of friction and surface pressure coefficient on the final mesh for
the hp-adaptation of the turbulent flow over a NACA0012 airfoil.

(a) Lift vs. NDoF (b) Lift adjoint error estimate vs. NDoF

Figure 6.18: Computed lift coefficient and lift coefficient error estimate over the hp-adaptation
history for turbulent flow over a NACA0012 airfoil.

Artificial viscosity was also added in both piecewise constant and PDE-based forms to

the turbulence model equation in order remove the Gibbs phenomena. However, applica-

tion of the artificial viscosity resulted in failure either through causing solver failure (lack

of robustness) or by altering the eddy viscosity profile so that the eddy viscosity was no
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longer sufficient to model the turbulent mixing. Furthermore, the dual inconsistency of the

turbulence model discretization can contribute to inaccurate error estimation. Attempts to

remedy the dual inconsistency were made, and as mentioned in Chapter 3, these dual incon-

sistency remedies were also ineffective. The dual consistency modifications employed for the

turbulence model increased the computational time by a factor of two and also adversely

impacted the robustness of the solver (see Chapter 3 for details).

Finally corrupt error estimates were not obtained in the flat-plate case because the

functional in that case did not depend on the turbulence model solution in the discontinuous

regions. Recall that the flat-plate was adapted based on drag. In that case, viscous drag is

the only component of the drag that is non-zero. Viscous drag accuracy is influenced by the

region of the boundary layer very close to the wall where the SA model equation is relatively

well behaved. In contrast, the airfoil lift has a strong dependence on flow curvature, which

generates pressure based forces. These pressure based forces are primarily responsible for

generating lift in this fully attached flow. Flow curvature is a largely inviscid phenomena,

but there is a strong influence from the edge of the boundary layer on the computed lift

coefficient. The obvious nature of this statement is seen in the final hp-adapted mesh shown

in Figure 6.14(b) where the edges of the boundary and wake regions as well as the outer

region of the flow have been very heavily refined.

In conclusion, the presence of the SA turbulence model working variable discontinu-

ity in the actual solution has caused poor functional convergence while the presence of the

discontinuity in the fine level solution estimate causes inaccurate error estimation. If left

unchecked, this discontinuity will continue to plague turbulent flow solutions, adversely im-

pacting robustness, functional convergence, and functional error estimation. Since artificial

viscosity has proven to be successful as a shock capturing method, attempts were made to

utilize artificial viscosity for the turbulence model working variable discontinuity, but ar-

tificial viscosity was unable to remove the Gibbs phenomena without adversely impacting

turbulence model solution accuracy. In fact, Section 6.4.1 will show that employing a limiter

for the second-order discretization of the turbulence model equation convection term does

not perform in a satisfactory manner. Section 6.4.1 will also show that only a first-order dis-
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cretization employing the upwind convective numerical flux alleviates the Gibbs phenomena

effectively at least for the solution of the turbulence model equation.

6.4 Effects of Numerical Methods on the Spalart All-

maras Turbulence Model Solution

In this section, the effects of numerical methods on the turbulence model solution are ex-

amined. In particular, the choice of convective numerical flux as well as the coupling of the

mean flow and turbulence model equations are discussed. For simplicity the discussion of

these effects is restricted to a single numerical example, which is the turbulent flow over

a flat-plate at M∞ = .1 and Re = 10, 000, 000. The discussion of the effects of numerical

methods on the turbulence model solution is restricted to this simple test case in order to

avoid unsteady flow solutions in the presence of low eddy viscosity values.

6.4.1 Convective Flux Discretization

Through numerical experimentation, it has been found that the SA turbulence model is

sensitive to the amount of artificial diffusion introduced by the convective flux discretization.

This sensitivity is demonstrated by either the generation of negative values of the turbulence

model working variable or low eddy viscosity production, which causes low eddy viscosity

values that are insufficient to model turbulent flow physics. On the one hand, high artificial

diffusion values cause the eddy viscosity values to become inappropriately low. Artificially

low values of eddy viscosity result in an inadequate model of the turbulent physics. On the

other hand, low artificial diffusion values result in the generation of negative turbulence model

working variable ν̃ values. The negative values of ν̃ the result of the aforementioned non-

smooth behavior or discontinuity in the turbulence model working variable. The presence of

negative values of ν̃ often result in solver failure.

Consider the turbulent flow over a semi-infinite flat-plate at the aforementioned flow

conditions. Two basic discretizations are compared for this flow. The first discretization

is a p = 1 DG discretization that employs the approximate Riemann solver of Roe [52] for
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(a) u-velocity versus y/c (b) ρν̃/µ∞ versus y/c

Figure 6.19: Mid-chord profiles of u-velocity and working variable versus y/c for flow over flat-
plate with M∞ = .1, Re = 10, 000, 000, and p = 1 using a DG solver for the mean flow and various
discretizations and convective numerical flux formulations for the turbulence model .

the convection terms of both the turbulence model equation and the mean flow equations.

The second discretization is a p = 1 DG discretization for the mean flow combined with

a finite-volume discretization employing first-order accurate convection terms, for the tur-

bulence model, which is described in Section 2.6. Two convective numerical fluxes for the

first-order discretization of the turbulence model are examined: an upwind flux derived for

the turbulence model alone (Section 2.6), where the artificial diffusion has no acoustic com-

ponent, and a Roe approximate Riemann solver which fully couples the artificial diffusion

for the mean flow and turbulence model equations and therefore contains an acoustic compo-

nent in the turbulence model convective numerical flux. Essentially, the upwind flux treats

the model equation as through it is decoupled from the mean flow equations. However, the

Roe approximate Riemann solver treats the turbulence model equation by adding it as an

additional governing PDE to the system of equations in equation (2.1.1) and re-derives the

approximate Riemann solver for this new system of equations. Figures 6.19(a) and 6.19(b)

depict the u-velocity and ρν̃ profiles plotted versus y/c using all the turbulence model dis-

cretization options. These profiles are extracted at the mid-chord of the plate x/c = .5 where

c is the chord length of the plate.
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(a) u-velocity (b) ρν̃/µ∞

Figure 6.20: Mid-chord profiles of u-velocity and working variable versus y/c for flow over flat-plate
with M∞ = .1, Re = 10, 000, 000 using a second-order finite-volume solver for the mean flow and
various discretizations and convective numerical flux formulations for the turbulence model.

One immediately notices that using a p = 1 DG discretization of the turbulence model

equation results in oscillations at the boundary layer edge, which causes negative SA work-

ing variable values. Contrarily, employing a first-order finite-volume turbulence model con-

vection discretization using a Roe approximate Riemann solver for the convective numeri-

cal flux, results in under production of the eddy viscosity. The only presented turbulence

model discretization option that provides sufficient eddy viscosity levels and remains posi-

tive throughout the domain is the first-order finite-volume discretization of the turbulence

model convection term employing an upwind flux(equation (2.6.3)). One should ask why

the upwind flux is not used in combination with a p = 1 DG discretization of the turbulence

model, and the answer is that the solver is unable to converge the turbulence model equation

with this combination. The artificial diffusion supplied by this combination is insufficient

to generate a stable discretization i.e. the negative SA working variable ν̃ values have large

magnitudes and cause solver failure. Furthermore, as illustrated in Figure 6.19(a) a highly

inaccurate mean flow u-velocity profile results from the use of a first-order turbulence model

convection term discretization, employing a Roe approximate Riemann solver.

Figures 6.20(a) and 6.20(b) depict the same flow conditions computed using a second-
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order finite-volume solver. The finite-volume solver is capable of discretizing the mean

flow equations using a second-order accurate finite-volume method based on a weighted

least-square gradient reconstruction [81]. This discretization has also been implemented

for the turbulence model equation in this finite-volume solver. Additionally, the finite-

volume solver is also able to discretize the turbulence model equation using the first-order

convection term discretization described in Section 2.6. In this case, the second-order finite-

volume discretization of the turbulence model employs a min-mod limiter, the application

of which was found to be necessary in order to obtain a converged solution. Although it

is more difficult to see in Figure 6.20(b), the second-order finite-volume turbulence model

convection discretization produces an oscillation despite the use of the min-mod limiter in

these computations and the oscillation results in negative values of the SA working variable

locally. Furthermore, the presence of the limiter has affected the peak value of the eddy

viscosity, which is 16% lower than the first-order finite-volume discretization employing the

upwind flux. Thus the second-order turbulence model convection discretization is just as

unsatisfactory in the finite-volume context as in the DG context, even with the use of the

min-mod limiter. The second-order finite-volume turbulence model discretization results

show the same trend as the p = 1 DG turbulence model discretization results. Hence,

these issues appear in both DG and finite-volume discretization methods on unstructured

grids. The results of the finite-volume solver illustrate that the non-smooth behavior is not

restricted to DG discretizations.

Two conclusions can be drawn from this simple test. One is that the SA turbulence

model is sensitive to the amount of artificial diffusion that is applied through the convec-

tive flux discretization. Both the discretization order and the form of the discrete convec-

tive flux have strong influences on the turbulence model solution. In particular, coupling

the turbulence model and mean flow convective flux discretization, results in a numerical

scheme with too much artificial diffusion and thus the model does not produce sufficient

eddy viscosity. However, initial experiments for scalar convection problems with high-order

DG discretizations demonstrated that coupling the convective numerical flux between the

equations controlling the background velocity field(in this case the Euler Equations) and
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the scalar convection equation is necessary to achieve positive and smooth scalar values, for

smooth initial conditions of the scalar. These two conclusions are at odds with one another,

leaving few options for discretizing the turbulence model equation to high-order accuracy.

Furthermore, the optimal combination for convective term discretization for the turbulence

model has been found to be a first-order convection discretization employing an uncoupled

upwind flux formulation (i.e a numerical flux where the sound speed does not appear in the

artificial diffusion term for the turbulence model). Unfortunately, it seems any second or

higher-order convection discretization will not guarantee positive values of ν̃, regardless of

the discretization employed, even if one applies a monotone limiter.

6.4.2 Algebraic Coupling

Constructing implicit solution techniques requires the determination of the flow Jacobian

matrix as shown in equation (4.2.3). The flow Jacobian requires the differentiation of the

residual Rh with respect to the discrete solution ûh, a process known as linearization. Turbu-

lence models are often linearized in a decoupled fashion i.e. turbulence models are linearized

only with respect to the variables that the model equation controls. This results in a loosely

coupled implicit solver formulation that in many cases cannot fully converge the discrete

equations. However, if the linearization is performed in a fully coupled fashion, it is far

more likely that full convergence of the discrete equations can be achieved, at least with

the presented DG and finite-volume solvers. Full convergence of the discrete equations is

especially important for high-order discretizations, since the magnitude of high-order modal

coefficients can be small.

A fully coupled linearization is obtained by differentiating the model equation with re-

spect to every modal coefficient in the system of equations including the mean flow and tur-

bulence model equations. For example, the turbulence model equation requires the molecular

viscosity µ for the source and diffusion terms, which depends on all the mean flow quantities

ρ, ρu, ρv, and Et. Therefore, when linearizing the turbulence model there are off-diagonal

coupling entries in the block Jacobian matrix corresponding to differentiation with respect

to the modal coefficients of the mean flow quantities.
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(a) Discrete flow equation residual history (b) Computed drag difference

Figure 6.21: Comparison of coupled versus decoupled Jacobians on iterative convergence for turbu-
lent flow over a flat-plate with M∞ = .1 and Re = 10, 000, 000. The solution is obtained using the
CGS preconditioned GMRES solver. The drag difference (right) is the difference between the fully
converged flow solution computed drag value and the partially converged computed drag value,
resulting from employing a decoupled Jacobian in the implicit solver.

Figure 6.21(a) depicts the iterative convergence using the CGS preconditioned GMRES

solver for the turbulent flow over a flat-plate, employing a p = 1 DG discretization for the

mean flow equations and the first-order turbulence model discretization, using both coupled

and decoupled linearizations. Figure 6.21(a) shows that employing the decoupled flow Ja-

cobian results in an implicit solver that cannot fully converge the flow equation residuals

to machine zero. However, employing the fully coupled flow Jacobian results in an implicit

solver that fully converges both the turbulence model and mean flow equations without issue.

Figure 6.21(b) depicts the difference between the drag value obtained by fully converging

the discrete equations and the drag computed using the partially converged decoupled flow

Jacobian approach, ∆CD =
∣∣CDcoupled − CDdecoupled∣∣. Notice that the error in the computed

drag value induced by partially converging the discrete equations i.e.
∣∣CDcoupled − CDdecoupled∣∣

is approximately ±5.0e − 7. Although the values of ∆CD are small, values of this magni-

tude will often be insufficient for use with high-order methods where discretization errors

are small. For example, the first AIAA international high-order methods workshop specifies

functional error tolerances of 1.0e− 6.

202



The issue of coupling of the flow Jacobian matrix is raised because of the solution

strategy mentioned in reference [41]. In this solution strategy, sub-iterations with a decoupled

flow Jacobian are used to solve the SA turbulence model equation. This is mentioned in

reference to positivity preservation during the iterative process. The positivity preservation

proceedure is not described in reference [41]. This type of proceedure is really only valid when

employing a decoupled flow Jacobian in the implicit solver, which results in implicit solvers

that are less than satisfactory based on the presented results and the results of reference [97].

Hence these types of positivity preservation techniques will not be able to aid in DG solutions

of the RANS equations regardless of the turbulence model discretization or more generally

in a situation where low error tolerances are specified.

6.5 Hybrid Discretization Results

A DG solver that is capable of solving the RANS equations with a finite-volume discretiza-

tion of the turbulence model is applied to several practical aerodynamic flows including two

high-lift multi-element airfoil configurations. The combination of a high-order DG discretiza-

tion with a finite-volume discretization of the turbulence model equation with a first-order

convection discretization is denoted as a hybrid discretization. The discretization of the

the turbulence model employed for all test problems is described Section 2.1 and includes

modifications that are designed to enhance solver robustness when the turbulence model

working variable becomes negative(Section B.1), which can occur during the solution of the

discrete flow equations. However, negative values of the turbulence model working variable

do not exist in the final steady-state solutions when the turbulence model is discretized with

a first-order finite-volume method. These cases are presented to illustrate the robustness of

this approach and to demonstrate that using a high-order DG discretization for the mean

flow equations alone can still be beneficial for overall solution accuracy. All test cases are

solved using a damped-Newton method with a line-implicit CGS preconditioned GMRES

solver detailed in Chapter 4.
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(a) Mesh N = 5, 980 (b) Convergence history

Figure 6.22: Convergence history and mesh for subsonic flow over a RAE2822 airfoil at M∞ = .4,
α = 2.79o, and Re = 6, 500, 000 using discretization orders p = 1 to p = 4 for the mean flow and a
first-order discretization for the turbulence model.

6.5.1 Subsonic RAE2822 Airfoil

The first test case consists of the turbulent flow over an RAE2822 airfoil at M∞ = .4,

α = 2.79o, and Re = 6, 500, 000. The computational mesh employed for this test case is a

mixed-element unstructured mesh containing N = 5, 980 elements, with discretization orders

ranging from p = 1 to p = 4. The computational mesh is depicted in 6.22(a). The solution

is converged using a line-implicit CGS preconditioned GMRES solver and each solution of

discretization order p is initialized with a fully converged solution of discretization order

p − 1. Due to the first-order upwind finite-volume discretization of the turbulence model

equation, increasing the discretization order p does not increase the number of unknowns of

the turbulence model discretization i.e. turbulence model resolution remains fixed during

p-enrichment.

The convergence history for all discretization orders p is depicted in Figure 6.22(b),

which shows that a fully converged solution is obtained at all discretization orders. The

convergence rate is slower compared to laminar flow problems such as those in Chapter 4.

The slower convergence rate is due to the Newton damping requirements imposed by the
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(a) Mach number contours, p = 1

(b) Mach number contours, p = 4

Figure 6.23: Computed Mach number contours for the subsonic flow over an RAE2822 airfoil at
M∞ = .4, α = 2.79o, and Re = 6, 500, 000.
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(a) ρν̃/µ∞ contours, p = 1

(b) ρν̃/µ∞ contours, p = 4

Figure 6.24: Computed ρν̃/µ∞ contours for subsonic flow over an RAE2822 airfoil using the Spalart
Allmaras turbulence model at M∞ = .4, α = 2.79o, and Re = 6, 500, 000 with mean flow discretiza-
tion orders p = 1 and p = 4.
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(a) Surface pressure coefficient (b) Skin friction coefficient

Figure 6.25: Computed surface pressure coefficient and skin friction for subsonic flow over an
RAE2822 airfoil using the Spalart Allmaras turbulence model at M∞ = .4, α = 2.79o, and Re =
6, 500, 000 using p = 1 to p = 4.

Table 6.1: Computed lift and drag coefficients for the RAE2822 airfoil with M∞ = .4, α = 2.79o,
and Re = 6, 500, 000 using p = 1 to p = 4.

p NDoF CL CD
1 21, 482 .536226 .016322
2 46, 692 .553743 .008991
3 81, 548 .554062 .008932
4 126, 050 .553607 .008933

turbulence model source terms. However, once the turbulence model source term transient

has passed, the solution proceeds rapidly to a fully converged state. Note that Figure 6.22(b)

does not show the secondary transient of Figure 6.4. Figures 6.23(a) through 6.24(b) depict

the computed Mach number and normalized turbulence model working variable contours

for a p = 1 and a p = 4 discretization respectively. Figure 6.25(a) illustrates the surface

pressure distribution for discretization orders p = 1 to p = 4, and Figure 6.25(b) shows the

computed surface skin friction profiles also for discretization orders p = 1 to p = 4. Note

that, as the discretization order is increased, these profiles become smoother indicating that

increasing discretization order results in enhanced solution accuracy. Also note that the

non-smooth behavior in the computed skin friction profile is located at sharp corners where
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the geometry is not differentiable, hence the non-smooth behavior of the skin friction profile

is a post-processing artifact.

Table 6.1 shows the discretization order p, NDoF , computed lift and computed drag

coefficients across the discretization order range. Table 6.1 shows that the computed drag

coefficient has been resolved to .01 counts and the computed lift coefficient has been resolved

to approximately 8 counts. As stated in the introduction, studying grid convergence is a

primary target of this work, and the results show that the solver is able to obtain grid

converged results with respect to polynomial order changes and a fixed turbulence model

resolution.

6.5.2 High-lift Multi-element Airfoil Configuration 30P30N

The second test case consists of the turbulent flow over a high-lift multi-element airfoil

configuration denoted as the 30P30N configuration. The flow conditions for this test case

are M∞ = .2, α = 16o, and Re = 9, 000, 000. The geometry for this test case consists of:

a leading edge slat, a center or main element and a trailing edge flap, which are configured

for a landing configuration. The computational mesh employed for this computation is a

mixed-element unstructured mesh consisting of N = 55, 964 elements shown in Figure 6.26.

Figure 6.26: Mixed-element unstructured mesh used for computing the flow around the 30P30N
high-lift multi-element airfoil configuration at M∞ = .2, α = 16o, and Re = 9, 000, 000.
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(a) Mach number contours, p = 1

(b) Mach number contours, p = 3

Figure 6.27: Computed Mach number contours using the Spalart-Allmaras turbulence model for
flow over the 30P30N multi-element airfoil configuration with p = 1 and p = 3, M∞ = .2, α = 16o,
and Re = 9, 000, 000 using discretization order p = 1 to p = 3 for the mean flow and a first-order
discretization for the turbulence model.

Table 6.2: Computed lift and drag coefficients for the 30P30N multi-element airfoil configuration
using mean flow discretization orders p = 1 to p = 3.

p NDoF CL CD
1 195, 899 4.12289 .052933
2 419, 805 4.10281 .052202
3 727, 682 4.10369 .052106

The computed Mach number and normalized turbulence model working variable con-

tours for p = 1 and p = 3 solutions are depicted in Figures 6.27(a) through 6.28(b) respec-

tively. This flow is also computed using the NSU2D flow solver, which was previously used

to compute this case in reference [5]. The NSU2D flow solver is based on a vertex-centered
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(a) ρν̃/µ∞, p = 1

(b) ρν̃/µ∞, p = 3

Figure 6.28: Computed ρν̃/µ∞ contours using the Spalart-Allmaras turbulence model for flow over
the 30P30N multi-element airfoil configuration airfoil with p = 1 and p = 3, M∞ = .2, α = 16o, and
Re = 9, 000, 000 using mean flow discretization orders p = 1 to p = 3 and a first-order discretization
for the turbulence model.

second-order accurate finite-volume discretization for the mean flow equations and the same

first-order accurate finite-volume discretization of the SA turbulence model equation. The

NSU2D solver is used to compute the same flow using a triangular unstructured mesh with

250,000 nodes, which is equivalent to 250,000 DoFs. The computed surface pressure and skin

friction coefficients using both the present DG solver and the NSU2D solver are depicted

in Figure 6.29(a) and Figure 6.29(b) respectively. Figures 6.29(a) and 6.29(b) show good

agreement between the two solvers for both the computed surface pressure coefficient and

skin fiction coefficient. There is however, a slight discrepancy in the computed skin friction

coefficient on the flap upper surface.
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(a) Surface pressure coefficient p = 1 to p = 3 (b) Skin friction coefficient p = 1 to p = 3

Figure 6.29: Computed surface pressure and skin friction coefficients using the Spalart-Allmaras
turbulence model for flow over the 30P30N multi-element airfoil configuration with mean flow
discretization orders p = 1 and p = 3 at M∞ = .2, α = 16o, and Re = 9, 000, 000.

Figure 6.30: Convergence history for flow over the 30P30N multi-element airfoil configuration using
the Spalart-Allmaras turbulence model at M∞ = .2, α = 16o, and Re = 9, 000, 000 using mean flow
discretization orders p = 1 and p = 3.

Table 6.2 gives the discretization order p, NDoF , computed lift and computed drag

coefficients for this case. One can see a regular decrease of the computed drag coefficient as

the discretization order is increased. The computed drag coefficient is resolved to within 1

count. The computed lift coefficient varies non-monotonically as the discretization order p
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is increased and is resolved to approximately 8 counts.

This flow involves strong but smooth flow field gradients and is considered relatively

challenging. As such, this case is a good test of the robustness of the proposed approach.

The DG discretization of the mean flow equations causes no robustness problems for this

case. Figure 6.30 depicts the iterative convergence of the flow solver and similarly to the

previous RAE2822 airfoil case, once the turbulence model transient has passed the solution

converges rapidly to steady-state. Also notice that, for the higher-order DG discretizations

of the mean equations, the turbulence model transient is far more benign due to the flow

solution initialization from a lower-order solution and the fact that the turbulence model

resolution remains unchanged during p-enrichment.

6.5.3 High-lift Multi-element Airfoil Configuration L1T2

The third test case consists of the turbulent flow over the AGARD L1T2 high-lift multi-

element airfoil configuration. The geometry consists of a three-element airfoil configuration

and the flow conditions are M = .197, α = 20.18o, and Re = 3, 520, 000. The mesh employed

for this test case is a mixed-element unstructured mesh with N = 80, 742 elements as shown

in Figure 6.31. As with the previous test case, discretization orders ranging from p = 1

to p = 3 are employed. This case is presented in order to compare the DG results with

experimental data provided by AGARD.

Figure 6.31: Computational mesh used for computing the flow around the AGARD L1T2 high-lift
multi-element airfoil configuration at M∞ = .197, α = 20.18o, and Re = 3, 520, 000.
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(a) Mach number contours at p = 1

(b) Mach number contours at p = 3

Figure 6.32: Computed Mach number contours using a DG discretization with the Spalart-Allmaras
turbulence model for flow over the AGARD L1T2 high-lift multi-element airfoil configuration with
mean flow discretization orders p = 1 and p = 3, M∞ = .197 and a first-order discretization for the
turbulence model at α = 20.18o, and Re = 3, 520, 000.

Table 6.3: Computed lift and drag coefficients for the AGARD L1T2 multi-element airfoil config-
uration at M∞ = .197, α = 20.18o, and Re = 3, 520, 000 using p = 1 to p = 3

p NDoF CL CD
1 265, 311 4.036398 .069400
2 553, 707 4.012107 .068767
3 945, 930 4.010951 .068340

Figures 6.32(a) through 6.33(b) depict the computed Mach number and turbulence

model working variable contours for a p = 1 and a p = 3 solution respectively. From

the computed Mach number contours, the flow is seen to approach sonic conditions on

the slat leading-edge upper surface. The DG solver is robust enough to compute this flow
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(a) ρν̃/µ∞ at p = 1

(b) ρν̃/µ∞ at p = 3

Figure 6.33: Computed ρν̃/µ∞ contours using the Spalart-Allmaras turbulence model for flow over
the AGARD L1T2 high-lift multi-element airfoil configuration with mean flow discretization orders
p = 1 and p = 3and a first-order discretization for the turbulence model at M∞ = .197, α = 20.18o,
and Re = 3, 520, 000.

without any form of artificial diffusion or limitation. Figure 6.34(a) shows a comparison

between computed surface pressure coefficients and experimental values. The computed

surface pressure coefficient results agree well with experimental values throughout the airfoil

sections. Figure 6.34(b) depicts the computed skin friction coefficient using a p = 3 DG

discretization for the mean flow equations and a smooth skin friction profile is obtained

with the exception of the geometry slope discontinuities. Table 6.3 provides the numerical

values of the computed lift and drag coefficients for each discretization order p. Table 6.3

shows that the computed drag coefficient is resolved to within 4 counts and the computed

lift coefficient is resolved to within 11 counts. Figure 6.35(a) depicts the streamlines around
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(a) Surface pressure coefficient at p = 3 (b) Surface pressure coefficient at p = 3

Figure 6.34: Computed surface pressure and skin friction coefficients using the Spalart-Allmaras
turbulence model for flow over the AGARD L1T2 high-lift multi-element airfoil configuration with
a mean flow discretization order of p = 3, M∞ = .197, α = 20.18o, and Re = 3, 520, 000.

the L1T2 multi-element airfoil configuration, showing the high flow incidence angle and high

overall streamline curvature over the configuration. Figure 6.35(b) shows the streamlines

near the slat for this case, illustrating the high streamline curvature in this region as the

flow is accelerated around the leading edge of the slat and in the gap between the slat and

main airfoil. Figure 6.35(c) shows the streamlines near the flap and flap cove on the main

element showing a strong re-circulation region in the flap-cove.

6.5.4 High-lift Multi-element Airfoil Configuration 30P30N: hp-

adaptation

Since the previous hybrid discretization results do not increase turbulence model resolution

as the discretization order is varied, the hp-adaptation strategy is employed in order to

study the effects of increasing turbulence model resolution in regions of the domain where

the turbulence model discretization error is the dominant contribution to the functional error

estimate. The final turbulent flow test case consists of computing the flow over the 30P30N

multi-element airfoil configuration using a lift-driven hp-adaptation. This configuration is the
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(a) Streamlines

(b) Slat streamlines (c) Flap streamlines

Figure 6.35: Streamlines near the slat and flap using the Spalart-Allmaras turbulence model for
flow over an L1T2 high lift multi-element airfoil with a mean flow discretization order of p = 3,
M∞ = .197, α = 20.18o, and Re = 3, 520, 000.

same multi-element airfoil configuration considered in Section 6.5.2. The flow conditions are

M∞ = .2, α = 16o, and Re = 9, 000, 000, as in Section 6.5.2. In this case, the hp-adaptation

algorithm is slightly modified to accommodate the first-order finite-volume discretization

of the turbulence model. The computable error in equation (5.2.11) can be broken up into

contributions from the different PDEs in the system by taking the inner product only over the

modal coefficients separately for each field in the system of equations. When the contribution

to the total error from the turbulence model equation exceeds 50% of the total error for an

element, the element is flagged for h-refinement regardless of smoothness. This is designed
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to target the contribution of the turbulence model discretization error to the functional

error estimate with h-refinement, since the standard hp-adaptive approach might otherwise

employ p-enrichment everywhere because the mean flow is smooth and the turbulence model

smoothness is irrelevant due to the first-order discretization.

Figure 6.36(a) depicts the initial mesh with N = 55, 964 elements with a discretization

order p = 1. Figure 6.36(b) depicts the final hp-adapted mesh, which is refined using h-

(a) Initial mesh: N = 55, 964 and p = 1

(b) Final mesh: N = 536, 261 and p = 1 to p = 3

Figure 6.36: Unstructured mixed-element meshes used for computing flow around the 30P30N
high-lift multi-element airfoil configuration at M∞ = .2, α = 16o, and Re = 9, 000, 000 using
hp-adaptation.

refinement in regions where the turbulence model discretization error is the dominant source

of the lift error estimate. The turbulence model discretization error dominates the lift error

estimate in regions such as the flap and slat coves as well as the boundary layer along the

upper surface of the main airfoil element. Figure 6.37(a) shows the mesh and discretization
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order in the flap cove region on the final hp-adapted mesh. Aggressive mesh refinement is

applied in this region due to the dominance of turbulence model error contribution to the

lift error estimate. Unfortunately, the mean flow would benefit from additional p-enrichment

in this region due to the purely smooth reverse flow behavior as shown in Figure 6.37(b). In

(a) Close-up of flap cove mesh (b) Streamlines in flap cove

Figure 6.37: Close-up of the mesh and stream lines in the flap cove on the final hp-adapted mesh
for the flow around the 30P30N high-lift multi-element airfoil configuration at M∞ = .2, α = 16o,
and Re = 9, 000, 000.

general, the part of the flow that is external to the boundary layer and the wake is refined

using p-enrichment, since in these regions the turbulence model influence on the solution is

minimal.

The hp-adaptation is initialized with the p = 1 solution shown in Figure 6.27(a) and

Figure 6.28(a). Figure 6.38(a) shows the computed Mach number contours on the final

hp-adapted mesh, and Figure 6.38(b) shows the eddy viscosity contours on the final mesh.

Clearly, hp-adaptation has added significant resolution to the discretizations of both the

mean flow and turbulence model equations. As with the previous hybrid discretization

results, this solution maintains positive values of the turbulence model working variable

throughout the entire domain. As with the uniform p-enrichment case, the DG solver han-

dles the high mean flow gradients without artificial viscosity or limitation. Figure 6.39(a)

shows the computed surface pressure distribution on the final hp-adapted mesh compared
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(a) Final Mesh: Mach Contours

(b) Final Mesh: ρν̃
µ∞

Contours

Figure 6.38: Computed Mach number and eddy viscosity contours on the final hp-adapted mesh
for the flow around the 30P30N high-lift multi-element airfoil configuration at M∞ = .2, α = 16o,
and Re = 9, 000, 000.

with the results obtained by the NSU2D flow solver. Figure 6.39(a) shows good agreement

in the computed surface pressures obtained with both solvers. Furthermore, the computed

surface pressure profile obtained using the DG solver is smooth. Figure 6.39(b) shows the

computed surface skin friction profile compared with the NSU2D flow solver. In this case,

reasonable agreement of computed skin friction profile between the two solvers is also ob-

tained. However, the computed skin friction coefficient result obtained by the DG solver

is significantly less smooth than the computed skin friction profile obtained by the NSU2D

solver. Furthermore, comparing Figure 6.39(b) to Figure 6.29(b) shows that the hp-adapted

computed skin friction coefficient is significantly less smooth than the computed skin friction

coefficient obtained using uniform p-enrichment. The noise in the computed skin friction pro-
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(a) Final mesh: Surface Pressure (b) Final mesh:Skin Friction

Figure 6.39: Computed surface pressure and skin friction coefficients on the final hp-adapted mesh
for turbulent flow over the 30P30N high-lift multi-element airfoil configuration atM∞ = .2, α = 16o,
and Re = 9, 000, 000.

file results from the contribution of the turbulence model discretization error to the lift error

estimate that is sufficiently high in some regions, that p-enrichment of the flow is prevented

in an area where the mean flow would benefit from p-enrichment. One such region is the

leading edge of the main element as shown in Figure 6.40, where the elements next to the

wall employ a discretization order of p = 1 for the mean flow.

The computed lift and drag coefficient histories over the hp-adaptation process are shown

in Figure 6.41(a) and Figure 6.41(b) respectively. In addition to the hp-adaptation histories,

the uniform p-enrichment computed lift and drag coefficient histories are also shown. The

computed lift and drag grid convergence behavior represents a significant improvement over

that of the NACA0012 airfoil case in Section 6.3.3. Both the computed lift and drag co-

efficients are approaching a fixed value. Unfortunately, the number of unknowns employed

for the hp-adapted computation is very high, over 2 million in this case. The high num-

ber of unknowns employed is due to the first-order discretization of the turbulence model

equation, and as such true grid convergence is beyond the computational budget available.

Furthermore, comparison between the hp-adapted and uniformly p-enriched results show the

computed lift and drag coefficients are approaching two different values for each refinement
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Figure 6.40: Close-up of order distribution at the nose of the main element of 30P30N high-lift
multi-element airfoil configuration. Note that the elements in the boundary layer near the wall are
employing a discretization order of p = 1.

(a) Computed Lift Coefficient (b) Computed Drag Coefficient

Figure 6.41: Computed lift and drag coefficients history during adaptation of the flow around the
30P30N high lift configuration at M∞ = .2, α = 16o, and Re = 9, 000, 000.

method respectively. The two refinement strategies converge to different computed lift and

drag coefficients because, whereas hp-adaptation increases the turbulence model resolution,

p-enrichment fixes the turbulence model resolution at the number elements in the initial
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mesh. Clearly the turbulence model resolution has a significant impact on the computed lift

and drag coefficient results for this case. Finally, Figure 6.42 depicts the adjoint lift error

estimate, and, as expected, the estimate does not converge towards zero as hp-adaptation

is applied. Just as was the case when applying a p = 0 discretization for shocked flows, the

Figure 6.42: Computed adjoint error estimate of lift during the hp-adaptation for the flow over the
30P30N high-lift multi-element airfoil configuration.

projection into the high-order finite element space, which is used to approximate the fine

level solution, causes a corrupted fine level residual estimate and hence a corrupt functional

error estimate. Unfortunately, the techniques used to remedy this situation for shocked flows

have proven ineffective for turbulent flows. However, the first-order approach to discretizing

the turbulence model has at least removed the effect of the turbulence model discontinuity

on the solution, allowing the presented DG solver to obtain improved functional convergence,

as well as a robust solution strategy as demonstrated by the ability to compute high-lift flow

solutions both with and without adaptation.

6.6 Summary

A DG solver capable of solving the RANS equations has been developed. When applying

high-order methods to the discretization of the turbulence model a discontinuity in the tur-

bulence model working variable develops at the edge of boundary layers and wakes, which
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can often leads to solver failure. It was shown that the turbulence model working variable

discontinuity appears not only when high-order DG discretizations are applied to the tur-

bulence model equation, but also when higher than first-order finite-volume discretizations

of the turbulence model equation are employed. This discontinuity in the turbulence model

working variable induces negative effects on functional convergence and error estimation as

well as robustness. In the finite-volume framework a first-order discretization of the turbu-

lence model convection terms is often employed as in references [5, 64–66]. Employing this

type of first-order finite-volume discretization of the turbulence model is shown to remove the

negative turbulence variable values from the turbulence model solution, for both the finite-

volume and DG mean flow discretizations allowing for robust high-order discretizations of

the mean flow equations . The method is shown to be robust for a variety of problems includ-

ing two high-lift multi-element airfoil configurations. Furthermore, the first-order turbulence

model discretization is the recommended approach according to reference [41].

Thus, high-order DG discretizations of the mean flow equations are sufficiently robust

for RANS simulations. Similar to finite-volume methods, a robust discretization of the tur-

bulence model that provides sufficient eddy viscosity distributions can be constructed using

a first-order accurate upwind discretization of the turbulence model convective terms. This

approach is robust, however it is inefficient for reducing discretization error. In particular,

whereas functional convergence behavior improves even for complicated problems, refine-

ment becomes excessive, preventing true grid convergence of functional outputs. The results

for all the presented test cases indicate that the turbulence model has a strong influence on

functional accuracy. Unfortunately the benefits of high-order methods will not be realized

until turbulence models that do not suffer from non-smooth behavior are developed. Such

models will be more amenable to high-order discretization, thereby removing discretization

error efficiently. Nevertheless, the presented approach to solving the RANS equations with a

high-order DG discretization is robust and capable of solving are large variety of challenging

aerodynamic flows. Since the discontinuity in the working variable of the turbulence model

is not confined to DG methods (as shown in this work), the discontinuity in the turbulence

model working variable is not a pitfall of DG methods, but rather a symptom of a fundamen-
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tal flaws in the turbulence model equation that are largely undiscussed in the literature (with

the exception of references [15, 20, 70, 74]). Unfortunately high-order DG discretizations of

the turbulence model make the turbulence model working variable discontinuity more dif-

ficult to treat, due to the coupling between the number of degrees of freedom and order of

accuracy. Optimal high-order methods for high Reynolds number turbulent flows(Re > 106)

will require the development of new turbulence models that are designed to be used with

high-order methods allowing for low discretization error solutions.

Based on the results presented in this chapter it is questionable whether the combination

of high-order discretization and RANS turbulence models represent an enhancement of the

state-of-the-art. The discontinuity in the turbulence model working variable affects the

robustness of the solver as well as the accuracy of functional outputs. However, alternative

turbulence treatments such as LES and DNS, where many of the effects described in this

chapter, may benefit from the low discretization error properties of high-order methods.

However, LES and DNS simulations are very computationally expensive especially for the

Reynolds numbers considered in this work.

While the presented results, including those of previous sections indicate that the turbu-

lence model working variable discontinuity causes poor functional convergence and incorrect

error estimation, the possibility remains that the high mean flow gradients often found in

turbulent flows may contribute to poor functional convergence. The next chapter deals with

the treatment of high Mach and Reynolds number but laminar hypersonic flows. The re-

sults of this chapter will show that in high mean flow gradient situations high-order DG

discretizations can achieve grid convergence of functionals and accurate error estimates, pro-

vided all sources of non-smooth behavior can be adequately regularized(i.e. shock waves

using artificial diffusion) and provided that the discretization is dual consistent.
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Chapter 7

Hypersonic Flows

Shock capturing techniques for high-order methods have become a rich and intense area of

research. However, significantly less attention has been paid to the effectiveness of captur-

ing shock waves using high-order discretizations. This work examines the effectiveness of

capturing shock waves using high-order polynomials from a robustness and error reduction

point of view. Particular attention is paid to the most appropriate method of refinement

for a shock wave. It is shown that when one considers exclusively shock capturing accuracy,

mesh refinement employing a second-order discretization is significantly more effective at

reducing error than order enrichment, despite the sub-cell shock wave resolution of high-

order solutions. Furthermore, for flows involving shock waves in combination with smooth

features, high-order discretizations are shown to be particularly effective when used as part

of an hp-adaptation strategy. hp-adaptation is shown to yield superior efficiency compared

with mesh refinement at second-order accuracy alone. To demonstrate the robustness of the

proposed approach, hypersonic (M∞ ≥ 6.0) applications are considered exclusively. It is

demonstrated that hp-adaptation combined with PDE-based artificial viscosity is capable of

robustly obtaining low discretization error with accurate and smooth surface heating profiles.
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7.1 Introduction

In recent years shock capturing techniques for high-order methods have been investigated by

many authors [16, 17, 28, 34, 37, 38, 47, 67, 95, 99, 100]. Limiters for higher-order DG methods

have been actively pursued in references [35,67,95,99] and others. As mentioned in reference

[47], discontinuous Galerkin(DG) methods couple the order of accuracy and the number

of degrees of freedom (DoFs). Contrarily, finite-volume or finite-difference methods, from

which the ideas of limitation originate, do not couple the order accuracy and DoFs. As such,

limiters for high-order DG methods must take the coupling between the order of accuracy

and DoFs into account. Preferably, accounting for this aspect of DG methods should not

extend the numerical stencil beyond the nearest neighbors, which can degrade the parallel

efficiency of the solver by increasing communication cost. Unfortunately, the limiter-based

stabilization methods mentioned above do just that. Additionally, exact linearizations of the

limiter functions are difficult to obtain, impacting the efficiency and robustness of implicit

solution techniques. Furthermore, it is yet unclear how limiters will affect the discretization

of viscous fluxes as the high-order information that is truncated to stabilize the inviscid

fluxes might be required in the viscous flux construction.

As an alternative, many researchers [28,34,36–38,100] have proposed methods that seek

to capture shock waves using selective artificial viscosity(A.V.) in a diffusion operator. The

goal of such as technique is to smear the shock wave over a scale that is resolvable by the

polynomial basis that exists within an element. Chapter 5 demonstrated the difficulty of

applying the method of reference [34] to the high-order solution of an inviscid transonic flow

over a NACA0012 airfoil. In this case, despite the achieved sub-cell resolution of the shock

wave, the accuracy of the computed lift coefficient was not improved as the discretization or-

der p was increased. Furthermore, reference [71] stated that robustness problems prevented

the author of this reference from using higher than a discretization order of p = 2 for an

adaptive mesh simulation of a viscous hypersonic flow. However, despite these limitations,

artificial viscosity methods are still considered in this work because there are several ad-

vantages to this type of robustness enhancement technique. These advantages that make

artificial viscosity methods attractive for use with high-order DG discretizations are: poten-
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tially compact stencil, straightforward application to viscous flow problems, availability of

the exact linearization for implicit flow solution, control of the fine level residual estimates

used in output error estimation (equation (5.2.10)) and awareness of the higher number of

unknowns associated with high-order DG elements. It should be mentioned that of the meth-

ods in references [28, 34, 37], the PDE-based artificial viscosity method of references [37, 71]

has been found to be the most robust. However, the PDE-based method is also the most

diffusive and least likely to attain sub-cell shock wave resolution. In order for an artificial

viscosity method to be considered robust it must be able to adequately stabilize the so-

lution, which may be contradictory to the requirements of sub-cell shock wave resolution.

Even when employing a p = 1 discretization, a robust artificial viscosity method is required

to stabilize the solution for the strong shock waves considered in this chapter. For clarity,

attempting to attain sub-cell shock wave resolution is what leads to robustness problems.

Observations made during the course of this work have demonstrated that smoothly varying

artificial viscosity is critical to a robust artificial viscosity method.

Yet another alternative technique for shock capturing is to employ an hp-adaptive pro-

cedure. This was initially applied to inviscid flows by Wang and Mavriplis in reference [17],

and later applied to inviscid and viscous flows in combination with piece-wise constant ar-

tificial viscosity in Chapter 5 and in references [47, 68]. The basic idea is to initialize the

domain with a uniformly first-order solution everywhere and raise the discretization order

only in regions of the domain where the solution is smooth, and apply mesh refinement in

regions of the solution that are non-smooth. This idea is very similar to slope limitation with

the exception that it is a bottom up approach rather than a top down approach. By making

limitation a bottom up approach and applying mesh refinement in areas where the solution

is non-smooth, this method can take the coupling between order of accuracy and number

of unknowns into account, without performing any extended stencil operations. Also, no

information is truncated in a bottom up approach, rather information is added over the

adaptive simulation. While this approach shows great promise, hp-adaptation has two key

drawbacks. Firstly, hp-adaptation without artificial viscosity requires initializing the sim-

ulation with a uniformly first-order solution everywhere, which is inappropriate for viscous

227



flows using compact DG diffusion discretizations, such as SIP [57]. Secondly, if the shock

wave moves into a high-order cell at any time during the hp-adaptation procedure the solver

will fail. While this is rather uncommon for inviscid flows it can easily occur for viscous

flows, such as a shock boundary layer interaction on an inclined wedge. However, it seems

logical that a solver that employs a good artificial viscosity method and hp-adaptation could

result in a significantly more robust yet still accurate solver.

The goal of this work is to quantitatively determine if resolving shock waves using

high-order DG discretizations is effective compared with using mesh refinement employing a

second-order p = 1 discretization. Furthermore, this work will demonstrate how high-order

DG discretizations can be applied such that the solver remains robust and retains beneficial

error properties. In this work a discretization order p = 1 is employed as the minimum

discretization order so that viscous flow problems may be discretized adequately at the out-

set of the refinement proceedure. However, employing a minimum discretization order of

p = 1 necessitates the use of a shock capturing strategy. In this work, the PDE-based arti-

ficial viscosity of references [37, 71], which is described in Section 2.7.2, is employed as that

shock capturing strategy. The purpose of this work is not to determine whether capturing

shock waves with high-order discretizations can be accomplished, which has been determined

conclusively in previous work [37,71]. Rather the focus of this work is to determine if captur-

ing shock waves using high-order discretizations offers any efficiency benefits over capturing

shock waves using mesh refinement and a second-order accurate discretization. Furthermore,

this work focuses on appropriate refinement strategies so that the overall solution method

is as robust as the current state-of-the-art low-order (e.g. second-order finite-volume) meth-

ods but retains the error properties of high-order methods. Assuming that capturing shock

waves efficiently and robustly is a matter of choosing the appropriate refinement strategy,

then perhaps capturing shock waves using high-order methods, such as DG, can be consid-

ered a solved problem. Both artificial viscosity and refinement method play large roles in

obtaining a robust high-order DG based CFD solver.
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7.1.1 Artificial Viscosity Settings

The artificial viscosity method of Section 2.7.2 used in this work requires the setting of

various constants. The constant ε0 controls the magnitude of the source term in equation

(2.7.4) and equation (2.7.5). The constants κ and cs0 control minimum value of the shock

detector that will trigger artificial viscosity as seen in equation (2.7.5). This sections gives

the values of these constants for the cases considered in this chapter. Table 7.1 gives the

artificial viscosity constants used for the test cases presented in this Chapter. These settings

Table 7.1: Artificial viscosity constants for each case in this work.

Case ε0 cs0 κ
Inviscid Ramp (Section 7.2 ) 1.0 1.0 2.75

Inviscid Half Cylinder (Section 7.3) 1.0 1.0 2.5
Viscous Half Cylinder (Section 7.4) 1.0 1.0 3.0

are kept identical across all adaptation cycles for each case.

7.2 Hypersonic Inviscid Wedge

This test solves the inviscid flow over a 15o wedge. The flow conditions are M∞ = 7.0,

α = 0.0o. The flow structure is made of up two constant states separated by an oblique

shock. Thus the only flow feature in the solution that is required to be resolved by the

DG solver is the shock wave, as resolving constant states is trivial. This case has an exact

solution that can be computed via standard gas dynamics methods [101, 102]. The local

error estimate given by equation (5.2.12) is used to drive the adaptive procedure. In this

case h-refinement and p-enrichment are employed in isolation in order to determine the most

effective method for reducing the error in the computed drag on the wall. Furthermore,

since computed drag is a function of the pressure P behind the shock, which is a constant,

obtaining accurate computed drag values depends only on adequately resolving the shock

wave, i.e. obtaining a sharp shock wave at the proper location. For this test case the

computed drag error is determined by comparing the computed drag value to a reference

drag value which is determined from the exact solution, i.e CDerror =
∣∣CD − CDref ∣∣. A
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total of four adaptation cycles are performed using both the h-refinement and p-enrichment

strategies.

(a) Initial grid: 713 elements, p = 1 (b) Mach number contours: initial grid

Figure 7.1: Initial mesh and Mach number contours of inviscid hypersonic flow over 15o wedge with
p = 1, M∞ = 7, α = 0o.

(a) Artificial viscosity contours: Initial Grid

Figure 7.2: Initial artificial viscosity contours of inviscid hypersonic flow over 15o wedge with p = 1,
M∞ = 7, α = 0o.
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(a) Mach number contours: final h-refined grid, p =
1

(b) Mach number contours: final p-enriched grid, p =
1 to p = 4

Figure 7.3: Final h-refinement and p-enrichment Mach number contours of inviscid hypersonic flow
over 15o wedge with , M∞ = 7, α = 0o.

(a) Artificial viscosity contours: final h-refined grid,
p = 1

(b) Artificial viscosity contours: final p-enriched
grid, p = 1 to p = 4

Figure 7.4: Final h-refinement and p-enrichment artificial viscosity contours of inviscid hypersonic
flow over 15o wedge with , M∞ = 7, α = 0o.

The initial grid and Mach number contours for this case are depicted in Figure 7.1(a) and

Figure 7.1(b). As expected, for this coarse mesh the shock wave is quite poorly resolved but

is captured robustly thanks to the smooth artificial viscosity. Figure 7.2(a) depicts the initial

artificial viscosity contours, illustrating the wide extent of the artificial viscosity distribution
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(a) Final grid: h-refinement, p = 1 (b) Final grid: p-enrichment, p = 1 to p = 4

Figure 7.5: Final h-refinement and p-enrichment grid used for computing the inviscid hypersonic
flow over 15o wedge, M∞ = 7, α = 0o.

(a) Drag error versus NDoF (b) Drag error versus wall time (sec)

Figure 7.6: Drag error versus NDoF and wall time for an inviscid hypersonic flow over 15o wedge
with p = 1, M∞ = 7, α = 0o.

resulting from the use of the PDE-based artificial viscosity for a strong shock wave. The wide

extent of the artificial viscosity is a property of the PDE-based method, which makes this

approach more robust than other artificial viscosity methods. The extent and magnitude

of the artificial viscosity distribution can be used as qualitative measures of the solution.

Adaptive simulations employing both h-refinement and p-enrichment are performed and the
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resulting computed Mach number and artificial viscosity contours are shown in Figure 7.3(a)

through Figure 7.4(b). Additionally, the computational meshes, which are purely triangular

unstructured meshes, are shown in Figure 7.4(a) and Figure 7.4(b) for h-refinement and

p-enrichment adaptations respectively. While both adaptation methods improve the shock

resolution, the h-refinement adaptation has reduced the area of effect of the artificial viscosity

significantly more than p-enrichment, which results in an overall sharper computed shock

wave using the same number of adaptation cycles. While not immediately apparent from

Figure 7.3(b), p-enrichment has captured the shock wave within approximately one cell.

Figure 7.6(a) and Figure 7.6(b) show the computed drag error versus NDoF and compu-

tational time, employing both adaptation strategies, respectively. While p-enrichment uses

fewer DoF for a given error level it is not the most effective adaptive method in terms of

computational time, as depicted in Figure 7.6(b). Despite the near sub-cell shock wave res-

olution of the p-enrichment adaptation, h-refinement using a discretization order of p = 1 is

more effective in terms of the computational time required to reduce the computed drag er-

ror. p-enrichment is well known to be more effective than h-refinement(at p = 1) for smooth

flows [17, 31, 47, 96]. This is due largely to the exponential error convergence behavior of

high-order methods applied to smooth problems. Exponential error convergence is the pri-

mary reason high-order methods add fewer degrees of freedom and generate lower error than

h-refinement at p = 1. However, for shock waves the exponential behavior of the error is

lost and p-enrichment behaves more like h-refinement for a non-smooth flow with artificial

viscosity. The loss of exponential error convergence is the primary reason why p-enrichment

is not as effective in terms of computational time. A second source of increased computa-

tional time can be attributed to the extra Newton steps required to obtain the steady-state

solution. These extra Newton steps result from transients in the PDE governing the artificial

viscosity. These transients are induced by adjustments to the artificial viscosity distribution

required to stabilize the progressively higher-order solutions. Thus as far as shock wave

resolution is concerned h-refinement is more effective than p-enrichment.

As stated previously, a special effort is made to maintain consistent parameters of the

artificial viscosity PDE source term during the p-enrichment procedure as shown in Table
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7.1. Consequently there is a small point in the final p-enrichment mesh where the pressure

and sound speed have undershot the free stream value. While the undershoot is not enough

to cause solver failure, this does speak to the robustness of capturing shock waves with

high-order elements, namely h-refinement at a discretization order of p = 1 is more effective

and more robust than p-enrichment, since all h-refinement solutions remain entirely mono-

tone. Increasing the artificial viscosity in order to eliminate all undershoots would result in

increased functional error in the p-enrichment results compared to the presented results.

7.3 Hypersonic Inviscid Cylinder

7.3.1 h-refinement versus p-enrichment

The second test case is the inviscid hypersonic flow over a half cylinder at M∞ = 17.605 and

α = 270o, which is an inviscid version of a hypersonic benchmark case given in reference [65].

As with the previous inviscid ramp test case, the local error estimate in equation (5.2.12)

is used to drive the adaption procedure for this case. The error in computed drag is used

as the basis to compare the accuracy of the h-refinement and p-enrichment results. In this

case the drag error is measured relative to a reference solution obtained using a uniformly

p = 4 solution on the finest adaptive mesh. Four adaptation cycles are performed using both

the h-refinement and p-enrichment strategies. While this flow is governed very strongly by

the shock wave, the post shock wave region contains a smooth flow feature (known as the

shock layer) and therefore p-enrichment can be expected to perform better with this flow as

compared to the previous test case.

Figure 7.7(a) through Figure 7.8(a) illustrate the initial mesh, pressure and artificial

viscosity contours respectively. As with the ramp test case, the shock wave is thick and the

artificial viscosity covers a wide area of the domain, extending well inside the shock layer

and even touching the wall at the stagnation point. Both h-refinement and p-enrichment

adaptations are performed using the local error indicator in equation (5.2.12) to drive the

adaptation. The pressure contours on the final h-refinement and p-enrichment meshes are

shown in Figure 7.9(a) and Figure 7.9(b) respectively. The artificial viscosity contours and
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(a) Initial grid: 1, 720 elements, p = 1

(b) Pressure contours: initial grid

Figure 7.7: Initial mesh and pressure contours of an inviscid hypersonic flow over a half cylinder
with p = 1, M∞ = 17.605, α = 270o.

meshes are depicted in Figure 7.10(a) through Figure 7.11(b). This case clearly demonstrates

that h-refinement has reduced the extent and magnitude of the artificial viscosity compared

to p-enrichment. The area covered by non-zero values of the artificial viscosity is more

than twice as large on the final p-refinement mesh compared to the final h-refinement mesh.

Similarly to the ramp test case, both forms of refinement improve shock wave resolution,

with h-refinement producing a sharper shock wave and p-enrichment producing a shock wave

that is captured over approximately one and a half elements.

Figure 7.12(a) and Figure 7.12(b) show the drag error versus NDoF and wall clock

time using both adaptation methods. Performing p-refinement results in fewer degrees of

freedom than performing h-refinement, but requires significantly more computation time
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(a) Artificial viscosity contours: initial grid

Figure 7.8: Initial artificial viscosity contours of inviscid hypersonic flow over a half cylinder with
p = 1, M∞ = 17.605, α = 270o.

(a) Pressure contours: final h-refined grid, p = 1

(b) Pressure contours: final p-enriched grid, p = 1 to p = 4

Figure 7.9: Computed pressure contours on the final h-refinement and p-enrichment meshes for
inviscid hypersonic flow over a half cylinder, M∞ = 17.605, α = 270o.
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(a) Artificial viscosity contours: final h-refined grid, p = 1

(b) Artificial viscosity contours: final p-enriched grid, p = 1 to p = 4

Figure 7.10: Artificial viscosity contours on the final h-refinement and p-enrichment meshes for
inviscid hypersonic flow a half cylinder, M∞ = 17.605, α = 270o.

than h-refinement. In fact this case shows more dramatically the superior efficiency of h-

refinement because at the final adaptive step, h-refinement requires 1/3 the wall clock time

to compute a solution with 2.25 times less or 55% lower error than the solution generated

using p-enrichment. The sources of increased computational cost are similar to the previous

inviscid wedge test case. In particular, the loss of exponential error convergence of the high-

order solutions as well as the additional Newton steps required to converge the high-order

solutions are sources of the additional computation time required to perform p-enrichment

for this case. Additionally, there is a point of sizable undershoot in the sound speed at the

final stage of the p-enrichment adaptation. Again this sound speed undershoot is not strong

enough to cause solver failure, but induces some transients in the solution, which delay the
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(a) Final grid: h-refinement, p = 1

(b) Final grid: p-enrichment, p = 1 to p = 4

Figure 7.11: Final h-refinement and p-enrichment meshes for inviscid hypersonic flow over a half
cylinder, M∞ = 17.605, α = 270o.

convergence of the non-linear solver. h-refinement with a discretization order of p = 1 shows

monotone behavior and as a result the convergence of the non-linear solver is not delayed at

any point during the h-adaptation proceedure. Lastly Figure 7.13(a) depicts the stagnation

line pressure distribution, which shows that a significantly sharper shock wave profile is

obtained on the final h-refined mesh compared to the final p-enriched mesh.

7.3.2 h-refinement at Higher-Order

The comparison of h-refinement and p-enrichment shows that h-refinement is more effective

at resolving shock waves than p-enrichment. However, these results have not substantiated

that p = 1 is the most efficient discretization order at which to employ h-refinement. Thus it
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(a) Drag error versus NDoF (b) Drag error versus wall time (sec)

Figure 7.12: Computed drag error versus NDoF and wall clock time for the inviscid hypersonic flow
over a half cylinder, M∞ = 17.605, α = 270o.

still remains to be determined if h-refinement using higher discretization orders is more effec-

tive than h-refinement using p = 1. In order to investigate the most effective discretization

order at which to apply h-refinement, adaptive mesh refinement using uniform discretization

orders of p = 2 and p = 3 is also applied to this test case. Figure 7.14(a) and Figure 7.14(b)

show the final h-refined meshes for discretization orders p = 2 and p = 3 respectively. The

h-refinement proceeds very similarly to the previously described p = 1 case. However, due

to the sharper shock wave resolution on the initial mesh, the refinement zone narrows with

increasing p. The resulting computed pressure contours are shown in Figure 7.15(a) and

Figure 7.15(b) for discretization orders p = 2 and p = 3 respectively. The shock wave is

captured very sharply in both cases as also seen by the narrow artificial viscosity profiles in

Figure 7.16(a) and Figure 7.16(b). Figure 7.17 shows the computed stagnation pressure

profiles on the final h-refined meshes employing discretization orders p = 1, p = 2, and

p = 3, showing that sharper shock wave profiles are obtained as the discretization order p is

increased.

The computed drag error across the h-refinement histories for discretization orders p = 1,

p = 2, and p = 3 is shown in Figure 7.18(a) and Figure 7.18(b). While the slopes of computed
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(a) Stagnation point pressure (b) Surface pressure coefficient

Figure 7.13: Stagnation point pressure profiles on the final adapted mesh using h-refinement and
p-enrichment for inviscid hypersonic flow over a half cylinder, M∞ = 17.605, α = 270o.

drag error curves show a slight increase as the discretization order p is increased, the increase

in the slope of the computed drag error curve is not sufficient to see the benefits of high-order

methods in terms of computation time. The benefits of high-order methods are not observed

for this test because the slopes of the computed drag error curves versus h(h =
√
NDoF )

are not optimal. As discussed in Section 3.3 for a dual consistent discretization, which is

employed for this case, the functional error should converge asymptotically as O (h2p). Thus

optimal slopes of the drag error versus h(h =
√
NDoF ) would be 2, 4, and 6 for p = 1, p = 2,

and p = 3 respectively. However, optimal computed drag error curve slopes are not obtained

for higher-order discretizations of this flow problem. In particular for a discretization order

of p = 2 the optimal slope should be 4, but the slope of the computed drag error data is

3 and for a discretization order of p = 3 the optimal drag error slope should be 6, but the

computed drag error slope is 4. The comparison in terms of computational time shows that

h-refinement at p = 1 is the most efficient approach overall.
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(a) Final grid: h-refinement, p = 2

(b) Final grid: h-refinement, p = 3

Figure 7.14: Final h-refinement grids used for computing the inviscid hypersonic flow over a half
cylinder, M∞ = 17.605, α = 270o at p = 2 and p = 3.

7.4 Hypersonic Viscous Cylinder

The third and final test case consists of a half cylinder at hypersonic conditions. The flow is

viscous and laminar with flow conditions M∞ = 17.605, Re = 376, 930 and α = 270o. In this

case a fixed temperature wall is used for the cylinder wall boundary condition with Twall =

500K. This case corresponds to the viscous hypersonic benchmark from reference [65]. The

flow conditions are based on a low-earth orbit re-entry at 5 km/s and assuming a perfect

gas model for the equation of state. This is a common hypersonic benchmark case and is

used to test both the accuracy and smoothness of surface heating. The initial computational

mesh containing N = 1, 711 elements with a uniform discretization order of p = 1 is shown

in Figure 7.19(a). Based on the results for inviscid flows in the previous sections it is now
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(a) Final grid: h-refinement, p = 2

(b) Final grid: h-refinement, p = 3

Figure 7.15: Computed pressure contours on the final for the inviscid hypersonic flow over a half
cylinder, M∞ = 17.605, α = 270o at p = 2 and p = 3.

questionable whether high-order methods should be considered for computing high speed

flows. This case demonstrates when and how high-order discretizations can be advantageous

for high speed flows.

In this case the adaptation is driven via the adjoint-based error estimate in the computed

surface heating (equation (7.4.1)) given in equation (5.2.10). The surface heating coefficient

CH , which is the target of the adjoint error estimate, is given by

CH =
µb
Pr

∇Tb · ~n
1
2
ρbU3

∞

U∞ =
√
u2
∞ + v2

∞

(7.4.1)

where Pr = .72 is the Prandtl number, µb is the viscosity at the surface, Tb is the surface

temperature, ~n is the surface normal vector, ρb is the surface density, u∞ is the free-stream

242



(a) Final grid: h-refinement, p = 2

(b) Final grid: h-refinement, p = 3

Figure 7.16: Computed artificial viscosity contours on the final for the inviscid hypersonic flow over
a half cylinder, M∞ = 17.605, α = 270o at p = 2 and p = 3.

u-velocity, and v∞ is the free-stream v-velocity.

Based on the results of the previous two test cases, which have shown that p-enrichment

is not as effective at computing shocked flows as h-refinement, this flow is computed with

h-refinement and hp-adaptation. hp-adaptation is employed to demonstrate the advantage

of using high-order discretizations in the smooth regions of the flow while simultaneously

treating the shock with h-refinement. In order to draw comparisons with reference [71] the

adaptation is allowed to run until the surface heating error estimate has reached a value of

.01%.

The Mach number and temperature contours on the initial mesh are depicted in Figure

7.20(a) and Figure 7.20(b) respectively. In these figures the shock wave is much thicker than
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Figure 7.17: Stagnation pressure profile on the final mesh, for the inviscid hypersonic flow over a
half cylinder, M∞ = 17.605, α = 270o at p = 1,p = 2 and p = 3.

(a) Drag error versus NDoF (b) Drag error versus wall time

Figure 7.18: Drag error for inviscid hypersonic flow over a half cylinder, M∞ = 17.605, α = 270o

at p = 2 and p = 3.

in the previous inviscid case employing the same number of elements, because the initial

mesh elements are clustered at the boundary to resolve the boundary layer. Therefore, the
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(a) Initial mesh: N = 1711, p = 1

(b) Final hp-adapted mesh: N = 37, 575, p = 1 to p = 4

Figure 7.19: Initial mesh and final hp-adapted mesh employed for viscous hypersonic flow over a
half cylinder at M∞ = 17.605, α = 270o, Re = 376, 930.

elements in the vicinity of the are much larger in this initial mesh than in the previous

inviscid test case. Six cycles of hp-adaptation are performed after which the surface heating

error is reduced to approximately .01%. Figure 7.21(a) and Figure 7.21(b) show the Mach

number and temperature contours on the final hp-adapted mesh respectively. These figures

illustrate that output-based adaptation has been performed on this flow, since the shock

wave is only well resolved over a section of the cylinder surrounding the stagnation point.

A similar refinement pattern of the shock wave region is also observed in references [59,71].

The hp-adaptation algorithm places high-order elements throughout the boundary layer and

shock layer regions due to the smooth solution behavior in these regions. Furthermore, the

surface heating is strongly dependent on these regions of the flow as well as on the portion of

the shock wave targeted with h-refinement, which is illustrated in Figure 7.19(b). The hp-

245



(a) Mach number contours

(b) Temperature
(
T
T∞

)
contours

Figure 7.20: Computed Mach number and temperature contours of viscous hypersonic flow over
a half cylinder on the intial grid using N = 1, 711 with p = 1 at M∞ = 17.605, α = 270o,
Re = 376, 930.

adaptation algorithm applies h-refinement in the vicinity of the shock wave while maintaining

a fixed discretization order of p = 1.

Figure 7.22(a) shows the smooth computed surface heating profile. Smooth computed

surface heating profiles are of significant concern in hypersonic simulations. While this mesh

is made of quadrilaterals there is no intentional shock alignment in the mesh, in fact only at

the stagnation point is there even a close alignment with the shock, which is not intentional.

In this case, high-order methods obtain smooth surface heating without a shock-aligned

mesh. Noisy surface heating is normally associated with entropy errors that propagate from

the shock through the shock layer and it appears that high-order elements in the shock layer

and a fine mesh at the shock have eliminated these errors. Reference [71] has computed this
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(a) Mach number contours

(b) Temperature
(
T
T∞

)
contours

Figure 7.21: Computed Mach number and temperature contours of viscous hypersonic flow over a
half cylinder on the final hp-adapted grid using N = 37, 575 with p = 1 to p = 4 at M∞ = 17.605,
α = 270o, Re = 376, 930.

flow using output-based mesh refinement at a discretization order of p = 2. However, smooth

surface heating was only obtained using a modified adaptation sequence(see reference [71] for

details of the modified adaptation sequence), which artificially augmented the error estimate

in cells close the wall. In this work no such modifications were necessary and the adaptation

method is the same as in the previously presented test cases.

Figure 7.22(b) shows the surface heating and adjoint-corrected surface heating for this

case. Grid converged computed surface heating vales are obtained and the computed surface

heating error estimate provides accurate functional corrections throughout the adaptive pro-

cedure. The accuracy of the surface heating error estimate demonstrates another positive

characteristic of artificial viscosity methods. The particular form of the error estimate used
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(a) Surface heating profile on final hp-adapted mesh (b) Surface heating convergence history

Figure 7.22: Surface heating profile on final hp-adapted mesh integrated surface heating convergence
history using hp-adaptation for viscous hypersonic flow over a half cylinder at M∞ = 17.605,
α = 270o, Re = 376, 930.

(a) Surface heating error versus NDoF (b) Surface heating error versus wall clock time (sec)

Figure 7.23: Comparison of surface heating error of viscous hypersonic flow over a half cylinder
using output driven hp-adaptation and h-refinement, M∞ = 17.605, α = 270o, Re = 376, 930.

in this work (equation (5.2.10)) can be susceptible to corruption due to Gibbs phenomena

polluting the fine level residual as discussed in Chapter 5 and Chapter 6. However, the

artificial viscosity adequately regularizes the fine level residual estimate, enabling correct

functional error estimates.
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(a) Stagnation point temperature (b) 30o point temperature

Figure 7.24: Temperature profiles versus radial distance at the stagnation point an 30o circum-
ferential point across the hp-adaptation for the hypersonic viscous flow over a half cylinder at
M∞ = 17.605, α = 270o, Re = 376, 930.

Finally the computed surface heating error obtained from the hp-adaptation is analyzed

and compared against a computed surface heating error obtained by employing h-refinement

with a discretization order of p = 1. Figure 7.23(a) shows the computed surface heating error

convergence versus NDoF . Clearly the hp-refinement scheme is more effective at reducing

the computed surface heating error than h-refinement alone. Figure 7.23(b) depicts the

computed surface heating error versus wall clock time. Again the hp-adaptation strategy is

significantly more effective at reducing the computed surface error than h-refinement with a

discretization order of p = 1. While in this case hp-adaption is more effective in both NDoF

and a wall clock time sense, hp-adaptation is deemed more effective overall based solely on

the wall clock time result, because a method is only more efficient if lower discretization

error is obtained using less wall clock time. The flow and objective for this test case are

strongly dependent on both smooth and non-smooth flow features, hence hp-adaptation is

very effective because it targets each type of flow feature with the most effective form of

refinement for that particular feature. hp-adaptation combines the lessons of this work with

what is already known about high-order methods for smooth flows to achieve superior error

convergence for this test case. In particular hp-adaptation refines the shock wave with h-
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refinement, which this work has shown to be particularly effective compared to employing

high discretization order at the shock wave. Furthermore, hp-adaptation targets smooth

flow features with p-enrichment, which has proven more efficient for the error reduction of

smooth flows in Chapter 5. Note that employing high discretization orders in the vicinity of

the shock wave should not degrade the quality of the results. However, reference [71], which

uses the same artificial viscosity method as this work, has stated that robustness problems

prevented the author of this reference from employing higher than a p = 2 discretization

during adaptive mesh refinement of this same case. The hp-adaptation strategy shows no

such robustness issue and can employ a discretization order of p = 4 in the smooth regions

of the domain where high-order discretizations are most effective.

Figure 7.24(a) and Figure 7.24(b) show the temperature profiles extracted radially from

the surface of the cylinder along the stagnation line and along a line 30o from the stagnation

line on the cylinder respectively. These figures illustrate how the resolution proceeds over

the adaptation history, which shows that the shock wave is resolved most substantially in

the first four hp-adaptation cycles. Examination of the temperature profiles at the final

hp-adaptation cycle shows a sharply captured shock wave and a thin boundary layer.

7.5 Summary

A quantitative assessment of refinement methods for high speed flows using high-order meth-

ods is presented. Results for shock wave dominated flows show that h-refinement employing

a discretization order of p = 1 is most effective in terms of computational cost. Therefore em-

ploying high-order discretizations to capture shock waves is not necessary or recommended,

given the robustness problems associated with resolving shock waves with p-enrichment. Ap-

plication of the hp-adaption strategy to a standard hypersonic benchmark has shown that

high-order methods can be successfully applied to high speed flow problems when smooth

and non-smooth flow features are present. High-order DG discretizations show significant

efficiency benefits for the computation of hypersonic viscous flows provided that the appro-

priate form of refinement is used. One should not expect p-enrichment alone to perform very

250



well for high speed shocked flows.

In conclusion this work has shown that the challenges faced when computing shocked

flows with high-order methods do not originate from inadequate shock capturing techniques.

Rather the challenges stem from choosing appropriate refinement strategies for high speed

shocked flows. The currently available shock capturing techniques, especially that of refer-

ence [37] can robustly capture shock waves. The role of a shock capturing technique is to

provide an extra layer of robustness to the solver. This work has shown that the accuracy and

efficiency of a high-order solver applied to shocked flows is largely governed by the refinement

method employed. This work has shown that hp-adaptation is an efficient and robust refine-

ment method for shocked flows. Furthermore, high-order methods employing hp-adaptation

can outperform second-order accurate methods for computing hypersonic viscous flows as

shown by the final test case. For a viscous hypersonic flow hp-adaptation combined with the

PDE-based artificial viscosity is robust and delivers highly accurate results.

Furthermore, the presented hypersonic cases contain high but smooth gradients in the

shock and boundary layers(in the cases that contain these features). Yet this has not affected

functional accuracy, error estimation or functional convergence in any way. The computed

surface heating in the viscous hypersonic flow test case shows textbook convergence behavior

and adjoint based output error estimation provides adequate error estimates for both error

quantification and functional correction. The results clearly indicate that high-order DG

methods are both robust and effective for this challenging case.
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Chapter 8

Comparisons of Discontinuous

Galerkin and Finite-Volume Methods

The final chapter considers a quantitative comparison between the presented DG solver and

a second-order accurate finite-volume solver. Both solvers are unstructured CFD solvers and

the finite-volume solver is an example of the current stat-of-the-art in CFD. Three compar-

isons of the DG and finite-volume solvers are considered. In particular, solver performance

at second-order accuracy as well as uniform refinement performance are considered. Finally,

the shock capturing techniques of both solvers are compared to test the monotonicity of the

computed surface pressure profiles for an inviscid transonic flow. The monotonicity of the

computed surface pressure has implications for computing flight envelope design spaces.

In previous chapters high-order accurate methods were shown to be more efficient than

second-order accurate methods for a variety of flow problems. However, all of the previous

comparisons between second and higher-order methods were conducted using the presented

DG solver with a discretization order of p = 1. Therefore, it is of interest examine the

performance of the presented DG solver compared with a second-order finite-volume solver

to determine if the previous comparisons were legitimate. In order to compare DG and

finite-volume methods, the comparisons are made using the presented DG solver and a

finite-volume solver also written by the author. In order to make the comparisons as exact

as possible, a large amount of source-code is shared between the two solvers.
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This chapter addresses the comparison between DG and finite-volume methods in three

ways. The first comparison addresses the second-order accurate performance of both solvers.

This comparison determines if the previously presented comparisons between second and

higher-order DG discretizations were adequate to determine the efficiency gains of high-order

discretizations. The second comparison considers uniform refinement strategies for both

solvers. Finally, the DG solver and two finite-volume solvers are compared for the prediction

of a flight envelope design space problem, which tests the shock capturing techniques of

these three solvers. From these comparisons, conclusions about the future of DG methods

as a practical tool for scientific and engineering analysis are discussed. For all comparisons

between finite-volume and DG methods, the far-field boundary location is identical between

the meshes employed for both solvers. Furthermore, the far-field boundary is located 60

chords from the airfoil in all test cases.

8.1 The Finite-Volume Solver

This section outlines the finite-volume solver that is employed for the comparisons in this

chapter. In order to compare the discretization methods, and not the specific implemen-

tation, the DG and finite-volume solvers share as much source code as possible. First of

all, the linear algebra subroutines are identical as well as the subroutines that compute the

numerical convective and viscous fluxes. Furthermore, the finite-volume solver contains most

of the same features as the DG solver; including line-implicit relaxation (Section 4.3.1 and

Section 4.3.3), a GMRES linear solver(Section 4.5), adaptive Newton damping via equation

(4.2.4), and parallelization using MPI. All comparisons conducted in this chapter utilize the

GMRES solver preconditioned by the CGS method.

While for a first-order accurate discretization finite-volume and DG methods result

in identical discretizations, second-order accurate discretizations are constructed in funda-

mentally different ways. DG methods add additional degrees of freedom(DoFs) within the

elements to obtain higher than first-order discretizations. Contrarily, finite-volume methods

reconstruct interpolation polynomials using data from surrounding cells in the mesh. Thus
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the data stored in the finite-volume method is always piecewise constant within each cell

and the order of accuracy is determined by fitting interpolation polynomials over groups of

cells. Since the order of accuracy is determined by interpolation polynomials that use data

from outside the cell to derive higher than first-order accuracy, the order of accuracy and

number of degrees of freedom are not coupled for finite-volume discretizations.

While a large amount of code is shared between the two solvers, the very nature of

the discretization methods requires some differences. The finite-volume solver is second-

order accurate based on linear reconstruction. The gradients i.e. the slopes of the linear

interpolation polynomials are reconstructed using a weighted least-squares approach from

reference [81]. Additionally, a slope limiter is used for shock capturing as well as general

robustness enhancement. In fact, for viscous flows it has been found that employing the

limiter makes start-up transients for the Newton solver less difficult to overcome. The slope

limiter employed by the finite-volume solver is the smooth van Albada limiter of reference [1].

Additionally, a pressure switch [103] is used to augment the limiter, which allows for more

rapid convergence of the flow equations to machine zero. In finite-volume methods the ex-

act Jacobian is difficult to construct and often the so-called first-order Jacobian matrix is

formed for use in the preconditioner. The first-order Jacobian is the exact linearization of

a first-order accurate discretization. Employing the first-order Jacobian in the precondi-

tioner can significantly degrade the convergence of the Newton solver. However, the sizes of

the blocks of the Jacobian matrix are smaller for a finite-volume discretization than a DG

discretization. Hence, finite-volume discretizations have an advantage in terms of cost per

iteration. Since the GMRES method is employed, it might be beneficial to use the exact flow

Jacobian to compute the Krylov basis vectors. As such a Jacobian-free GMRES method is

implemented, in which the product of the exact Jacobian onto the Krylov basis vectors is

computed in a matrix-free way [104]. Numerical experiments with a variety of flow problems

have shown that this approach significantly speeds up the convergence of Newton’s method

for the finite-volume solver and is employed for the comparisons in this chapter. For a par-

ticularly well presented and detailed description of finite-volume methods on unstructured

grids see reference [1].
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The presented finite-volume solver can solve the Euler, laminar Navier-Stokes and RANS

equations. This solver has been validated against exact solutions, experiment [98],and various

other second-order CFD solvers [5, 66]. In this chapter the performance comparisons are

relegated to simple laminar viscous flows, in order to prevent the turbulence model resolution

discrepancy from affecting the results of the DG solver. The resolution discrepancy between

the mean flow and turbulence model equations will not allow a fair comparison between the

two solvers for turbulent flows. This is due to the fact that the finite-volume solver does not

have a resolution discrepancy between the discretization of the mean flow and turbulence

model equations.

8.2 Solver Performance Comparison

The performance comparison between the DG and finite-volume solvers is conducted by

computing the laminar viscous flow over a NACA0012 airfoil at M∞ = .5, α = 1o, and Re =

5, 000. In order to asses the performance of the DG solver versus the finite-volume solver, two

studies are conducted. The first study involves computing this flow using similar numbers

of degrees of freedom at second-order accuracy. The second study involves comparing the

flow solutions on a sequence of nearly uniformly refined meshes.

8.2.1 Second-order Performance Comparison

The first test considers the performance of each solver employing a second-order accurate dis-

cretization. In this case the finite-volume solver employs a mesh with N = 14, 203 elements,

resulting 14, 203 degrees of freedom (DoFs). The DG solver employs a uniform discretization

order of p = 1 on a mesh containing N = 4, 487 elements for a total 15, 555 DoFs. Both grids

are mixed-element anisotropic grids and in general the DG grid contains higher anisotropy

due to the coarse chord wise resolution of the mesh. The goal is to compare the computed

drag error and wall clock time required using both DG and finite-volume methods for a fixed

order of accuracy and number of unknowns. Both solvers are run in parallel on 4 cores of the

same processor. Furthermore, to solve the linear system, each CFD solver employs the GM-

256



RES method of Section 4.5 which is preconditioned by the colored Gauss-Seidel method of

Section 4.3.3. Each solver utilizes 30 Krylov vectors per Newton step with 10 preconditioning

iterations per Krylov vector. In this case, the finite-volume solver employs a Jacobian-free

matrix vector product [104] to build the Krylov subspace. Numerical experiments with the

finite-volume solver were performed, both with and without the Jacobian-free matrix vector

product, and the Jacobian-free matrix vector represents the fastest solution method for this

problem. The discrete flow equations of each solver are converged 12.5 orders of magnitude.

The computed drag and computed drag error results are depicted in Table 8.1 along with

the wall clock time required to compute each result. The reference drag coefficient CDRef is

the result of computing the same flow conditions with a p = 4 DG discretization employing

250, 000 DoFs, which is the same reference solution used in Section 5.4.1.

Table 8.1: Comparison of finite-volume and DG solvers at second-order accuracy.

Method Wall Time(s) CD CDRef
∣∣CD − CDRef ∣∣

FV 55 .0562423 .0559061 .0003362
DG 28 .0557026 .0559061 .0002035

The data presented in this table shows that DG is significantly more efficient than finite-

volume even at second-order accuracy. With nearly half the compute time, the DG solver

employing a second-order p = 1 discretization attains a 39% reduction in computed drag

error over the second-order finite-volume solver. This is quite a staggering result considering

that the comparative situation is slanted slightly in favor of the finite-volume solver, due

to the higher mesh anisotropy and additional DoFs used by the DG solver for this case.

Furthermore, the results of this test case justify using the DG solver with a p = 1 discretiza-

tion for comparison with high-order discretizations. Hence, the comparisons shown in the

previous chapters(Chapter 5,7) were sufficient to judge the efficiency of high-order methods.

8.2.2 Uniform Refinement Comparison

The second comparison considers the same flow conditions and solver configuration as the

comparison in Section 8.2.1. However, this comparison examines two different types of

refinement for the solvers. The finite-volume solver employs nearly uniformly refined meshes
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generated by the UMESH2D [80] mesh generator, which cannot generate nested meshes.

However, the sequence of meshes employed are nearly uniformly refined. The DG solver

employs true uniform p-enrichment, which is the uniform increase of discretization order.

The computed drag error is compared for each solver versus both NDoF and wall clock

time. The finite-volume solver employs three meshes ranging from N = 14, 203 elements to

N = 142, 246 elements. The DG solver employs a mesh containing N = 4, 487 elements with

discretization orders p = 1 to p = 3 resulting in 15, 555 DoFs to 57, 434 DoFs respectively.

The mesh employed by the DG solver is shown in Figure 8.1(a) and Figure 8.2(a) through

Figure 8.2(c) depict the sequence of meshes employed by the finite-volume solver. Figure

(a) DG mesh: N = 4, 487

Figure 8.1: Mesh employed for DG solver for viscous flow over a NACA0012 airfoil.

8.3(a) and Figure 8.3(b) show the computed Mach number contours using the finite-volume

solver on the finest mesh and the DG solver employing a discretization order of p = 3

respectively. These figures demonstrate that similar solutions are obtained using both CFD

solvers and that the wake is captured up to a distance of approximately four chords from the

trailing edge. Figure 8.4(a) and Figure 8.4(b) show the computed streamlines at the trailing-

edge separation region using the finite-volume and DG solvers respectively, indicating that

the trailing edge separation is adequately captured by both solvers. Though the solutions

generated using both solvers are similar, the DG solver uses one third the number of DoFs

compared to finite-volume solver in this case. The wake and trailing edge separation regions

both have a strong impact on the computed drag coefficient, as discussed in Section 5.4.1.
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(a) Coarse mesh: N = 14, 203

(b) Medium mesh: N = 38, 173

(c) Fine mesh: N = 142, 246

Figure 8.2: Sequence of meshes employed by the finite-volume solver for viscous flow over a
NACA0012 airfoil.
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(a) Final finite-volume grid: Mach Contours

(b) DG p = 3: Mach Contours

Figure 8.3: Mach number contours for laminar flow over a NACA0012 airfoil, M∞ = .5, α = 1o,
and Re = 5, 000 using a second-order finite-volume solver on the finest mesh of N = 142, 246 and
a DG solver with a discretization order of p = 3 on a mesh with N = 4, 487 resulting in 57, 434
DoFs .
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(a) Final finite-volume grid: Streamlines

(b) DG p = 3: Streamlines

Figure 8.4: Close-up of trailing edge separation zone of the laminar flow over a NACA0012 airfoil,
M∞ = .5, α = 1o, and Re = 5, 000 using a second-order finite-volume solver and a DG solver with
a discretization order of p = 3.

261



The metric for this comparison is the computed drag error measured across the refine-

ments. The computed drag error is determined using a reference solution, which is the result

of computing the same flow conditions with a p = 4 DG discretization employing 250, 000

DoFs, which is the same reference solution used in Section 5.4.1. The computed drag error

is given by:

CDError =
∣∣CD − CDRef ∣∣ (8.2.1)

and is measured versus both NDoF and wall clock time. Figure 8.5(a) shows the computed

drag error versus NDoF and Figure 8.5(b) depicts the computed drag error versus wall clock

time. The results show that the DG solver produces a lower drag error throughout the

(a) Drag error vs. NDoF (b) Drag error vs. wall clock time

Figure 8.5: Comparison of drag error over refinement for laminar flow over a NACA0012 airfoil,
M∞ = .5, α = 1o, and Re = 5, 000 using nearly uniform mesh refinement with a second-order
finite-volume solver and uniform p-enrichment with a DG solver from p = 1 to p = 3.

resolution range considered, which demonstrates that the DG solver is more efficient than

the finite-volume solver in terms of number of DoFs and wall clock time. Furthermore,

these results indicate that it is more efficient to employ a higher-order discretization with

fewer unknowns than a low-order discretization using more unknowns, based solely on the

computed drag error versus wall clock time results. However, there may a point at which

the discretization order should become fixed. For example, one might not want to employ

p = 10 using only a small number of elements. The optimal discretization order p will likely
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be problem dependent, based on the smoothness of the solution. Hence further study is

required to determine what is the most effective p-order to use for a given error tolerance.

However, for the moderate orders of accuracy considered in this comparison, high-order

methods are clearly more efficient than low-order methods for these computed drag error

levels.

These results show that high-order DG methods can be more efficient than second-order

accurate finite-volume methods for a specified error level or a given amount of wall clock

time invested. Furthermore, DG methods are flexible enough to be efficient throughout the

error range, provided one does not try to use high-order discretizations for high functional

error levels. Therefore, if the objective of a CFD solver is to be able to solve a wide range

of problems at a wide range of error tolerances efficiently, then DG methods provide an

enticing discretization method based on these results. Furthermore, additional flexibility for

DG methods is offered by employing hp-adaptation, which allows for a potential increase in

solver efficiency.

Lastly, attempts were made to compare the DG solver against other available viscous

second-order unstructured finite-volume solvers. However, the present finite-volume solver

proved to be the fastest finite-volume solver available for comparison. In summary, dis-

continuous Galerkin discretizations are efficient, flexible and robust discretization methods,

making these methods an excellent discretization option for the next generation of CFD

solver.

8.3 Design Space Considerations: Beyond Accuracy

and Performance

Beyond increasing solution accuracy and improving solver efficiency, there is also a drive to

examine the effects of discretization on computed design spaces. In particular, this section

considers a flight envelope design space. A flight envelope design space consists of the lift or

drag dependence on flight condition parameters such as free-stream Mach number M∞ and

angle of attack α. Recently there has been significant research conducted into constructing
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gradient-enhanced surrogate models of aerodynamic design spaces [105–107], where the sam-

ples and the gradients at these points are obtained using a CFD solver. These surrogates

are constructed for a variety of applications including optimization and uncertainty quantifi-

cation. In particular, gradient-enhanced surrogate models for flight envelope design spaces

are considered in references [105,106,108].

Surrogate models can be utilized as a means of sample reduction for uncertainty quan-

tification and sensitivity analysis, as well as for computationally inexpensive optimization.

Surrogate models are typically premised on the assumption that the design space is free

of small scale oscillations or noise. This assumption is critical when considering gradient-

enhanced surrogate models. Some examples of gradient-enhanced surrogates are Gaussian

process regression (Kriging) [108] and polynomial chaos [109]. Excessive noise in the com-

puted design space can impede the accuracy and validity of gradient-enhanced surrogates.

This is especially true if the noise is the result of an artifact of the discretization and does

not represent the physics of the underlying continuous PDEs. [110].

As an example of a design space which is artificially noisy, consider the inviscid flow

over a NACA0012 airfoil at an angle of attack α = 3.5o over a range of Mach numbers from

M∞ = 0.5 to 1.5. These flow conditions represent a one-dimensional design space where

the Mach number is the design variable. The computed design spaces of lift and drag over

this range of Mach number, computed with the second-order accurate finite-volume solver

of reference [19], is depicted in Figure 8.6(a). Figure 8.6(a) demonstrates that the computed

design space is noisy i.e. contains small scale oscillations, especially in the transonic region.

Figure 8.6(b) shows a closer view of the noisiest section of the computed design space.

Motivated by this example, this work examines the source of computed design space

noise. The goal is to determine if the noise in the computed design space is the result of

numerical artifacts from the solver or if the noise is physical. Three CFD solvers are used to

investigate the source of the design space noise. Assuming that the noise in the computed

design space is not physical, it is interesting to examine if any of the three solvers is capable

to preventing noise.

In order to limit the amount of required computations, a section of the noisiest part of
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the computed design space is chosen for this comparison. The section of the design space

under consideration is 0.75 ≥ M∞ ≤ 0.76), where the Mach number is sampled at intervals

of .001, which necessitates 10 CFD solutions per solver. The three CFD solvers utilized for

this comparison are: the presented DG and finite-volume solvers as well the finite-volume

solver of reference [19]. The specified range of the design space is computed using both

finite-volume solvers at first and second-order accuracy. The computational mesh employed

by the present finite-volume solver is depicted in Figure 8.7(a) and contains N = 24, 090

elements, which results in 24, 090 DoFs. The solver of reference [19] used a mesh containing

approximately N = 20, 000 elements(not shown). Additionally, the presented DG solver

employs a discretization order of p = 1 on a mesh with N = 7, 672 elements shown in Figure

8.7(b), resulting in 23, 016 DoFs. The PDE-based artificial viscosity described in Section

2.7.2 is used as the shock capturing technique for the DG solver. First-order computations

are not performed with the DG solver since a p = 0 or first-order discretization is equivalent

to a first-order finite-volume discretization. In this case, the results of the presented second-

order finite-volume solver are generated using only the limiter and no pressure switch. Table

8.2 matches the legend markings to the CFD solvers and discretization order used to obtain

the results.

Table 8.2: Listing of legend markings for the results of the computed design space of transonic
inviscid flow over a NACA0012 airfoil.

Legend Label Solver Discretization Order
FV 1st Order Presented finite-volume solver first-order
FV 2nd Order Presented finite-volume solver second-order

DG P = 1 Presented DG solver second-order
FV 1st Order M. Rumpfkeil Finite-volume solver reference [110] first-order

FV 1st Order K. Mani Finite-volume solver reference [19] first-order
FV 2nd Order M. Rumpfkeil Finite-volume solver reference [110] second-order

FV 2nd Order K. Mani Finite-volume solver reference [19] second-order

Figure 8.8(a) shows the computed lift coefficient over the specified section of the design

space and Figure 8.8(b) shows the computed drag coefficient. All the first-order accurate

discretization results yield smooth design space behavior, while the second-order accurate

finite-volume solver results exhibit noise. However, the results of the DG solver with a
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(a) Full Design Space (b) Transonic Section of Design Space

Figure 8.6: Computed design space for the inviscid flow over a NACA0012 airfoil at α = 3.5o

and M∞ = .5 to 1.5 using a second-order finite-volume solver.(Courtesy of M. Rumpfkeil Personal
Communication.

(a) Mesh employed by finite-volume solver (b) Mesh employed by DG solver

Figure 8.7: Unstructured meshes employed for the finite-volume and DG solvers for the computation
of the Mach number design space.

discretization order of p = 1 yields a smooth design space. Furthermore, these results

demonstrate that some finite-volume solvers yield more noise than others. Based on these

results the computed surface pressure profiles were examined which revealed non-monotone
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(a) Lift coefficient (b) Drag coefficient

Figure 8.8: Computed lift and drag design spaces for the inviscid flow over a NACA0012 airfoil
at α = 3.5o using several CFD solvers M = (.75)...(.76) by .001 at both first and second-order
accuracy.

(a) Surface Pressure (b) Shock Close-up

Figure 8.9: Computed surface pressure for NACA0012 airfoil at α = 3.5o and M = .75 using
the finite-volume solver with two different limiter settings and a first-order discretization, lim-
iter+pressure is the more diffusive setting.

oscillations in the computed surface pressure. Example surface pressure profiles for M∞ =

.75, computed using the presented finite-volume solver at first and second-order accuracy

are shown in Figure 8.9.
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The small non-monotone oscillations of the computed surface pressure in the vicinity of

the shock wave are the cause of the design space noise. Therefore the noise in the design

space is non-physical, and is the result of numerical artifacts related to the discretization,

since the new surface pressure extrema at the shock wave are artifacts from the numerical

solution.

The essential problem is a lack of monotonicity of the surface pressure distribution

computed using second-order finite-volume methods. In order to determine if the finite-

volume solver can simply be adjusted to generate monotone surface pressure distributions,

modifications were made to the presented finite-volume solver and to the solver from reference

[19]. The presented finite-volume solver employs a limiter and a pressure switch to stabilize

the second-order discretization in the presence of shock waves. The adjustments to the

presented finite-volume solver consisted of activating the pressure switch, which was not

used in the first set of computations. The solver of reference [19] is based on the matrix

dissipation scheme of reference [4] and adjustments to the shock capturing scheme consisted

of increasing the magnitude of the matrix dissipation coefficients. Using these modified

limitation settings, additional comparisons are conducted, as shown in Figure 8.10(a) and

Figure 8.10(b). Note that the results marked “K. Mani“ are generated using the solver of

reference [19] but with modified matrix dissipation coefficients, while the results marked

”M. Rumpfkeil“ use the same solver with the original coefficients [110]. The results in these

figures show marked improvement but again the only truly smooth computed design space

is produced by the DG solver using a discretization order of p = 1. The DG solver is the

only solver that is able to generate a smooth computed design space, which is the result of

the monotone surface pressure distribution obtained with the DG solver, as shown by the

example surface pressure profiles in Figure 8.11. As a further point of comparison the design

space is re-computed using the DG solver with discretization orders p = 1 to p = 3. These

computations resulted in smooth computed design spaces when employing the DG solver

with high-order discretizations, as demonstrated in Figure 8.12.
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(a) Lift coefficient (b) Drag coefficient

Figure 8.10: Computed design space for the inviscid flow over a NACA0012 airfoil at α = 3.5o

using three CFD solvers at exclusively second-order accuracy, M = (.75)...(.76) by .001. The
limiter settings of the finite-volume solver were adjusted in an attempt to generate monotone
surface pressure profiles.

(a) Surface pressure (b) Shock close-up

Figure 8.11: Computed surface pressure for NACA0012 airfoil at α = 3.5o and M = .75 using the
DG solver with a discretization order of p = 1 and a second-order finite-volume solver with two
different limiter settings.
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(a) Lift (b) Drag

Figure 8.12: Computed design space results for the inviscid flow over a NACA0012 airfoil at α = 3.5o

and M = (.75)...(.76) by .001 using the DG solver with discretization orders p = 1 to p = 3.

(a) Surface Pressure (b) Surface Pressure: Shock Close-up

Figure 8.13: Computed surface pressure coefficient for inviscid flow over a NACA0012 airfoil at
α = 3.5o and M = .75 using the DG solver with discretization orders p = 1 to p = 3.
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The DG solver is able to obtain monotone surface pressure distributions due to the use

of the PDE-based artificial viscosity shock capturing technique described in Section 2.7.2.

In order for a high-order DG solver to be robust, the DG solver must be able to capture

shock waves using second and higher discretization orders. The coupling between DoFs

and order of accuracy places an additional constraint on the shock capturing technique as

discussed in Chapter 7. The more rigorous constraints on shock capturing techniques for

DG discretizations, have produced a robust yet accurate shock capturing technique that

maintains the accuracy of smooth solutions, by remaining inactive in regions of smooth

flow and simultaneously applying artificial viscosity in the vicinity of the the shock wave.

The artificial viscosity is applied in sufficient quantities to obtain monotone surface pressure

profiles. The surface pressure distributions computed using the DG solver with discretization

orders p = 1 to p = 3 are depicted in Figure 8.13. Since the non-monotone surface pressure

distributions are not present in the DG solutions (those minor oscillations in Figure 8.13 never

exceed the smooth extrema on each side of the shock wave) the resulting computed design

space is smooth for all discretization orders employed. Furthermore, when employing second-

order accuracy the computational cost of the DG solver is comparable to the computational

cost of the finite-volume solver as shown in Figure 8.14.

The added monotonicity of the surface pressure distribution comes with the drawback of

a slightly more diffused shock wave when employing a second-order or p = 1 discretization.

However, the shock wave is not diffused enough to cause severe degradation of the computed

lift and drag coefficients as seen in Figure 8.10(a) and Figure 8.10(b). Figure 8.15(a) depicts

the computed Mach number contours at M∞ = .75 using the second-order finite-volume

solver with the most diffusive limiter settings and Figure 8.15(b) shows the computed Mach

number contours using the DG solver with a discretization order of p = 1. The computed

shock wave is spread over a larger distance in the DG solution compared to the finite-volume

solution. The shock wave computed with the DG solver is thicker because the extent of

the domain in which stabilization is active, is effectively larger for the DG solver than the

finite-volume solver. This is demonstrated by comparing Figure 8.16(b) to Figure 8.16(a),

which illustrate the extent of the regions of the domain where the respective stabilization
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Figure 8.14: Convergence of finite-volume and DG flow solvers versus wall clock time at α = 3.5o

and M∞ = .75.

(a) finite-volume (b) DG p = 1

Figure 8.15: Computed Mach number contours for inviscid flow over a NACA0012 airfoil at α =
3.5o, M = (.75) by .001 using the second-order finite-volume and DG with p = 1 solver.

methods are active (artificial viscosity for DG and limiter for finite-volume). The PDE-

based artificial viscosity acts over a larger region than the limiter for the finite-volume

solver, hence the shock wave computed with the DG solver is the thicker. However, the
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(a) finite-volume (b) DG p = 1

Figure 8.16: Regions of the mesh where stabilization is applied for the inviscid flow over a
NACA0012 airfoil at α = 3.5o, M = (.75) by .001 using finite-volume and DG p = 1 solvers.

larger extent over which the artificial viscosity acts, results in the monotone surface pressure

results produced by the DG solver. Also notice that the artificial viscosity yields monotone

results without affecting the smooth flow regions in the domain. It is possible to adjust

the limiter settings to obtain a monotone surface pressure profile using the finite-volume

solver. However, if the limiter settings of the finite-volume solver were adjusted so that the

extent over which the limiter acts is increased resulting a monotone surface pressure profile,

then the limiter might become active in regions of smooth flow, which negatively impacts the

accuracy of the solver. Furthermore, more diffusive limiter settings are known to degrade the

iterative convergence of the solver [1]. Figure 8.17(a) and Figure 8.17(b) show the computed

Mach number and artificial viscosity contours for a p = 2 DG discretization. While the

results demonstrate that the sharper computed shock wave of the finite-volume solver is not

necessarily the better result, it is possible that the DG solver requires more computational

time than the finite-volume solver to compute a shock wave of this thickness. Figure 8.14

shows the computational time required to obtain a p = 2 solution using the DG solver. This

timing result includes the computational time required to compute the p = 1 DG solution

that initializes the p = 2 solution. The total computational time required to obtain the
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(a) Mach p = 2 (b) A.V. p = 2

Figure 8.17: Mach number and A.V. contours for the inviscid flow over a NACA0012 airfoil at
α = 3.5o, M∞ = .75 with the DG solver using a discretization order of p = 2.

(a) Mach p = 3 (b) A.V. p = 3

Figure 8.18: Mach number and A.V. contours for the inviscid flow over a NACA0012 airfoil at
α = 3.5o, M∞ = .75 with the DG solver using a discretization order of p = 3.

p = 2 DG solution is still less than the computational time required by the finite-volume

solver. Furthermore, employing the DG solver with a discretization order of p = 2 has

sharpened the computed shock wave enough that it is virtually indistinguishable from the

finite-volume result without increasing the computational cost beyond what is required by
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the finite-volume solver. While in practice one cycle of hp-adaption could have been applied

to this problem, the p = 2 result demonstrates that the PDE-based artificial viscosity shock

capturing technique is robust enough to maintain monotonicity at higher than second-order.

Furthermore, the computed Mach number and artificial viscosity contours for a p = 3 DG

discretization are shown in Figure 8.18(a) and Figure 8.18(b) respectively. These figures

illustrate the reduced artificial viscosity and sharper shock wave computed with the DG

solver, using a discretization order of p = 3 which still maintains monotone surface pressure

profiles as shown in Figure 8.13.

8.4 Summary

This chapter discusses a quantitative comparison of the presented DG solver compared to

a finite-volume solver. The two solvers share as much source-code as possible to facilitate

an adequate comparison between the two CFD solvers. A performance test at second-order

accuracy has demonstrated the increased efficiency of the DG solver compared to the finite-

volume solver when employing similar resolutions at second-order accuracy. Furthermore,

even at second-order accuracy the DG solver produces more accurate functionals than the

finite-volume solver.

Comparison of uniform refinements between the two solvers has shown that in terms of

computational time and NDoF , the high-order DG solver generates more accurate functionals

than the finite-volume solver. Furthermore, this comparison also demonstrated that employ-

ing a higher-order discretization and fewer elements can result in a more efficient solver, at

least for the functional error levels considered in this comparison. While not immediately

apparent from these results, the additional efficiency of high-order methods has significant

implications for computing very large flow problems, where second-order accurate meth-

ods require very large meshes. Employing very large meshes results in significant increases

in the computational costs of preforming mesh pre-processing and domain decomposition.

The added flexibility of adding resolution within the elements, makes pre-processing and

grid-splitting less expensive, because only the grid cells make use of these operations. For
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high-order methods such as DG, the grid cells represent only a subset of the unknowns used

to solve the problem and hence resolution can be increased without needing to reconsider

mesh pre-processing or grid splitting.

Lastly, the presented DG solver demonstrates superior computed flight envelope design

space smoothness for an inviscid transonic flow. Noisy design spaces can impede the accuracy

of gradient-enhanced surrogates. For the particular noisy design space considered, the noise

in the computed lift/drag coefficients versus Mach number is attributed to non-monotone

behavior in the computed surface pressure distribution in the vicinity of the shock wave.

This design space was computed using two different finite-volume solvers as well as the

presented DG solver. For these computations several attempts were made to improve the

monotonicity of the surface pressure distributions computed with the finite-volume solvers

and no modifications were able to remove the surface pressure oscillations. However, the

same design space was computed with the DG solver, which was able to produce a smooth

design space for discretization orders p = 1 to p = 3. The robust and accurate shock

capturing abilities of the PDE-based artificial viscosity method are the key component of

the DG solver that results in a smooth computed design space.
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Chapter 9

Conclusions and Future Work

9.1 Summary

This work has demonstrated that discontinuous Galerkin (DG) methods can be used as

the basis of a robust computational fluid dynamics (CFD) solver at both low and high-

orders of accuracy. The robustness of the solver is demonstrated by the application of the

presented flow solver to practical two-dimensional aerodynamic problems. In the case of

shocked and viscous laminar flows, the high-order DG solver delivers optimal accuracy and

superior performance when compared to low-order methods. However, assessing the merits

of computing turbulent flows with high-order methods has proven difficult. The difficulty is

due to non-smooth behavior in the Spalart and Allmaras turbulence model working variable.

This non-smooth behavior of the turbulence model working variable is not unique to DG

discretizations but also affects second-order accurate finite-volume discretizations as well.

Additionally, the application areas of DG discretizations have been broadened from the

standard academic problems, such as isentropic vortex convection, to problems of real world

interest to the aerodynamics community, such as high-lift turbulent flows and hypersonic

flows.

DG methods have largely been applied to linear wave propagation problems as in refer-

ences [24, 75] and others. For example, electro-magnetics and acoustics are two application

areas that study linear wave propagation. There has also been a great deal of work con-
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ducted in applying high-order DG methods to the inviscid Euler equations such as the work

of references [23,27,33,111] and many others. The focus of this work has been high-order DG

methods for non-linear Navier-Stokes problems which contain both convection and diffusion

terms. It was demonstrated that DG can be as robust as low-order finite volume methods

for a large variety of flow problems. Furthermore, the presented DG solver has proven to

be very efficient when employing both low and high discretization orders compared to a

finite-volume solver.

Several challenging application areas were considered in this work, including high speed

flow applications. This work has quantitatively shown that, while from a robustness point

of view a high-order solver must be able to capture shock waves using high discretization

orders, capturing shock waves using this approach is not the most effective way to obtain

accurate results. In terms of efficiency and robustness, it has been shown that employing

low discretization order in the vicinity of the shock wave combined with mesh refinement

is simultaneously more efficient and more robust. However, when considering a flow with

both smooth features and shock waves, hp-adaptation has proven to be accurate, efficient

and robust by targeting smooth features with high discretization order and shock waves with

mesh refinement. Recent work [39] has advocated the use of so-called sub-cell shock wave

resolution. The method of reference [34] is an example of a shock capturing technique that is

capable of sub-cell shock wave resolution. This work has shown that attaining sub-cell shock

wave resolution lacks robustness and is not necessarily more accurate than super-cell shock

wave resolution. Therefore focus should shift from shock capturing for high-order methods to

shock refinement for high-order methods. This work has presented isotropic mesh refinement

as one possible refinement option. However, other mesh refinement options exist, such as

anisotropic mesh movement/refinement and r-adaptation.

The subject of viscous flows leaves a somewhat less definitive conclusion. While for

laminar flows DG has proven to be robust and superbly efficient at high-order accuracy,

the results for turbulent flows, modeled using the RANS equation, are less encouraging. It

was shown that increasing mean flow discretization order yields excellent agreement with

experiment and smooth surface pressure and skin friction profiles. However, quantitative
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error estimation is inaccurate due to the turbulence model working variable irregularity or

non-smooth behavior. Furthermore, while this hybrid discretization has proven to be ro-

bust and allows for the possibility of functional grid convergence, mesh refinement becomes

excessive due to the first-order accurate turbulence model discretization. The results demon-

strated that the turbulence model discretization error has a significant impact on complex

high-lift flows. Unfortunately, the current generation of turbulence models are not amenable

to high-order discretization, making efficient discretization error reduction difficult. In con-

clusion, a new generation of turbulence models that are developed around more rigorous

discretization methods such as DG will be required before demonstrable high-order accuracy

will be attained for RANS flows. Furthermore, high-order DG discretizations may be more

appropriately combined with Large Eddy simulations (LES) for turbulent flows.

9.2 Contributions to the Field

In summary this work has contributed the following to the field of computational fluid

dynamics.

• Non-conforming hp-adaptation for viscous flows

Although, adjoint-based refinement methods have been used in the past, this work

presents the first demonstration of the application of adjoint-based refinement meth-

ods on non-conforming mixed element meshes with hp-adaptation for viscous flows. It

was shown that this type of adaptation is very effective and does not result in a loss

of accuracy for a large variety of viscous flows including airfoils and shocked flows.

Furthermore, this work introduced the idea of hp-adaptation and appropriate refine-

ment as both a method to increase solver efficiency and a method to increase solver

robustness. This is a unique view point on hp-adaptation as a so called ”bottom-up”

limiting approach.

• Error estimation under solution irregularity

This work made extensive use of adjoint based-error estimates and a great deal of effort
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was focused on obtaining error estimates that were accurate and provided adequate

functional corrections. The dual consistency of the artificial diffusion operator was

discussed at length and constraints on the form of the artificial viscosity were obtained

based on the dual consistency analysis. For shocked flows it was demonstrated that

artificial viscosity was able to sufficiently regularize the solution so that functional error

estimates are not corrupted by Gibbs phenomena in the fine level residual estimate.

Many authors [20,45] get around the irregular residual issue by using the so-called dual

error estimate (εa in equation (5.2.10)). This strategy has been avoided because this

error estimate is not a true representation of functional error, instead it is a measure

of duality error. It was desired that the adaptive refinement strategy target functional

error directly and controlling the fine level residual estimate is a more direct way to

achieve accurate error estimates and drive adaptive mesh refinement.

• Critical study of high-order shock capturing

Shock capturing using high-order discretizations was discussed at length in this work.

Although, there were not any new shock capturing methods presented, an even more

important conclusions were drawn. While adequate techniques for capturing shock

waves with high-order discretizations already exist, this work presents the first quan-

titative analysis of the accuracy and robustness of high-order shock capturing. It was

found that employing the appropriate refinement strategy is the key to obtaining ac-

curate results for flows with shock waves. Furthermore, it was shown that attaining

sub-cell shock wave resolution is not necessarily optimal due to robustness issues. Ad-

ditionally, it was shown that the shock capturing method of reference [34], which is able

to obtain sub-cell shock wave resolution, did not produced grid converged functional

outputs as the discretization order was increased. Hence sub-cell shock wave resolution

is not necessarily more accurate than spreading shock waves over one or more elements.

Additionally, this work contains the first adaptive computation of a hypersonic viscous

flow above third-order accuracy and is the first to demonstrate optimal high-order con-

vergence rates of surface heating error for a viscous hypersonic flow. This work also

contains the first application of adjoint-based hp-adaptation to a viscous hypersonic
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flow, demonstrating the accuracy, efficiency and robustness of this approach for this

challenging test problem.

• Turbulence modeling and high-order methods

Turbulent flows also made up a large portion of the presented work, and while the

results were not optimal they were at least able to demonstrate that the DG solver

is robust for the mean flow equations. In fact, one could say that DG methods are

as or more robust than finite-volume methods, since no limiter or artificial diffusion

was used in any of the turbulent flow computations. The subject of turbulence model

non-smooth behavior was discussed at length as was the impact of this non-smooth

behavior on error estimation and solver robustness. It was found that a hybrid dis-

cretization using a first-order accurate finite-volume discretization for the turbulence

model equation and high-order DG discretization for the mean flow equations repre-

sents a viable option for a robust DG based turbulent flow solver. The robustness

improvement was sufficient to allow for the first DG simulation of the 30P30N high-lift

multi-element airfoil configuration, which is a milestone in making DG discretizations

the basis of a practical aerodynamic analysis tool.

In summary, this work has shown that DG methods can be made robust and efficient for

CFD applications. Furthermore, enhancing the robustness of DG methods has not adversely

impacted the accuracy for most of the examples presented in this work. The robustness of

the present DG solver is demonstrated by its application to large variety of challenging flow

problems.

9.3 Future Work

The results of this thesis are very encouraging and show promise for applying high-order DG

discretizations to enhance CFD simulation fidelity in a variety of application areas. Some

potential future work directions are outlined below:

• Three-dimensional problems
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Since the recipe for a robust high-order accurate DG discretization based flow solver

is now in hand, the next area of future work will be to write a three-dimensional

version of the current solver. Due to the difficulties encountered with RANS turbulence

models, one is tempted to consider studying the applicability of high-order methods

to Large Eddy Simulation(LES), which requires a three-dimensional solver in order to

adequately capture the turbulent physics. However, there are significant challenges

associated with a three-dimensional solver. At present the two-dimensional solver

stores the full flux Jacobian matrix which contains large dense blocks. The block size

scales as (NfM)2d where d is number of spatial dimensions, Nf is the number PDEs in

the system, and M is the number degrees of freedom within each element. Increasing

d from 2 to 3 makes the matrices large and very expensive to factorize. Furthermore,

the number of unknowns and quadrature cost scale poorly in three-dimensions as well.

However, for hexahedral elements an efficient tensor product nodal basis set can be

used. In this case, the residual scaling cost goes from Md to dM which is a significant

improvement. Efficient basis sets on non-hexahedral elements will be the subject of

future research, in order to develop the most efficient three-dimensional implementation

possible.

• LES and hybrid RANS/LES formulations

Since the non-smooth behavior of RANS turbulence models causes such difficulty for

computing turbulent flows, LES becomes an attractive alternative. Often times there

is no model PDE to be solved for LES, which can make turbulence model non-smooth

behavior a non-issue, at least for preliminary testing of LES and high-order methods.

Eventually new turbulence models will need to be developed, such that the turbulence

model is free of non-smooth behavior and appropriate for use with next generation

numerical methods. This new turbulence model will probably take the form of a hybrid

RANS/LES model to facilitate very high Reynolds number applications Re ≥ 106.

This area of future work is obviously very closely tied with the development of a three-

dimensional solver. As far as LES is concerned, a possible immediate application of

high-order methods for LES flows employs the so called implicit LES method (ILES),
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which uses no turbulence model. A sample two-dimensional ILES calculation is shown

in Figure 9.1, which shows that high-order DG discretizations can capture multiple

scales of the flow.

• Rotorcraft and Wind Energy

Two of the most challenging aerospace CFD problems currently under consideration

are rotorcraft and wind turbine aerodynamics. These application areas are true multi-

physics problems because fluids, structures, and dynamics are all inherently coupled.

These types of flows also require very high resolution, and adaptive refinement has been

shown to be beneficial for the off-body wake capturing [112]. Future work will consist

of using DG for these types of computations especially for the off-body wake capturing,

where currently hundreds of millions of unknowns are used to capture the wakes from

these complex applications. Additionally, these applications are an example where

current turbulence models do not perform adequately. These application areas provide

motivating problems for the investigation of the relationship between discretization

error and turbulence modeling

• Real Gas Hypersonic Flows

Based on the initial success with computing perfect gas hypersonic flows presented in

this work, the extension to real gas hypersonic flows is a another area of future research.

In hypersonic flows the temperature is sufficiently high, that gases dissociate and react

with one another in the shock layer. The extension of the present method to include

these effects represents another area of potential research. Real gas flows involve solving

scalar transport equations for the various species that are generated by the chemical

reactions, which results in significantly more equations to solve. However the reaction

zones add additional smooth phenomena that can benefit from higher-order methods.

• Time-accurate hp-adaptation

An avenue of additional fundamental research consists of extending the steady-state

hp-adaptation method to a time-accurate hp-adaptation method, allowing for refining
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and de-refining in time as necessary. When considering time-accurate flows one should

also consider temporal refinement and variable algebraic error levels. These sources

of error have been considered in a finite-volume setting in reference [19]. Temporal

refinement for high-order DG methods has also been considered in [59]. Future work

will build on the work of these references to develop an adjoint-based hp-adaptation

strategy for time-accurate viscous flows. The hp-adaptation strategy will include: spa-

tial hp-adaptation in a time-accurate setting as well as temporal hp-adaptation within

the same framework. This type of approach should provide significant efficiency and

robustness for computing time-accurate viscous flows and LES computations.

Figure 9.1: Entropy contours for the ILES flow over tandem NACA0012 airfoils using a DG dis-
cretization of order p = 4, M = .2, Re = 10, 000
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Appendix A

Derivation of the Symmetric Interior

Penalty (SIP) Method

This appendix gives a detailed derivation of the symmetric interior penalty method. The

derivation illustrates the origin of the penalty and symmetry terms which are often deemed

ad-hoc. In particular, it is shown that the symmetry term is a necessary part of the diffusion

discretization.

A.1 Model Problem

Herein the Symmetric Interior Penalty(SIP) discontinuous Galerkin(DG) method for dif-

fusion problems is derived. As a model problem consider a Poisson equation with a non

constant diffusion coefficient given by:

∇ · (D(x, u)∇u) = −f ~x ∈ Ω (A.1.1)

where D(x, u) is the diffusion coefficient. For a system of equations such as the Navier-Stokes

equations things become a bit more complicated to write down, however the basic formula is

the same. In fact, the viscous fluxes of the Navier stokes equations are the same as the model

equation, with the exception that D(x, u) becomes a block matrix that is only a function of

u.
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A.1.1 Mixed Finite-Element Method

Let the domain Ω be divided in N non-overlapping elements denoted as Th such that

Ω =
N⋃
k=1

Ωk k ∈ Th (A.1.2)

On each element in Th define the following discontinuous function spaces, in which solutions

and gradients reside.

Vph :=
{
vh ∈ L2 (Ωh) : v|e ∈ P n (k)∀k ∈ Th

}
~Gph :=

{
~gh ∈

[
L2 (Ωh)

]d
: ~g|e ∈ P n (k)∀k ∈ Th

} (A.1.3)

The discretization is given by introducing a test function vh ∈ Vhp and taking the inner

product of this test function and equation (A.1.1). The DG discretization of equation A.1.1

in the domain Ω is given by: find uh ∈ V p
h such that∑

k∈Th

∫
Ωk

vh∇ · (D(x, uh)∇uh) dΩk = −
∑
k∈Th

∫
Ωk

vhfdΩk ∀vh ∈ Vph (A.1.4)

It is not straight forward to approximate the diffusion operator in a discontinuous function

space such as Vph. However, it is clear how to discretize the advection operator in a dis-

continuous space and thus an auxiliary variable for the gradient will be introduced, which

effectively recasts the diffusion equation in equation (A.1.1) as two advection equations.

While it is possible solve for the auxiliary variable and use it to compute the viscous fluxes,

doing so is not an optimal method, since this method turns one equation into two equations.

Therefore, the auxiliary variable is introduced solely as a method of manipulating the equa-

tions and is never explicitly computed in the SIP method. However, significant insight into

how the SIP method is derived and how SIP compares to other DG diffusion discretizations

is gained by considering the auxiliary variable formulation introduced above. Introduction of

the auxiliary variable ~z = ∇u gives the finite-element problem as: find uh ∈ Vph and ~zh ∈ ~Gph
such that ∑

k∈Th

∫
Ωk

vh∇ · (D(x, uh)~zh) dΩk = −
∑
k∈Th

∫
Ωk

vhfdΩk ∀vh ∈ Vph∑
k∈Th

∫
Ωk

~gh · ~zhdΩk =
∑
k∈Th

∫
Ωk

~gh · ∇uhdΩk ∀~gh ∈ ~Gph
(A.1.5)
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where the (̂·) denotes a numerical flux of the given quantity. Integration by parts results in

a weak form of the governing equations, which is used to derive a fully discrete system. The

weak form is given by:∑
k∈Th

(
−
∫

Ωk

∇vh · (D(x, uh)~z) dx+

∮
∂Ωk

vh ̂(D(x, uh)~z) · ~nds
)

=

−
∑
k∈Th

∫
Ω

vhfdx ∀vh ∈ Vph

∑
k∈Th

∫
Ωk

~gh · ~zdx =
∑
k∈Th

(
−
∫

Ωk

∇ · ~ghuhdx+

∮
∂Ωk

~ghûh · ~nds
)
∀~gh ∈ ~Gph

(A.1.6)

It is now convenient to introduce the following average and jump operators for both vector

and scalar quantities. The average operator for a scalar φ and vector ~χ is defined by:

{φ} =
1

2

(
φ+ + φ−

)
{~x} =

1

2

(
~χ+ + ~χ−

) (A.1.7)

with the scalar and vector jump operators given by:

φ =
(
φ+ − φ−

)
~n

J~xK =
(
~χ+ − ~χ−

)
· ~n

(A.1.8)

respectively. Note that the jump in a scalar quantity is a vector and the jump in a vector

quantity is a scalar. Using these operators in equation (A.1.6) is re-written in a face-based

integration form, given by:

−
∑
k∈Th

∫
Ωk

∇vh · (D(x, u)~z) dΩk +
∑
i∈Ih

∫
Γi

JvhK · ̂(D(x, uh)~z)ds+

∑
b∈Bh

∫
Γb
vh ̂(D(x, ub)~z)b · ~nds = −

∑
k∈Th

∫
Ωk

vhfdΩk ∀vh ∈ Vph∑
k∈Th

∫
Ωk

~gh · ~zhdΩk = −
∑
k∈Th

∫
Ωk

∇ · ~ghuhdΩk +
∑
i∈Ih

∫
Γi

J~ghKûhds+

∑
b∈Bh

∫
Γb
~ghûb · ~nds ∀~gh ∈ ~Gph

(A.1.9)

Before proceeding with the SIP derivation two identities are required:
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Identity 1. (
αh~βh · ~n

)+

+
(
αh~βh · ~n

)−
= {αh} J~βhK +

{
~βh

}
JαhK

Proof: Let the average and jump operators be defined as previously. Then

{αh} J~βhK +
{
~βh

}
JαhK =

α+
h + α−h

2

[(
~βh · ~n

)+

+
(
~βh · ~n

)−]
+
~β+
h + ~β−h

2
·
[
(αh~n)+ + (αh~n)−

]
Then ~n− = −~n+ = −~n.

α+
h + α−h

2

[(
~βh · ~n

)+

+
(
~βh · ~n

)−]
+
~β+
h + ~β−h

2

[
(αh~n)+ + (αh~n)−

]
=

α+
h
~β+
h · ~n
2

− α+
h
~β−h · ~n
2

+
α−h

~β+
h · ~n
2

− α−h
~β−h · ~n
2

+
~β+
h · α+

h ~n

2
−
~β+
h · α−h ~n

2
+

~β−h · α+
h ~n

2
−
~β−h · α−h ~n

2
= α+

h
~β+
h · ~n− α−h ~β−h · ~n =

(
αh~βh · ~n

)+

+
(
αh~βh · ~n

)−

Identity 1 is used to prove the following identity, which is a key component of the SIP

derivation.

Identity 2.∑
k∈Th

∫
Ωk

αh∇ · ~βh + ~βh · ∇αhdΩk =
∑
i∈Ih

∫
Γi
{αh} J~βhK +

{
~βh

}
JαhKds+

∑
b∈Bh

∫
Γb
αh~βh · ~nds

Proof: Begin by considering∑
k∈Th

∫
Ωk

αh

(
∇ · ~βh

)
+ ~βh · ∇αhdΩk =

∑
k∈Th

∫
Ωk

∇ ·
(
α~βh

)
dΩk

Integrating by parts∑
i∈Ih

∫
Γi

[(
αh~βh · ~n

)+

+
(
αh~βh · ~n

)−]
ds+

∑
b∈Bh

∫
Γb
αh~βh · ~nds

which by employing Identity 1 is

=
∑
i∈Ih

∫
Γi
{αh} J~βhK +

{
~βh

}
JαhKds+

∑
b∈Bh

∫
Γb
αh~βh · ~nds

This completes the proof.
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Now the flux for the solution uh must be specified. For the SIP method the flux of ûh

is given by:

ûh = {uh}

ûb = ub

(A.1.10)

which leaves the flux of ~zh to be specified. The definition of the flux of ~zh is the term that

generates various DG diffusion schemes. Inserting the definition of ûh in to equation (A.1.9)

results in the following.

−
∑
k∈Th

∫
Ωk

∇vh · (D(x, u)~z) dΩk +
∑
i∈Ih

∫
Γi

JvhK · ̂(D(x, uh)~z)ds+

∑
b∈Bh

∫
Γb
vh ̂(D(x, ub)~z)b · ~nds = −

∑
k∈Th

∫
Ωk

vhfdΩk ∀vh ∈ Vph∑
k∈Th

∫
Ωk

~gh · ~zhdΩk = −
∑
k∈Th

∫
Ωk

∇ · ~ghuhdΩk +
∑
i∈Ih

∫
Γi

J~ghK {uh} ds+

∑
b∈Bh

∫
Γb
~ghub · ~nds ∀~gh ∈ ~Gph

(A.1.11)

Using Identity 2 one can re-write the second of equation (A.1.11) in a more convenient form,∑
k∈Th

∫
Ωk

~gh · ~zhdΩk =
∑
k∈Th

∫
Ωk

~gh · ∇uhdΩk −
∑
i∈Ih

∫
Γi
{~gh} · JuhKds−

∑
b∈Bh

∫
Γb
~gh · (uh − ub)~nds ∀~gh ∈ ~Gph

(A.1.12)

which gives the final system of equations before the flux of ~zh is specified.

−
∑
k∈Th

∫
Ωk

∇vh · (D(x, uh)~zh) dΩk +
∑
i∈Ih

∫
Γi

JvhK · ̂(D(x, uh)~zh)ds+

∑
b∈Bh

∫
Γb
vh ̂(D(x, uh) (~z)b) · ~nds =

∑
k∈Th

∫
Ωk

vhfdΩk ∀vh ∈ Vph∑
k∈Th

∫
Ωk

~gh · ~zhdΩk =
∑
k∈Th

∫
Ωk

~gh · ∇uhdΩk −
∑
i∈Ih

∫
Γi
{~gh} · JuhKds−

∑
b∈Bh

∫
Γb
~gh · (uh − ub)~nds ∀~gh ∈ ~Gph

(A.1.13)

From this point many diffusion schemes such as BR1 [113], BR2 [73] and SIP [54–56] can be

derived.
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A.1.2 Symmetric Interior Penalty Method

The Symmetric Interior Penalty (SIP) method is a special case of the general mixed finite-

element method. The SIP method is given by first specifying the numerical flux terms as

̂(D(x, uh)~z) = {D(x, uh)∇uh} − {D(x, uh)νJuhK} = {D(x, uh)∇uh} − ν {D(x, uh)} JuhK

ûh = {uh}
̂(D(x, ub)zb) = D(x, ub)∇u+

h − νD(x, ub) (uh − ub)~n
(A.1.14)

where (̂·)b denotes a numerical flux on the boundary and ν denotes the penalty parameter.

The auxiliary variable ~zh is still present in the volume integral and must be eliminated

from the system of equations. In order to eliminate the auxiliary variable ~zh from the volume

integral, substitute ~gh = D(x, u)∇vh into equation (A.1.13). Upon making this substitution

one can see that the term involving the auxiliary variable in the volume integral can be

replaced by the term in the second of equation (A.1.13).∑
k∈Th

∫
Ωk

~gh · ~zhdΩk =
∑
k∈Th

∫
Ωk

~gh · ∇uhdΩk −
∑
i∈Ih

∫
Γi
{~gh} · JuhKds−

∑
b∈Bh

∫
Γb
~gh · (uh − ub)~nds =

∑
k∈Th

∫
Ωk

D(x, u)∇vh · ~zhdΩk =

∑
k∈Th

∫
Ωk

D(x, u)∇vh · ∇uhdΩk −
∑
i∈Ih

∫
Γi
{D(x, u)∇vh} · JuhKds−

∑
b∈Bh

∫
Γb
D(x, u)∇vh · (uh − ub)~nds ∀~gh ∈ ~Gph

−
∑
k∈Th

∫
Ωk

D(x, u)∇vh · ~zhdΩk =

−
∑
k∈Th

∫
Ωk

D(x, u)∇vh · ∇uhdΩk +
∑
i∈Ih

∫
Γi
{D(x, u)∇vh} · JuhKds+

∑
b∈Bh

∫
Γb
D(x, u)∇vh · (uh − ub)~nds ∀~gh ∈ ~Gph

(A.1.15)

The resulting additional terms in the surface integrations are known as the symmetrizing or

symmetry terms. Although many methods are given in the literature that do not contain

these terms, it is clear from this derivation that in order for the discretization to correspond to
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a mixed finite-element method this term is required. Furthermore, it can be shown that the

method will only be dual consistent if the symmetry terms are present [49]. Dual consistency

is a requirement if the method is to yield optimal output functional accuracy as shown in

equation (3.3.12). The final expression for the SIP method is given by:

−
∑
k∈Th

∫
Ωk

∇vh · (D(x, uh)∇uh) dΩk+

∑
i∈Ih

∫
Γi

JvhK · {D(x, uh)∇uh}+ {D(x, uh)∇vh} · JuhK− JvhK · ν {D(x, uh)} JuhKds+

∑
b∈Bh

∫
Γb
v+
hD(x, ub)∇u+

h · ~n+D(x, ub)∇v+
h · (uh − ub)~n−

v+
h νD(x, ub) (uh − ub)~n · ~nds = −

∑
k∈Th

∫
Ω

vhfdx ∀vh ∈ Vph

(A.1.16)

The value of the penalty parameter ν is only required to be large enough to enforce the

coercivity of the bi-linear form. The following expression has been used for all examples in

this work. The derivation of this value of penalty parameter was conducted by K. Shahbazi

in reference [54]. In short the expression for ν on an interface is

ν = max

(
M+ |∂Ω+

k |
|Ω+

k |
,M− |∂Ω−k |

|Ω−k |

)
(A.1.17)

Where M± is the number of modes, |Ω|± is the element area, and |∂Ω|± is the element

perimeter on each side of the interface.

This method is used successfully for Laplace equations, the Navier-Stokes equations,

non-linear Laplace like equations (from RANS models) and artificial diffusion methods for

shock capturing. All diffusion discretizations in this work use the SIP method with the value

of penalty parameter in equation (A.1.17) for the discretization of diffusion operators.

A.2 SIP for Navier-Stokes

The derivation of the SIP method for the Navier-Stokes equations is straight forward. Con-

sider the Navier-Stokes flux from equation (2.1.3), which is linear in gradients.

~Fv (u,∇u) = [G (u)]∇u (A.2.1)
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This notation can be a bit confusing so the terms on the right hand side of equation (A.2.1)

are explicitly written out. Consider the viscous flux in the ith coordinate direction, which is

written as

([G (u)]∇u)i =
∑
j=1..3

[Gij (u)]
∂u

∂xj
(A.2.2)

where [Gij (u)] is an Nf×Nf matrix(5×5 for three-dimensional laminar Navier-stokes) where

Nf is the number of PDEs in the system. Thus the full matrix [G (u)] for a three-dimensional

flow is given by:

[G (u)] =


[G11 (u)] [G12 (u)] [G13 (u)]

[G21 (u)] [G22 (u)] [G23 (u)]

[G31 (u)] [G32 (u)] [G33 (u)]

 (A.2.3)

Now that some clarity has been shed on the notation, consider the discretization of just the

viscous fluxes of the Navier-Stokes equations. Note that the flux terms are part of a set

of equations and thus = signs denote equality of one term to another. New discontinuous

function spaces that are defined for a system of equations are given by:

Vp
h :=

{
vh ∈ L2 (Ωh) : v|e ∈ P n (k)∀k ∈ Th

}
~Gp
h :=

{
~gh ∈

[
L2 (Ωh)

]d
: ~g|e ∈ P n (k)∀k ∈ Th

} (A.2.4)

The discretized viscous flux is then∑
k∈Th

∫
Ωk

vTh∇ · ~Fv (uh,∇uh) dΩk =
∑
k∈Th

∫
Ωk

vTh∇ · ([G (uh)]∇uh) dΩk ∀vh ∈ Vp
h (A.2.5)

which is recast as a mixed finite-element method.∑
k∈Th

∫
Ωk

vTh∇ · ([G (uh)]~zh) dΩk ∀vh ∈ Vp
h∑

k∈Th

∫
Ωk

~gTh · ~zhdΩk =
∑
k∈Th

∫
Ωk

~gTh · ∇uhdΩk ∀~gh ∈ ~Gp
h

(A.2.6)
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This new system of equations is integrated by parts to yield:∑
k∈Th

∫
Ωk

vTh∇ · ([G (uh)]~zh) dΩk = −
∑
k∈Th

∫
Ωk

∇vTh · ([G (uh)]~zh) dΩk+

∑
i∈Ih

∫
Γi

JvhKT · ̂([G (uh)]~zh)ds+
∑
b∈Bh

∫
Γb

v+
h
T
~n · ([G (ub)]~zb) ds ∀vh ∈ Vp

h∑
k∈Th

∫
Ωk

~gTh · ~zhdΩk = −
∑
k∈Th

∫
Ωk

∇ · ~gThuhdΩk+

∑
i∈Ih

∫
Γi

J~ghKT ûhds+
∑
b∈Bh

∫
Γb

ûn~g
T
h · ~nds ∀~gh ∈ ~Gp

h

(A.2.7)

The second of equations A.2.7 is manipulated in exactly the same way as the Poisson equa-

tion. In fact, Identity 2 holds for each equation in the system independently. Thus defining

ûh = {uh}

ûb = ub

(A.2.8)

and using Identity 2, the following mixed FEM system is obtained.∑
k∈Th

∫
Ωk

vTh∇ · ([G (uh)]~zh) dΩk = −
∑
k∈Th

∫
Ωk

∇vTh · ([G (uh)]~zh) dΩk+

∑
i∈Ih

∫
Γi

JvhKT · ̂([G (uh)]~zh)ds+
∑
b∈Bh

∫
Γb

v+
h
T
~n · ([G (ub)]~zb) ds ∀vh ∈ Vp

h∑
k∈Th

∫
Ωk

~gTh · ~zhdΩk =
∑
k∈Th

∫
Ωk

∇ · ~gThuhdΩk −
∑
i∈Ih

∫
Γi
{~gh}T JuKhds−

∑
b∈Bh

∫
Γb
~gTh (uh − ub) · ~nds ∀~gh ∈ ~Gp

h

(A.2.9)

As with the Poisson equation the numerical fluxes for the terms involving ~zh are defined by:

̂([G (uh)]~zh) = {[G (uh)]∇uh} − ν {[G (uh)] JuhK} =

{[G (uh)]∇uh} − ν {[G (uh)]} JuhK

ûh = {uh}
̂([G (ub)] zb) = [G (ub)]∇u+

h − ν [G (ub)] (uh − ub)~n

(A.2.10)

293



With the fluxes of the auxiliary variables defined the discretization of the Navier-Stokes flux

can be written explicitly as:∑
k∈Th

∫
Ωk

vTh∇ · ([G (uh)]~zh) dΩk = −
∑
k∈Th

∫
Ωk

∇vTh · ([G (uh)]~zh) dΩk+

∑
i∈Ih

∫
Γi

JvhKT · {[G (uh)]∇uh} − JvhKT · ν {[G (uh)]} JuhKds+

∑
b∈Bh

∫
Γb

v+
h
T
~n · [G (ub)]∇u+

h − v+
h
T
ν [G (ub)] (uh − ub)~n · ~nds ∀vh ∈ Vp

h∑
k∈Th

∫
Ωk

~gTh · ~zhdΩk =
∑
k∈Th

∫
Ωk

∇ · ~gThuhdΩk −
∑
i∈Ih

∫
Γi
{~gh}T JuhKds−

∑
b∈Bh

∫
Γb
~gTh (uh − ub) · ~nds ∀~gh ∈ ~Gp

h

(A.2.11)

As with the Poisson equation the auxiliary variable ~zh is eliminated by using the auxiliary

equation and substituting ~gTh = [G (uh)]
Tblock ∇vh. Applying this substitution results in the

final from of the SIP numerical flux for the Navier-Stokes equations.∑
k∈Th

∫
Ωk

vTh∇ · ([G (uh)]~zh) dΩk = −
∑
k∈Th

∫
Ωk

∇vTh · ([G (uh)] ~uh) dΩk+

∑
i∈Ih

∫
Γi

JvhKT · {[G (uh)]∇uh}+
{

[G (uh)]
Tblock ∇vh

}
· JuhK−

JvhKT · ν {[G (uh)]} JuhKds+∑
b∈Bh

∫
Γb

v+
h
T
~n · [G (ub)]∇u+

h + [G (ub)]
Tblock ∇v+

h · (uh − ub)~n−

v+
h
T
ν [G (ub)] (uh − ub)~n · ~nds ∀vh ∈ Vp

h

(A.2.12)

This defines the SIP flux for the Navier-Stokes equations. Notice that the symmetry term

is not at all ad-hoc. In fact, it comes from a mixed finite-element method, which is where

other DG diffusion schemes such as LDG [114],BR1 [113], and BR2 [73] have their roots.

As a final note the []Tblock is often a source of confusion for DG diffusion discretizations.

Consider the [G (uh)] for the three-dimensional Navier-Stokes equations given in equation
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(A.2.3), the block transpose of this is

[G (u)]Tblock =


[G11 (u)] [G21 (u)] [G31 (u)]

[G12 (u)] [G22 (u)] [G32 (u)]

[G13 (u)] [G23 (u)] [G33 (u)]

 (A.2.13)

with no transpose of the blocks themselves.

A.2.1 Implementing SIP for Navier-Stokes

While the presented formulas are general, these formulas can be confusing for a first time

reader. It is helpful to clarify the formulas by giving an example of the full detailed expansion

of the SIP flux.

The flux on the interior interfaces is given by:

Hv = JvhKT ·{[G (uh)]∇uh}+
{

[G (uh)]
Tblock ∇vh

}
·JuhK−JvhKT ·ν {[G (uh)]} JuhK (A.2.14)

For two dimensional flow this can be written as

Hv = JvhKT · {(Fx
v (uh,∇uh) ,F

y
v (uh,∇uh))}+{(

[G11]
∂vh
∂x

+ [G21]
∂vh
∂y

, [G21]
∂vh
∂x

+ [G22]
∂vh
∂y

)}
· JuhK+

JvhKT · ν {([G11] ∆uhnx + [G12] ∆uhny, [G21] ∆uhnx + [G22] ∆uhny)}

∆uh =
(
u+
h − u−h

)
(A.2.15)

This expression defines the SIP flux on an interior boundary. However, this is not how the

SIP flux is implemented within the solver. Careful inspection of equation (A.2.15) reveals

that this expansion is more complicated than necessary. In fact, the SIP flux can be written

without any reference to the [G] matrix. Recall equation (A.2.1), which shows that the

viscous flux is linear in solution gradients hence equation (A.2.15) is written in a very simple

form as:

Hv = JvhKT · {(Fx
v (uh,∇uh) ,Fy

v (uh,∇uh))}+

{(Fx
v (uh, JuhK) ,Fy

v (uh, JuhK)) · ∇vh}

JvhKT · {(Fx
v (uh, νJuhK) ,Fy

v (uh, νJuhK))}

(A.2.16)
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which is further compacted into

Hv = JvhKT ·
{
~Fv (uh,∇uh)

}
+
{
~Fv (uh, JuhK) · ∇vh

}
+ JvhKT ·

{
~Fv (uh, νJuhK)

}
(A.2.17)

which is an expression for any number of equations and dimensions. This is how the SIP

flux is implemented in the most efficient and straight forward manner. This form makes it

easy for one to compute the flux and also to linearize the flux to obtain the flux Jacobian

used in implicit solvers.

The boundary viscous flux is written in an analogous form

Hb
v = v+

h
T ~Fv

(
ub,∇u+

h

)
·~n+~Fv (ub, (uh − ub)~n)·∇v+

h +v+
h
T ~Fv (ub, ν (uh − ub)~n)·~n (A.2.18)

which is derived via an analogous proceedure to the one used for the interior flux. Notice

that this form of the SIP flux is especially simple and shows the elegance of the SIP method.

The SIP method is not as ad-hoc as it might seem upon initial inspection. Rather, the SIP

method is the result of very clever choices of the numerical fluxes of a mixed finite-element

method. Furthermore, the symmetry terms are not an arbitrary addition to the SIP flux,

but rather a necessary component of the SIP flux based on the derivation presented. While

the derivation of the SIP method is detailed, the stability properties of the SIP method have

not been discussed. Reference [54] presents an excellent discussion of stability and coercivity

of the SIP discretization for Poisson’s equation.
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Appendix B

Spalart Allmaras Modifications for

Negative Values

In this work the Reynolds Averaged Navier-Stokes (RANS) equations are closed using the

turbulence model of Spalart and Allmaras (SA turbulence model) [41]. Due to the non-

smooth behavior of high-order DG discretizations of the SA turbulence model, this work

utilizes modifications of the SA turbulence model source terms. These modifications were

initially presented in reference [20] and are designed to help stabilize the turbulence model

when negative values of the turbulence model working variable ν̃ are encountered. Reference

[20] has proven, in an energy norm sense, that these modifications represent an energy stable

turbulence model. However, even with the modifications, negative values of ν̃ induce strong

transients that can easily cause the steady-state Newton solver to fail.

In the experiences of this work, the solver will often fail if DG discretizations of the SA

turbulence model equation are employed for more challenging flows even with the modified

source terms. The experience gained in this work has demonstrated that the turbulence

model working variable values must remain positive to prevent solver failure. While the

modifications to the source terms aided a small amount in preventing solver failure for flat

plate and simple airfoil flows, the modifications are insufficient to make high-order DG dis-

cretizations of the turbulence model equation truly robust. In this section the modifications

of the turbulence model source terms are discussed and it is shown what the behavior of the
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source terms are for negative ν̃ both with and without the modifications. Full details of the

original form of the SA model are given in reference [41].

B.1 Modified Spalart Allmaras Model

The equation for the modified SA turbulence model is given by:

∂ρν̃

∂t
+∇ · (ρν̃~u) = P (u,∇u) +

1

σ
[∇ · (η∇ν̃) + cb2ρ∇ν̃ · ∇ν̃]−D (u,∇u) (B.1.1)

where ν̃ is the SA or turbulence model working variable, ρ is the density, ~u is the velocity field

vector, η is modified diffusion coefficient, P (u,∇u) is the production source term, D (u,∇u)

is the destruction source term, d is the distance to the closest wall and the term multiplied

by 1
σ

is the diffusion term. Additionally, σ and cb2 are turbulence model constants with the

values of these constants specified below. The modified diffusion coefficient is given by:

η =

 (µ+ ρν̃) ρν̃ ≥ 0(
µ+ ρν̃ + (ρν̃)2

µ

)
ρν̃ < 0

(B.1.2)

which is designed to remain positive regardless of the sign of ν̃. The modified production

term P (u,∇u) is given by:

P (u,∇u) =

 cb1S̃ρν̃ χ ≥ 0

cb1Sρν̃g χ < 0

gn = 1− 1000χ2

1 + χ2

χ =
ρν̃

µ

(B.1.3)

with S̃ given according to

S̃ =

 S + S̄ S̄ ≥ −cv2S

S +
S(c2v2S+cv3 S̄)
(cv3−2cv2)S−S̄

S̄ < −cv2S
(B.1.4)
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S =
√
~ω · ~ω

S̄ =
ν̃2fv2

κ2d2

fv1 =
χ3

χ3 + c3
v1

fv2 = 1− χ

1 + χfv1

(B.1.5)

where ~ω is the vorticity vector. The modified destruction term is

D (u,∇u) =

 cw1ρfw
(
ν̃
d

)2
χ ≥ 0

−cw1ρ
(
ν̃
d

)2
χ < 0

r =
ν̃

S̃κ2d2

g = r + cw2

(
r6 − r

)
fw = g

[
1 + c6

w3

g6 + c6
w3

]1/6

(B.1.6)

where the turbulence model constants are cb1 = 0.135, cb2 = 0.622, σ = 2/3, κ = 0.41,

cw1 =
cb1
κ2 +

1+cb2
σ

, cw2 = 0.3, cw3 = 2, cv1 = 7.1, cv2 = 0.7, and cv3 = 0.9. Lastly the turbulent

eddy viscosity µT is given by:

µT =

 ρν̃fv1 ν̃ ≥ 0

0 ν̃ < 0
(B.1.7)

For reference the original form of the turbulence model from reference [41] is given by:

So (u,∇u) = Po −Do (B.1.8)

The source terms Po and Do are the original production and destruction source terms re-

spectively and are given by:

Po = cb1S̃ρν̃

Do = cw1ρfw

(
ν̃

d

)2 (B.1.9)

Since this form of the SA turbulence model represents the original form found in [41] the

terms are denoted by ()o. The production and destruction terms are analyzed individually

and then added together to show the overall behavior of the source term under negative ν̃

conditions. Much of this analysis relies on graphical results, which are used to illustrate the

behavior of the source terms and are generated using non-dimensional groups.

299



B.2 Production Modifications

The original production term is

Po = cb1S̃ρν̃ (B.2.1)

where the S̃ is a vorticity like term, which is modified to be positive for all values of ν̃ and

C1 continuous.

S̃o = S + S̄

S̃ =

 S + S̄ S̄ ≥ −cv2S

S +
S(c2v2S+cv3 S̄)
(cv3−2cv2)S−S̄

S̄ < −cv2S

S̄ =
ν̃2fv2

κ2d2

S =

∣∣∣∣∂u∂y − ∂v

∂x

∣∣∣∣

(B.2.2)

Where the S̄ is given by:

S̄ =
ν̃2fv2

κ2d2

fv2 = 1− χ

1 + χfvv1

fv1 =
χ3

χ3 + c3
v1

χ =
ρν̃

µ

(B.2.3)

The only component of S̃o that can be negative for ν̃ < 0 is S̄. In order to conduct a param-

eter study of the source terms and the associated modifications, non-dimensional groupings

of the turbulence model inputs are devised such that the number of non-dimensional param-

eters is two. These non-dimensional groups are chosen in order to isolate the effects of the

SA turbulence model working variable ν̃ from the other turbulence model inputs. The S̃

term has units of vorticity and is non-dimensionalized by vorticity magnitude S to give

S̃o
S

= 1 +
S̄

S

S̃

S
=

 1 + S̄
S

S̄
S
≥ −cv2

1 +
(c2v2+cv3

S̄
S )

(cv3−2cv2)− S̄S
S̄
S
< −cv2

(B.2.4)
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for both the original and modified terms. The result of non-dimesionalizing S̄ with S is

S̄

S
=

ν̃fv2

κ2d2S
=
νχfv2

κ2d2S
=
ζχfv2

κ2

ζ =
ν

d2S

ν =
µ

ρ

(B.2.5)

which gives the two non-dimensional parameters χ and ζ. χ is the non-dimensional turbu-

lence model working variable, which gives the effect of the turbulence model working variable

on the source terms. ζ is a non-dimensional grouping of the remaining inputs to the turbu-

lence model, including velocity field (S), fluid (µ), and geometric (d) inputs. The S̃ terms

(a) S̃o

S (b) S̃
S

Figure B.1: Original and modified S̃
S across the parameter space.

are shown in Figure B.1. The effect of the modification is to keep S̃ positive for all values of

χ. One should note that the original form of the turbulence model does not keep S̃ positive

for all positive χ, whereas the modification yields a positive S̃ for all χ, both positive and

negative. The original and modified non-dimensional production terms are given by:

Po
µS

= cb1
S̃o
S
χ

P
µS

=

 cb1
S̃
S
χ χ ≥ 0

cb1χgn χ < 0

gn = 1− 1000χ2

1 + χ2

(B.2.6)
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which are depicted graphically in Figure B.2.

As shown in Figure B.2, the modified production term becomes very strong in the

negative χ region, which results in the modified production term attempting to increase the

values of ν̃. While this modification may be mathematically stable, it is destabilizing in a

practical sense, which results from the fact that the negative values of χ occur when the

flow is starting to converge after the initial turbulence model transient. Hence when the

production term suddenly becomes very strong it induces a sudden and strong transient in

the Newton solver and causes the residual to grow. These parameter space plots in Figure

B.2 show that the presented modification to the production term is not a modification that

allows for the negative values of ν̃ to be a valid solution of the turbulence model equation.

Rather, the modification to the production term is an attempt to force ν̃ to be positive

everywhere. Unfortunately once positivity is achieved the turbulence model equation is back

in the original form, which initially caused the negative values of ν̃. While trying to force

the turbulence model working variable to be positive everywhere should be an appropriate

strategy, this strategy must be complimented by a modification to eliminate the artificial

source of the negative ν̃ values. Thus in practice the result of this modification is a very

strong transient that is overly difficult to overcome and in many cases causes solver failure for

the turbulence model discretization. This work has found this modification to the production

term insufficiently robust for the solution of complex flow problems.

B.3 Destruction Modifications

Using the same non-dimensional groupings the destruction term is defined non-dimensionally.

The only additional intermediate term that needs to be non-dimensionalized is the input r

to the destruction coefficient fw:

r =
ν̃

S̃κ2d2
=

χζ

κ2 S̃
S

(B.3.1)
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(a) Po

µS (b) P
µS

Figure B.2: Original and modified non-dimensional production source term across the parameter
space defined by ζ and χ.

which gives the coefficient of the destruction term as:

g = r + cw2(r6 − r)

fw = g

(
1 + c6

w3

g6 + c6
w3

)1/6 (B.3.2)

and the scaled destruction term as:

Do
µS

= cw1fw
ρ

µS

(
ν̃2

d2

)
= cw1fwχ

2ζ

D
µS

=

 cw1fwχ
2ζ χ ≥ 0

−cw1χ
2ζ χ < 0

(B.3.3)

Figure B.3 shows the non-dimensional destruction term across the parameter space. As with

the production term, the modification for negative χ has caused −D to become a positive

source or production term. Since positive source terms tend to try and grow the values of

the turbulence model working variable, this modification induces a strong transient in the

Newton solver and will also push the turbulence model further from convergence. Similarly

to the modified production term, when negative values of χ start to occur in the solution,

this modification destabilizes the solver due to sudden production term transient behavior.
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(a) Do

µS (b) D
µS

Figure B.3: Original and modified destruction source terms across the parameter space defined by
ζ and χ.

B.4 Full Source Term

The original and modified non-dimensional source term is depicted in Figure B.4. Compared

to the original source term the modified one is strongly productive in the negative χ region.

This production transient often causes the implicit solver to fail when trying to solve complex

flows with strong turbulence model discontinuities, such as high-lift cases. While these

modifications are designed to stabilize the turbulence model for negative χ, the result is

that the modified turbulence model is no more amenable high-order discretization than the

original version, though for a fundamentally different reason. While the negative χ region

for the original turbulence model is energy unstable the modified turbulence model is energy

stable due to the presented modifications [20]. However, the transients induced by the

modified source terms are strong enough to cause the implicit solver to fail. Furthermore,

should the modifications succeed in producing positive χ everywhere, the turbulence model

source term takes the original form. However, this original form of the turbulence model

initially generated the negative values of the turbulence model working variable. Hence

the analysis of the modifications to the production and destruction source terms does not

clearly demonstrate how these modification are increasing the robustness of the turbulence

model equation for negative values of ν̃. Rather the analysis has demonstrated that these
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modifications have the potential to induce very strong transients during the solution of the

turbulence model equation, which can cause the implicit solver to fail. In order to have a

truly robust high-order amenable turbulence model, the source of the non-smooth behavior

of the turbulence model discrete equations needs to be addressed directly.

(a) Original Full Source Term (b) Full Source Term

Figure B.4: Original and modified SA model source terms across the parameter space defined by ζ
and χ.
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Appendix C

Non-dimensionalization

Though most computational fluid dynamics (CFD) solvers utilize non-dimensional scalings

of the governing variables in order to keep the magnitudes of the computed results relatively

close together, all the equations in this work are presented in dimensional form. This form

is presented to allow the reader to apply their own non-dimensional groupings when imple-

menting the methods described within the body of the dissertation. Furthermore, showing

non-dimensional equations can sometimes add additional parameters that can become con-

fusing and lead to mistakes when implementing a particular formula. This section specifies

the non-dimensional parameters used in the CFD solver written for this work. The non-

dimensional parameters are the same as the CFL3D flow solver [66].

C.1 Non-dimensional Variables for the RANS equa-

tions

Recall the conserved variable vector u and flux vectors from equation (2.1.3). All of the

flow field variables in these equations need to be suitable non-dimensionalized. The non-

dimensional flow field variables are given by defining a suitable reference state, which is used

to scale the flow field quantities. The reference state in this work consists of defining the

reference velocity uref , density ρref , temperature Tref , viscosity µref at the free-stream ()∞
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state as:

ρref = ρ∞

uref = a∞

Tref = T∞

µref = µ∞

(C.1.1)

Additionally, a reference length Lref is defined as an input to the solver. Let (̄) denote a non-

dimensional flow field quantity. The non-dimensional flow field and free-stream quantities

are given as:

ρ̄ =
ρ

ρ∞
ρ̄∞ = 1

ū =
u

a∞
ū∞ = M∞ cosα

v̄ =
v

a∞
v̄∞ = M∞ sinα

P̄ =
P

ρ∞a2
∞

P̄∞ =
1

γ

Ēt =
Et

ρ∞a2
∞

(
Ēt
)
∞ =

1

γ (γ − 1)
+
M2
∞

2

ā =
a

a∞
ā∞ = 1

T̄ =
T

T∞
T̄∞ = 1

(C.1.2)

The non-dimensional spatial and temporal coordinates are given as:

x̄ =
x

Lref
ȳ =

y

Lref

t̄ =
ta∞
Lref

(C.1.3)

The non-dimensional viscosity is given by Sutherland’s law as:

µ̄ =
µ

µ∞
= T̄

3
2

[
1 + c

T∞

T̄ + c
T∞

]
(C.1.4)

and the non-dimensional Spalart Allmaras turbulence model working variable and turbulent

eddy viscosity are given as:

ρ̄ν̃ =
ρν̃

µ∞
µ̄T =

µT
µ∞

(C.1.5)
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Additionally, the non-dimensional artificial viscosity ¯̂ε is given by:

¯̂ε =
ε̂

a∞Lref
(C.1.6)
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Appendix D

Roe Flux Function for Turbulence

Models

Solving turbulent flows using the Reynolds Averaged Navier-Stokes (RANS) equations re-

quires the discretization of one or more turbulence model equations. In this work, the

one-equation turbulence model of Spalart and Allmaras (SA) [41] is used to close the RANS

equations. Many production level solvers [5,64–66] treat the discretization of the turbulence

model in a decoupled fashion, which results in treating the convection term as though it

were a scalar transport equation evolving with a prescribed velocity field. However, this

treatment neglects the fact that the velocity field, which convects the turbulence model

quantities, is heavily influence by the turbulence model solution. Therefore, in this work the

turbulence model used to close the equations is fully coupled to the mean flow equations and

the RANS-SA system is considered as a complete system of equations. This treatment ne-

cessitates re-deriving the convective numerical flux function to include the turbulence model

equation.

D.1 Roe’s Riemann Solver for RANS-SA System

The RANS equations closed with the SA turbulence model results in a total of five PDEs.

In order to produce a stable and accurate convective discretization, the numerical flux func-
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tion must be derived for the convective terms of the five coupled equations. Consider the

convective flux vectors, originally given in equation (2.1.3), repeated here as:

Fc
x =



ρu

ρu2 + P

ρuv

u(Et + P )

ρuν̃


, Fc

y =



ρv

ρuv

ρv2 + P

v(Et + P )

ρvν̃


, (D.1.1)

Considering these flux vectors, the method of Roe and Pike [50] is used to derive a numerical

flux function for the coupled RANS-SA system. The method of Roe and Pike requires the

eigenvalues and eigenvectors of the Jacobian of the convective flux normal to an interface.

The normal flux Fc
n is given by:

Fc
n =



ρunx + ρvny

(ρu2 + P )nx + ρuvny

ρuvnx + (ρv2 + P )ny

u(Et + P )nx + v(Et + P )ny

ρuν̃nx + ρvν̃ny


(D.1.2)

The eigenvalues λ and eigenvectors K of the fully coupled RANS-SA convective flux Jacobian

are:

λ1 = ~u · ~n− a λ2 = ~u · ~n λ3 = ~u · ~n λ4 = ~u · ~n λ5 = ~u · ~n+ a

K1 =



1

u− anx
v − any
H − ~u · ~na

s


, K2 =



1

u

v

1
2

(u2 + v2)

0


, K3 =



0

−ny
nx

−uny + vnx

0


,

K4 =



0

0

0

0

1


, K5 =



1

u+ anx

v + any

H + ~u · ~na
s


,

(D.1.3)
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where ~u = (u, v) are the Cartesian velocity components, ~n = (nx, ny) is the surface normal

vector, a is the sound speed, H is the total enthalpy, and s is the scalar, which would be ñu

for the SA turbulence model equation.

Following reference [50] the numerical flux at the interface, given by the Roe and Pike

method, Hc is written as:

Hc

(
u+,u−

)
=

1

2

(
Fc

n
(
u+
)

+ Fc
n
(
u−
)

+
∑
i

α̃i

∣∣∣λ̃i∣∣∣ K̃i

(
u+ − u−

))
(D.1.4)

This expression requires the determination of the wave strength coefficients αi and the Roe

state (̃), which are determined using the following formulas:

∆u =
(
u+ − u−

)
=
∑
i

α̃iK̃i

∆Fc
n = Fc

n
(
u+
)
− Fc

n
(
u−
)

=
∑
i

α̃iλ̃iK̃i

(D.1.5)

evaluated to O (∆2). For example, it is easy to see that

∆ (ρu) = ũ∆ρ+ ρ̃∆u+O
(
∆2
)

(D.1.6)

To O (∆2), the wave strength coefficients are determined by solving the following system of

equations:

α̃1 + α̃2 + α̃5 = ∆ρ

α̃1 (ũ− ãnx) + α̃2u− α̃3ny + α̃5 (ũ+ ãnx) = ũ∆ρ+ ρ̃∆u

α̃1 (ṽ − ãny) + α̃2v − α̃3nx + α̃5 (ṽ + ãny) = ṽ∆ρ+ ρ̃∆v

α̃1 (H − (ũnx + ṽny) ã) + 1
2
α̃2 (ũ2 + ṽ2) + α̃3 (−ũny + ṽnx) +

α̃5 (H + (ũnx + ṽny) ã) = Ẽ∆ρ+ ρ̃∆E

α̃1s̃+ α̃4 + α̃5s̃ = s̃∆ρ+ ρ̃∆s


(D.1.7)

The second of equation (D.1.5), which is the jump in fluxes, is evaluated using a similar

approach, which results in a lengthy set of equations to solve for the (̃) state. The result of

solving these equations is a fully specified Roe state, as well as a definition of the numerical

flux function for the fully coupled RANS-SA system.
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The specification of the numerical flux first requires specifying the Roe state for the

RANS-SA system as:

ρ̃ =
√
ρ+ρ−

ũ =

√
ρ+u+ +

√
ρ−u−√

ρ+ +
√
ρ−

ṽ =

√
ρ+v+ +

√
ρ−v−√

ρ+ +
√
ρ−

H̃ =

√
ρ+H+ +

√
ρ−H−√

ρ+ +
√
ρ−

s̃ =

√
ρ+s+ +

√
ρ−s−√

ρ+ +
√
ρ−

ã =

√
(γ − 1)

(
H̃ − 1

2
(ũ2 + ṽ2)

)

(D.1.8)

The numerical flux on the boundary can be written as:

Hc

(
u+,u−

)
=

1

2

(
Fc

n
(
u+
)

+ Fc
n
(
u−
)

+ D
)

(D.1.9)

where D is the dissipative component of the numerical flux, which is given as:

D =



∣∣∣λ̃2

∣∣∣ (ρ+ − ρ−) + δ1∣∣∣λ̃2

∣∣∣ (ρu+ − ρu−) + δ1ũ+ δ2nx∣∣∣λ̃2

∣∣∣ (ρv+ − ρv−) + δ1ṽ + δ2ny∣∣∣λ̃2

∣∣∣ (E+
t − E−t

)
+ δ1H̃ + δ2 (ũnx + ṽny)∣∣∣λ̃2

∣∣∣ (ρs+ − ρs−) + δ1s̃


δ1 = −

∣∣∣λ̃2

∣∣∣+
1

2

(∣∣∣λ̃1

∣∣∣+
∣∣∣λ̃3

∣∣∣) ∆P

ã2
+
(∣∣∣λ̃3

∣∣∣− ∣∣∣λ̃1

∣∣∣) 1

2

ρ̃

ã
(nx∆u+ ny∆v)

δ2 = −
∣∣∣λ̃2

∣∣∣+
1

2

(∣∣∣λ̃1

∣∣∣+
∣∣∣λ̃3

∣∣∣) ρ̃ (nx∆u+ ny∆v) +
(∣∣∣λ̃3

∣∣∣− ∣∣∣λ̃1

∣∣∣) ∆P

ã

(D.1.10)

where the term ∆ () is given by:

∆ () = ()+ − ()− (D.1.11)

Comparison of the dissipation terms in equation (D.1.10) with the standard formulas given

in reference [50], shows that coupling the SA turbulence model equation to the RANS system

does not change the numerical flux expressions for the mean flow equations. Contrasting
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equation (D.1.10) with equation (2.6.3)(which is the standard approach) shows that for the

decoupled numerical flux treatment the dissipation term of the numerical flux for the turbu-

lence model equation involves only the velocity normal to the surface. However, one should

note that in the fully coupled approach in equation (D.1.10), the sound speed and pressure

influence the dissipation of the turbulence model discretization. Therefore, the formulation

presented in this section is significantly different from the standard approach. Numerical

experiments with convecting scalar quantities with a variable velocity field have shown that

this Roe formulation yields smooth scalar quantities for smooth initial conditions, whereas

the decoupled approach in equation (2.6.3) does not. Furthermore, numerical experiments

with various combinations of numerical fluxes for the RANS and SA turbulence model equa-

tions, demonstrated that using the same numerical flux for both the RANS and turbulence

model equations results in a significantly more robust solver.
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