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This work considers the accuracy, efficiency, and robustness of an unstructured high-
order accurate discontinuous Galerkin (DG) solver for computational fluid dynamics (CFD).
Recently, there has been a drive to reduce the discretization error of CF'D simulations using
high-order methods on unstructured grids. However, high-order methods are often criti-
cized for lacking robustness and having high computational cost. The goal of this work is
to investigate methods that enhance the robustness of high-order discontinuous Galerkin
(DG) methods on unstructured meshes, while maintaining low computational cost and high
accuracy of the numerical solutions. This work investigates robustness enhancement of
high-order methods by examining effective non-linear solvers, shock capturing methods, tur-
bulence model discretizations and adaptive refinement techniques. The goal is to develop
an all encompassing solver that can simulate a large range of physical phenomena, where
all aspects of the solver work together to achieve a robust, efficient and accurate solution
strategy.

The components and framework for a robust high-order accurate solver that is capable of
solving viscous, Reynolds Averaged Navier-Stokes (RANS) and shocked flows is presented.
In particular, this work discusses robust discretizations of the turbulence model equation
used to close the RANS equations, as well as stable shock capturing strategies that are
applicable across a wide range of discretization orders and applicable to very strong shock
waves. Furthermore, refinement techniques are considered as both efficiency and robustness
enhancement strategies. Additionally, efficient non-linear solvers based on multigrid and
Krylov subspace methods are presented. The accuracy, efficiency, and robustness of the
solver is demonstrated using a variety of challenging aerodynamic test problems, which
include turbulent high-lift and viscous hypersonic flows.

Adaptive mesh refinement was found to play a critical role in obtaining a robust and
efficient high-order accurate flow solver. A goal-oriented error estimation technique has been
developed to estimate the discretization error of simulation outputs. For high-order dis-

cretizations, it is shown that functional output error super-convergence can be obtained,



provided the discretization satisfies a property known as dual consistency. The dual con-
sistency of the DG methods developed in this work is shown via mathematical analysis
and numerical experimentation. Goal-oriented error estimation is also used to drive an
hp-adaptive mesh refinement strategy, where a combination of mesh or h-refinement, and
order or p-enrichment, is employed based on the smoothness of the solution. The results
demonstrate that the combination of goal-oriented error estimation and hp-adaptation yield
superior accuracy, as well as enhanced robustness and efficiency for a variety of aerodynamic
flows including flows with strong shock waves.

This work demonstrates that DG discretizations can be the basis of an accurate, efficient,
and robust CFD solver. Furthermore, enhancing the robustness of DG methods does not
adversely impact the accuracy or efficiency of the solver for challenging and complex flow
problems. In particular, when considering the computation of shocked flows, this work
demonstrates that the available shock capturing techniques are sufficiently accurate and
robust, particularly when used in conjunction with adaptive mesh refinement . This work
also demonstrates that robust solutions of the Reynolds Averaged Navier-Stokes (RANS)
and turbulence model equations can be obtained for complex and challenging aerodynamic
flows. In this context, the most robust strategy was determined to be a low-order turbulence
model discretization coupled to a high-order discretization of the RANS equations.

Although RANS solutions using high-order accurate discretizations of the turbulence
model were obtained, the behavior of current-day RANS turbulence models discretized to
high-order was found to be problematic, leading to solver robustness issues. This suggests
that future work is warranted in the area of turbulence model formulation for use with
high-order discretizations. Alternately, the use of Large-Eddy Simulation (LES) subgrid
scale models with high-order DG methods offers the potential to leverage the high accuracy
of these methods for very high fidelity turbulent simulations. This thesis has developed
the algorithmic improvements that will lay the foundation for the development of a three-
dimensional high-order flow solution strategy that can be used as the basis for future LES

simulations.






AN ADAPTIVE DISCONTINUOUS GALERKIN
SOLVER FOR AERODYNAMIC FLOWS

by

Nicholas K. Burgess,
M.S. Aerospace Engineering, GGeorgia Institute of Technology

(2007)
B.S. Mechanical Engineering, Lehigh University (2006)

A dissertation submitted to the
Department of Mechanical Engineering
and the
University of Wyoming
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY
n

MECHANICAL ENGINEERING

Laramie, Wyoming
November 2011



Copyright (©) 2011
by

Nicholas K. Burgess

i



To my father Fred, mother Joan, brother Matthew and dear friends Scott and Kate.

Without your support this would never have been possible.

il



v



Contents

List of Figures

List of Tables

Acknowledgments

Chapter 1 Introduction

1.1

1.2
1.3

High-order Discontinuous Galerkin Methods . . . . . . .. ... .. .. ...
1.1.1  Shock Waves and High-order Methods . . . . . ... ... ... ...
1.1.2  Turbulence Modeling . . . . . . . ... .. ... ... L.
Error Estimation and Adaptation . . . . . . . ... ... ... .. ... ...

Dissertation Overview . . . . . . . ..

Chapter 2 Discontinuous Galerkin Methods

2.1

2.2
2.3

2.4
2.5
2.6

Governing Equations . . . . . . .. ..o
2.1.1 Simplification to the Euler Equations . . . . . . . .. ... ... ...
Discontinuous Galerkin Discretizations . . . . . .. .. ... ... ... ...
Basis Functions . . . . . . . ..o
2.3.1 Triangular Elements . . . . .. .. .. ... o000
2.3.2 Quadrilaterals . . . . . . ...
Element Mappings . . . . . . . . . . .
Numerical quadrature . . . . . . . . .. .o

Turbulence Model Discretization . . . . . . . . . . . . . . . ...

xi

xXxvii

XX1X

N o ot W=

10



2.7 Artificial Viscosity Formulation . . . . . . ... ... ... ... ... ... 41

2.7.1 Piecewise Constant Artificial Viscosity . . . . . .. .. .. ... ... 42
2.7.2 PDE-Based Artificial Viscosity . . . . .. ... ... L. 43

2.7.3 Mesh Metrics . . . . . . . . .. 45
2.7.4 Artificial Viscosity Method Comparison . . . . . . . . .. ... . ... 45

2.8 Post-Processing . . . . . . ..o 51
2.9 Boundary Conditions . . . . . . . . . ... 53
29.1 SlipWall. . . ... 55

2.92 No-slipWalls . . . ... .. 57
2.9.3 Characteristic In/Out Flow . . . . ... ... ... ... ... .... 59
Chapter 3 Dual Consistency of Discontinuous Galerkin Discretizations 65
3.1 The Adjoint of Non-linear Operators . . . . . . . . ... .. ... ... ... 66
3.2 Definition of Dual Consistency . . . . . . . . . . .. ... ... 68
3.3 Importance of Dual Consistency . . . . . . . . ... ... ... ... .. ... 69
3.4 Dual Consistency of a Non-linear Poisson Equation . . . . . ... ... ... 71
3.4.1 Continuous Adjoint . . . . . . . ... 71
3.4.2 Discrete Adjoint and Dual Consistency . . . . . . . . . ... ... .. 73

3.5 Dual Consistency of Boundary Conditions for the Euler Equations . . . . . . 78
3.5.1 Continuous Adjoint of Euler Equations . . . . . . .. ... ... ... 79
3.5.2  Dual Consistency of Discrete Euler Equations . . . . . ... ... .. 80

3.6 Numerical Examples . . . . . . . . . 83
3.6.1 Laminar Viscous NACA0012 Airfoil: Drag Error . . . . . . . .. ... 84
3.6.2 Example Adjoint Solutions . . . . . . . ... ... L. 85
Chapter 4 Solution Methods 89
4.1 Grid Generation and Manipulation . . . . . . ... ... 90
4.1.1 Mixed-element Meshes . . . . . . .. .. ... ... L. 90
4.1.2 Merging Triangular Meshes . . . . . . . .. .. ... ... ... ... 92

4.2 Implicit Solver Formulation . . . . . . .. ... ... ... ... 95

vi



4.3

4.4

4.5

4.6
4.7

4.8

5.1
5.2

5.3

5.4

Linear Solvers . . . . . . . . .

4.3.1 Linearized Element Jacobi (LEJ) . . .. ... ... ... ... ....
4.3.2  Line-Implicit Jacobi (LLJ) . . . . ... ... ... ... ...
4.3.3 Colored Gauss-Seidel(CGS) . . . . .. ... ... ... ... ..
Multigrid Methods . . . . . . . . ..o
4.4.1 The hp-Multigrid Approach . . . . . . ... .. ... ... ... ..
Newton-GMRES . . . . . . . .
Robustness Enhancement via Local Order-Reduction . . . . . ... ... ..
Numerical Results . . . . . . .. ..o o
4.7.1 Laminar Flat-Plate . . . . . . . . .. ... ... ... ... ... ..
4.7.2 NACA0012 Airfoil . . . . . .. ..
4.7.3 Two-Element Airfoil . . . . . ... ... ... ... ... .. ...
SUMMATY . . . . o o o o

Chapter 5 Goal Oriented Adaptive Mesh Refinement
Motivation . . . . . . . ..o
Output Error Estimation . . . . . . .. .. .. ...
5.2.1 Formulation . . . . ... ...
hp-Adaptation . . . . . . . . ..
5.3.1 h-Refinement . . . . . ... ... ..o
5.3.2 Non-conforming Mesh Adaptation Mechanics. . . . . . . ... .. ..
5.3.3 Non-conforming Mesh Curvature . . . . .. ... ... ... .....
5.3.4 p-Enrichment . . . ... .. ... ... o
5.3.5  hp-Adaptation . . . . . . ...
Numerical Results . . . . . . . . ..o o
5.4.1 NACAO0012 Airfoil: Drag-based Adaptation. . . . . .. ... ... ..
5.4.2 Two-element Airfoil: Drag-based Adaptation . . . . . . . .. ... ..
5.4.3 Inviscid Transonic NACA0012 Airfoil: Lift-based Adaptation . . . . .

5.5

5.4.4 Supersonic Viscous Cylinder: Surface Heating Based Adaptation . . .

SUMMATY . . . v v v ot e e e e e e e

vil



Chapter 6 Application of DG to Turbulent Flows using the RANS Equations173

6.1 Issues Facing RANS and High-order Methods . . . . . . .. ... ... ... 174
6.2 DG Discretizations of the Mean Flow and Turbulence Model . . . . . . . .. 177
6.2.1 Turbulent Flat-Plate . . . . . . ... .. .. ... ... ... ..... 177
6.2.2 Turbulent NACA0012 Airfoil . . . .. .. ... ... .. .. ..... 180

6.3 hp-Adaptation with High-order DG Discretization of the Spalart Allmaras
Turbulence Model . . . . . . .. ..o 183
6.3.1 Turbulence Model Grid Resolution Requirements . . . . . . .. . .. 185
6.3.2 Flat-plate: hp-adaptation . . . .. ... ... ... ... ....... 188
6.3.3 NACAO0012 Airfoil: hp-adaptation . . . . . .. ... ... ... ... 191

6.4 Effects of Numerical Methods on the Spalart Allmaras Turbulence Model So-
lution . . . .. L 197
6.4.1 Convective Flux Discretization . . . . . . . . .. ... ... ... ... 197
6.4.2 Algebraic Coupling . . . . . . . . .. ... L 201
6.5 Hybrid Discretization Results . . . . . . .. .. .. ... ... 203
6.5.1 Subsonic RAE2822 Airfoil . . . . . .. ... ..o 204
6.5.2 High-lift Multi-element Airfoil Configuration 30P30N . . . . . . . .. 208
6.5.3 High-lift Multi-element Airfoil Configuration L1T2 . . . . . ... .. 212
6.5.4 High-lift Multi-element Airfoil Configuration 30P30N: hp-adaptation 215
6.6 Summary . . .. .. 222
Chapter 7 Hypersonic Flows 225
7.1 Introduction . . . . . . ... 226
7.1.1 Artificial Viscosity Settings . . . . . . . . ... ... ... ... 229
7.2 Hypersonic Inviscid Wedge . . . . . . . . ... oo oL 229
7.3 Hypersonic Inviscid Cylinder . . . . . . . . ... .. ... L. 234
7.3.1  h-refinement versus p-enrichment . . . . .. ... .. ... .. ... .. 234
7.3.2  h-refinement at Higher-Order . . . . . . ... ... ... ... .... 238
7.4 Hypersonic Viscous Cylinder . . . . . . .. ... .. ... .. 241
7.5 SUMMATY .« . . v v v v et e e e e e 250



Chapter 8 Comparisons of Discontinuous (Galerkin and Finite-Volume Meth-

ods 253
8.1 The Finite-Volume Solver . . . . . . . . . . . ... ... ... ... 254
8.2 Solver Performance Comparison . . . . . . .. . . . .. ... ... ...... 256
8.2.1 Second-order Performance Comparison . . . . . . .. ... ... ... 256
8.2.2  Uniform Refinement Comparison . . . . .. . .. ... ... ... .. 257

8.3 Design Space Considerations: Beyond Accuracy and Performance . . . . . . 263
8.4 Summary . ... 275
Chapter 9 Conclusions and Future Work 277
9.1 Summary . . . . ... 277
9.2 Contributions to the Field . . . . . . . ... ... ... ... ... 279
9.3 Future Work . . . . . . . .. 281

Appendix A Derivation of the Symmetric Interior Penalty (SIP) Method 285

A.1 Model Problem . . . . . . .. ... 285
A.1.1 Mixed Finite-Element Method . . . . . . . . .. ... ... ... ... 286

A.1.2 Symmetric Interior Penalty Method . . . . . . . . ... ... ... .. 290

A.2 SIP for Navier-Stokes . . . . . . . . . . ... 291
A.2.1 Implementing SIP for Navier-Stokes . . . . . . . . .. ... ... ... 295
Appendix B Spalart Allmaras Modifications for Negative Values 297
B.1 Modified Spalart Allmaras Model . . . . . . . ... .. ... .. ... .... 298
B.2 Production Modifications . . . . . . . .. ..o 300
B.3 Destruction Modifications . . . . . . .. ... 302
B.4 Full Source Term . . . . . . . . . . 304
Appendix C Non-dimensionalization 307
C.1 Non-dimensional Variables for the RANS equations . . . . .. .. ... ... 307

X



Appendix D Roe Flux Function for Turbulence Models
D.1 Roe’s Riemann Solver for RANS-SA System . . . . .. ... ... ... ...

References



1.1

2.1

2.2

2.3

2.4
2.5
2.6

2.7

2.8

2.9

2.10

2.11
2.12

List of Figures

Diagram of how various portions of the dissertation are related. . . . . . ..

Graphical explanation of + notation used in edge flux discretization.

Graphical explanation of ()* and ()T notation used in boundary flux discretiza-
tlon. . . . . e e e e e
Standard triangle and standard quadrilateral on which basis functions are

defined. . . . . .

Complete basis function set for p = 3 discretization on triangular elements. .

Complete basis function set for p = 3 discretization on quadrilateral elements.

Diagram of mapping the standard triangle and quadrilateral to the arbitrarily
curved one in physical space. . . . . . . .. ... L
Complete mapping basis function set for p,,q, = 3 on triangular elements. . .
Complete mapping basis function set for pp,q, = 3 on quadrilateral elements.
Diagram of the points used to construct curved elements on a boundary. Black
points are the element nodes and red points are the additional geometry points
used to define the curved element mapping . . . . . . . ... .. .. ... ..
Example quadrature points for p = 3 discretization. Volume integral: red
points, surface integral: green points, boundary surface: blue points. . . . . .
Mesh size metrics for triangles and quadrilaterals. . . . . . . . ... ... ..
Computational mesh used for the transonic flow around a NACA0012 airfoil

employing piecewise constant and PDE-based artificial viscosity . . . . . . .

x1

11

21

21

26

28

29

31

33

35

36

37
46



2.13

2.14

2.15

2.16

2.17

2.18

2.19

2.20

2.21

2.22

2.23

3.1

3.2

3.3

Mach number contours for an inviscid flow over a NACA0012 airfoil computed
with piecewise constant artificial viscosity usingp=1andp=4.. .. . . .. 48
Mach number contours for an inviscid flow over a NACA0012 computed with
PDE-based artificial viscosity usingp=1landp=4. .. ... ... .. ... 48
Artificial viscosity contours for an inviscid flow over a NACA(0012 computed

with piecewise constant artificial viscosity using discretization orders p = 1

Artificial viscosity contours for an inviscid flow over a NACA(0012 computed

with PDE-based artificial viscosity using discretization orders p =1 and p = 4. 49

Surface pressure coefficient C, comparison at a discretization order of p = 4,
using PDE-based and piecewise constant artificial viscosities. . . . . . . . .. 50
Computed lift coefficient(C) vs. Np, for the transonic flow over a NACA0012

airfoil using both piecewise constant and PDE-based artificial viscosities at a
discretization order of p=4. . . . . . . ... 50
Example of output points. The circles are output points, the dashed lines are

connections between output points and the solid lines are element boundaries. 52

[ustration of characteristic directions at the boundary. . . . . . . . .. . .. 54
[lustration of slip wall boundary condition on velocity. . . . . . .. ... .. %)
Inflow and Outflow characteristic information propagation directions for sub-
sonic flow. . . . . . . 60
Inflow and Outflow characteristic information propagation directions for su-

personic flow. . . . ... Lo 63

Drag error convergence for the flow over a NACAO0012 airfoil computed at
p =1 and p = 2 to demonstrate dual consistency. . . . .. .. .. ... ... 84
Drag adjoint contours for laminar flow over a NACAO0012 airfoil at M., = .5,
a=1°%and Re=5,000. . . . . . . . . . ... 86
Lift adjoint contours for inviscid transonic flow over a NACA0012 airfoil using

PDE-based artificial viscosity, with M, = .75, « =3.5°. . . . . .. ... .. 87

xil



4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8
4.9

4.10

4.11

4.12

4.13
4.14

4.15

4.16
4.17

Unstructured mesh around multi-element airfoil configuration generated using
UMESH2D. . . . . .
Unstructured mixed-element mesh around multi-element airfoil configuration
generated using UMESH2D with boundary layer and wake regions merged
into quadrilaterals. . . . . . ...
Example of stretched curved mesh where several layers of cells near the bound-
ary must be curved in order to prevent edge cross over. . . . . . . .. .. ..
Example of a circumcircle for a single triangle. . . . . . . . . ... ... ...
Example of a Vornoi perimeter for the node at the center of the stencil. . . .
Example of stencil where an edge has a vanishing Vornoi perimeter contribu-
tion. The red edge in (a) would is removed via the mering algorithm.
[lustration of lines used in line-implicit Jacobi smoother, as well as the grids
from which the lines are generated. . . . . . . . . .. ... 0.
Sample line-implicit stencil with three lines defined vertically in the figure.
Colors generated for a mixed-element stretched mesh around a NACA(0012
airfoil. . . . oL
Nlustration of Ap-multigrid levels. . . . . . .. .. ... ... ... ... ..
Coarse mesh levels generated via agglomeration of a slotted airfoil mesh.
[lustration of full Ap-multigrid (FMG) levels for p = 3 and h = 2 (— restric-
tion, - - prolongation, e smoothing, o update). . . . . . . . ... ... ...
Meshes used for computing the laminar flow past a flat plate. . . . . . . . ..
Laminar flat plate u-velocity profile computed using a DG discretization for
p =0 to p = 3 compared to the Blasius u-velocity profile. . . . . . . . .. ..
Laminar flat plate v-velocity profile computed using a DG discretization for
p =0 to p = 3 compared to the Blasius v-velocity profile. . . . . . . . .. ..
NACAO0012 mesh with N = 2,250 elements. . . . . . . ... ... ......
MGPC-GMRES convergence rates for the solution of the NACA0012 case on
two meshes with N = 2,250 and N = 7,750 elements and for DG discretiza-
tionordersp=1top=4. . . . . . . . . ..

xiil

93
94
94

95

107
109

117



4.18

4.19

4.20

4.21

4.22

4.23

4.24

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

Mixed-element mesh containing N = 4,964 elements (220 quadrilaterals and
4,744 triangles) and MGPC-GMRES convergence rates for the solution of the
NACAO0012 case for DG discretization orders p=1top=4. . . .. ... .. 118
Two-element airfoil mixed element mesh used for solver comparison and local
order-reduction robustness improvement. . . . . .. ... ... 118
Convergence rate of the two-element airfoil case for orders p = 1 to p = 4
using linear multigrid and MGPC-GMRES. . . . ... .. ... ... .... 119
CPU time comparison between MGPC-GMRES (line-implicit Jacobi smoother),
linear multigrid (line-implicit Jacobi smoother) and linear multigrid (LEJ
smoother) for solution of the two-element airfoil case for using DG discretiza-
tionorders p=1top=4 . . . . . . . . . ... 121
Close-up of the two-element airfoil under mesh-resolved leading edge showing

the reduced-order cell and density contours forp=4. . . . . . . .. ... .. 122
HNlustration of computed solution using DG for the laminar viscous flow over

the two-element airfoil at M, = .3, a = 0°, and Re = 5,000 for p=2.. . . . 123

[lustration of computed solution using DG for the laminar viscous flow over

the two-element airfoil at M., = .3, « = 0° and Re =5,000 forp=4.. . .. 124
[ustration of the triangle h-refinement pattern. . . . . . . . . ... ... .. 135
Ilustration of the quadrilateral A-refinement pattern. . . . . . . . ... ... 135
Diagram of the surface integral done at a non-conforming interface. . . . . . 136
Refinement rule for triangles. . . . . . . . . ... 137
Refinement rule for quadrilaterals. . . . . . . . . ... ... ... ... ... 138
Non-conforming refinement rule for triangles. . . . . . . . . .. ... ... .. 139
Non-conforming refinement rule for quadrilaterals. . . . . . . . ... ... .. 139

Example of unconstrained element curvature for non-conforming element in-
terface. The red and green curves should be coincident at all points otherwise

the mesh has a whole init. . . . . . . . . . . . . . . ... ... 140

Xiv



5.9 Example of constrained element curvature for non-conforming element inter-
face. In this case the edges defined from both elements are coincident at all
points, since one cannot see the green curve, which is under the red curve.

5.10 Illustration of p-enrichment on both triangles and quadrilaterals. . . . . . . .

5.11 Order enrichment rule applied to quadrilaterals, triangles are treated exactly
the same way. . . . . . .. .

5.12 Initial mesh and Mach contours of the laminar flow over a NACA0012 airfoil
withp=1, M, =.5,a=1° and Re=5,000. . . . . . .. .. ... .....

5.13 Final mesh and Mach number contours of the laminar flow over a NACA0012
airfoil using adjoint h-adaptation with discretization order p = 1, M., = .5,
a=1%and Re=>5,000. . . . . . . . . . . .

5.14 Final mesh and Mach number contours of the laminar flow over a NACA0012
airfoil using adjoint-based hp-adaptation with discretization order p = 1 to
p=>5,My=.5,, a=1°and Re=5,000. . . .. ... ... ... ......

5.15 Computed drag coefficient versus Np,r for the laminar flow over a NACA0012
airfoil using various adaptation methods, with and without adjoint-based com-
putable error correction. . . . . . .. ...

5.16 Computed drag error for the laminar flow over a NACA0012 airfoil using var-
ious refinement methods, including adjoint-based goal oriented hp-adaptation
and h-refinement targeting drag. . . . . . . . . ...

5.17 Flow solver iterative convergence using the MGPC-GMRES solver from Chap-
ter 4 for the laminar flow over a NACA0012 airfoil. . . . . . ... ... ...

5.18 Initial mesh and Mach number contours of the laminar flow over a two-element
airfoil with p =1, M = .3, a=1° and Re =5,000. . . ... ... ... ..

5.19 Final mesh and Mach number contours of the laminar flow over a two-element
airfoil using adjoint hp-adaptation with p =1top =5, M, = .3, a = 1°,
and Re =5,000. . . . . . ..

5.20 Computed drag versus Np,r and versus wall clock time for the laminar flow

over a two-element airfoil using hp-adaptation. . . . . . . . .. .. ... ...

XV

143

148



5.21
5.22

0.23

5.24

5.25

5.26

5.27

0.28

5.29

5.30

5.31

Flow solver iterative convergence for the laminar flow over a two-element airfoil. 155
Initial mesh and Mach number contours for the inviscid transonic flow over a
NACAO0012 airfoil with p =0, M, = .8 and o =1.25° . . . ... ... ... 157
Final mesh and Mach number contours on the final mesh for the inviscid

transonic flow over a NACA0012 airfoil (M, = .8 and ae = 1.25°) using adjoint
hp-adaptation with lift as the objective, the discretization order varies from
p=0top=0>5. . . . . 157
Computed lift coefficient versus Np,r using using hp-adaptation without arti-

ficial viscosity and iterative convergence of the flow solver for inviscid transonic

flow over a NACAO0012 airfoil using the MGPC-GMRES solver. . . . . . .. 158
Error estimate in the computed lift coefficient over the hp-adaptation history
employing p = 0 at the shock and no artificial viscosity. . . . . . . . . . . .. 158
Initial artificial viscosity and Mach number contours for transonic flow over a
NACAO0012 airfoil with p =1, M, = 8and o =1.25°. . . . .. . ... ... 160
Final artificial viscosity and Mach number contours for transonic flow over a

NACAO0012 airfoil (M, = .8 and o = 1.25°), using uniform p-enrichment with
discretization order is p=4. . . . . . . ..o 161
Lift versus Np,p for transonic flow over a NACA0012 airfoil using using arti-
ficial diffusion with p = 1 to p = 4 and iterative convergence of the flow solver
using a CGS preconditioned GMRES solver. . . . . . . ... ... ... ... 161
Initial mesh and Mach number contours for inviscid transonic flow over a
NACAOQ0012 airfoil with p = 1 and artificial diffusion, M., = .8 and o = 1.25°. 163
Final mesh and Mach number contours for inviscid transonic flow over a
NACA0012 (M, = .8 and o = 1.25°) airfoil using adjoint hp-adaptation
and piecewise constant artificial viscosity, the discretization order varies from
p=1ltop=4. . . . 163
Inviscid transonic NACAQ0012 airfoil: computed lift coefficient versus Np,r us-
ing using hp-adaptation combined with piecewise constant artificial viscosity.

[terative convergence using the CGS preconditioned GMRES solver. . . . . . 164

XVl



5.32

5.33

5.34

5.35

5.36

5.37

5.38

6.1

6.2

6.3

6.4

Error estimate in the computed lift coefficient over the hp-adaptation history
employing a discretization order of p = 1 and piecewise constant artificial
viscosity in the vicinity of the shock wave. . . . . . ... ... ... ... ..
Comparison of the computed lift versus wall clock time for inviscid flow over
a NACAOQ0012 airfoil using using piecewise constant artificial viscosity with
uniform p-enrichment and hp-adaptation. . . . . . . . . ... ...
Initial mesh and temperature contours for supersonic viscous flow over a half
cylinder using a uniform discretization order of p=1. . . . . . . . ... ...
Final mesh and temperature contours for supersonic viscous flow over a half
cylinder, the discretization order varies fromp=1top=3. . ... ... ..
Artificial viscosity on initial and final meshes for supersonic viscous flow over
a half cylinder. . . . . . . . ..o
Temperature profile extracted along the stagnation streamline on the initial
and final hp-adapted meshes. . . . . . . . . . .. ... ... ...
Computed surface heating and adjoint error estimate of computed surface over

the hp-adaptation history. . . . . . . . . . .. ... L

Computation mesh used for computing turbulent flow over a flat plate with
the Spalart-Allmaras turbulence model consisting of N = 540 quadrilaterals.
Comparison of computed solution using a DG discretization with the Spalart-
Allmaras turbulence model for a flat plate boundary layer compared with
experimental data usingp=1luptop=4. . . . . . . ... ... ... ..
Computed profile of Spalart Allmaras working variable for turbulent flow over
a flat plate at z/c = .5 (plate mid-chord) illustrating non-smooth behavior
at the boundary layer edge for p = 1 and p = 4. Note that solution is more
oscillatory when employing a discretization order of p=4. . . . . . . . . ..
Convergence history of the density and turbulence model variable for turbulent

flow over a flat plate using the Spalart-Allmaras turbulence model for a p = 2

DG discretization using MGPC-GMRES solver. . . . . .. .. ... .. ...

xvii

179



6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

Mesh and convergence history for turbulent flow over a NACAO0012 airfoil

with a DG discretization of both RANS and the Spalart-Allmaras turbulence
model equations. . . . ... 183
Computed Mach number and turbulent viscosity contours for turbulent flow

over a NACAQ0012 airfoil with a DG discretization of both RANS and the
Spalart-Allmaras turbulence model equations. . . . . . .. .. .. ... ... 184
Computed é contours, levels are bounded from 0 to -40 to show the negative
turbulence model working variable values. . . . . .. .. ... ... ... .. 184
Computed surface pressure coefficient of a NACA0012 using RANS coupled

to the Spalart-Allmaras turbulence model with orders p=1top=3. .. .. 185
Results of applying local-order reduction to the DG discretization of RANS
equations for turbulent flow over a NACAO0012 airfoil using the Spalart-Allmaras
turbulence model. . . . . . ..o Lo 186
Close-up of near wall cells smoothness indicator for the turbulent flow over

a flat-plate at M, = .1, Re = 10,000,000. White cells are detected as
smooth and colored cells as non-smooth. DG discretization is employed for

the turbulence model with Roe approximate Riemann solver for the convective
numerical flux . . . . ..o oL 187
Initial and final meshes for drag driven hp-adaptation of the turbulent flow

over a flat-plate. Note the expanded y-axis scale for clarity. . . . . . . . . .. 189
Computed drag and drag error estimate vs. Np,r for the hp-adaptation of
turbulent flow over a flat-plate. . . . . . ... ... 190
Computed Skin friction coefficient on initial and final mesh and close up of
boundary layer edge working variable at x=.5. . . . . . ... .. ... ... 190
Initial and final meshes for lift-driven adjoint-based hp-adaptation of turbulent

flow over a NACAQ012 airfoil. . . . . . . . .. .. ... .. ... .. ... .. 192
Computed Mach number contours on the initial and final meshes of the hp-

adaptation of turbulent flow over a NACA0012 airfoil. . . . . . . . . .. ... 193

Xviil



6.16 Computed eddy viscosity contours on the initial and final meshes resulting

from the hp-adaptation of turbulent flow over a NACAQ0012 airfoil. . . . . . . 194
6.17 Computed coefficient of friction and surface pressure coefficient on the final

mesh for the hp-adaptation of the turbulent flow over a NACAO0012 airfoil. . 195
6.18 Computed lift coefficient and lift coefficient error estimate over the hp-adaptation

history for turbulent flow over a NACAO0012 airfoil. . . . . . . ... ... .. 195
6.19 Mid-chord profiles of u-velocity and working variable versus y/c for flow over

flat-plate with M., = .1, Re = 10,000,000, and p = 1 using a DG solver

for the mean flow and various discretizations and convective numerical flux

formulations for the turbulence model . . . . . . . . ... ... 198
6.20 Mid-chord profiles of u-velocity and working variable versus y/c for flow over

flat-plate with M, = .1, Re = 10,000, 000 using a second-order finite-volume

solver for the mean flow and various discretizations and convective numerical

flux formulations for the turbulence model. . . . . . . . .. ... .. .. ... 199
6.21 Comparison of coupled versus decoupled Jacobians on iterative convergence

for turbulent flow over a flat-plate with M., = .1 and Re = 10,000, 000.

The solution is obtained using the CGS preconditioned GMRES solver. The

drag difference (right) is the difference between the fully converged flow solu-

tion computed drag value and the partially converged computed drag value,

resulting from employing a decoupled Jacobian in the implicit solver. . . . . 202
6.22 Convergence history and mesh for subsonic flow over a RAE2822 airfoil at

My = .4, a = 2.79°, and Re = 6,500,000 using discretization orders p = 1

to p = 4 for the mean flow and a first-order discretization for the turbulence

6.23 Computed Mach number contours for the subsonic flow over an RAE2822
airfoil at M, = 4, a = 2.79°, and Re = 6,500,000. . . . . ... ... .... 205
6.24 Computed pr/ o contours for subsonic flow over an RAE2822 airfoil using
the Spalart Allmaras turbulence model at M, = 4, a = 2.79°, and Re =
6,500,000 with mean flow discretization orders p=1andp=4. . . . . . .. 206

Xix



6.25

6.26

6.27

6.28

6.29

6.30

6.31

Computed surface pressure coefficient and skin friction for subsonic flow over

an RAE2822 airfoil using the Spalart Allmaras turbulence model at M., = .4,
a=2.79° and Re = 6,500,000 usingp=1top=4. . .. ... ... .... 207
Mixed-element unstructured mesh used for computing the flow around the
30P30N high-lift multi-element airfoil configuration at M, = .2, a = 16°,

and Re =9,000,000. . . . . . . . . . 208
Computed Mach number contours using the Spalart-Allmaras turbulence model

for low over the 30P30N multi-element airfoil configuration with p = 1 and

p =3, My = .2, a = 16° and Re = 9,000,000 using discretization order

p = 1 to p = 3 for the mean flow and a first-order discretization for the
turbulence model. . . . . . ..o 209
Computed pv7/ o contours using the Spalart-Allmaras turbulence model for

flow over the 30P30N multi-element airfoil configuration airfoil with p = 1 and
p=3, My = .2, a=16° and Re = 9,000,000 using mean flow discretization
orders p =1 to p = 3 and a first-order discretization for the turbulence model. 210
Computed surface pressure and skin friction coefficients using the Spalart-
Allmaras turbulence model for flow over the 30P30N multi-element airfoil
configuration with mean flow discretization orders p =1 and p =3 at M, =

2, =16° and Re =9,000,000. . . .. ... ... ... ... ... 211
Convergence history for flow over the 30P30N multi-element airfoil configura-

tion using the Spalart-Allmaras turbulence model at M, = .2, a = 16°, and

Re = 9,000,000 using mean flow discretization orders p=1and p=3. ... 211
Computational mesh used for computing the flow around the AGARD L1T2
high-lift multi-element airfoil configuration at M, = .197, a = 20.18°, and

Re =3,520,000. . . . . . . 212

XX



6.32

6.33

6.34

6.35

6.36

6.37

6.38

6.39

Computed Mach number contours using a DG discretization with the Spalart-
Allmaras turbulence model for flow over the AGARD L1T2 high-lift multi-
element airfoil configuration with mean flow discretization orders p = 1 and

p =3, M, = .197 and a first-order discretization for the turbulence model at

a =20.18° and Re = 3,520,000. . . . . . . ... ... 213
Computed pi7/ i contours using the Spalart-Allmaras turbulence model for

flow over the AGARD L1T2 high-lift multi-element airfoil configuration with
mean flow discretization orders p = 1 and p = 3and a first-order discretization

for the turbulence model at M, = .197, a = 20.18°, and Re = 3,520,000. . . 214
Computed surface pressure and skin friction coefficients using the Spalart-
Allmaras turbulence model for flow over the AGARD L1T2 high-lift multi-
element airfoil configuration with a mean flow discretization order of p = 3,

My, = .197, a = 20.18°, and Re = 3,520,000. . . . . . .. ... ... .... 215
Streamlines near the slat and flap using the Spalart-Allmaras turbulence
model for flow over an L1T2 high lift multi-element airfoil with a mean flow
discretization order of p = 3, M, = .197, a = 20.18°, and Re = 3,520,000. . 216
Unstructured mixed-element meshes used for computing flow around the 30P30N
high-lift multi-element airfoil configuration at M., = .2, « = 16°, and Re =
9,000,000 using hp-adaptation. . . . . . . . . .. ... ... ... ... 217
Close-up of the mesh and stream lines in the flap cove on the final hp-adapted

mesh for the flow around the 30P30N high-lift multi-element airfoil configu-
ration at M, = .2, a = 16°, and Re = 9,000,000. . . . . . . ... ... ... 218
Computed Mach number and eddy viscosity contours on the final hp-adapted

mesh for the flow around the 30P30N high-lift multi-element airfoil configu-
ration at M, = .2, a = 16, and Re = 9,000,000. . . . . . . ... ... ... 219
Computed surface pressure and skin friction coefficients on the final Ap-adapted
mesh for turbulent flow over the 30P30N high-lift multi-element airfoil con-
figuration at My, = .2, @ = 16°, and Re = 9,000,000. . . . . . ... ... .. 220

xXx1



6.40

6.41

6.42

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

Close-up of order distribution at the nose of the main element of 30P30N
high-lift multi-element airfoil configuration. Note that the elements in the
boundary layer near the wall are employing a discretization order of p = 1.

Computed lift and drag coefficients history during adaptation of the flow
around the 30P30N high lift configuration at M, = .2, o = 16°, and Re =
9,000,000. . . . . ..
Computed adjoint error estimate of lift during the hp-adaptation for the flow
over the 30P30N high-lift multi-element airfoil configuration. . . . . . . . ..

Initial mesh and Mach number contours of inviscid hypersonic flow over 15°
wedge withp=1, M =7, a=0% . . . . .. .. ... ... ... ....
Initial artificial viscosity contours of inviscid hypersonic flow over 15° wedge
withp=1 Mo=7,a=0°% . . . . . . . . . . . .
Final h-refinement and p-enrichment Mach number contours of inviscid hy-
personic flow over 15° wedge with , M, =7, a=0° . .. . ... ... ...
Final h-refinement and p-enrichment artificial viscosity contours of inviscid
hypersonic flow over 15° wedge with , Mo =7, a=0° . . . . .. ... ...
Final h-refinement and p-enrichment grid used for computing the inviscid
hypersonic flow over 15° wedge, Mo, =7, «=0° . . . . . . ... ... ...
Drag error versus Np,r and wall time for an inviscid hypersonic flow over 15°
wedge with p=1, Moo =7, a=0% . . . . . .. . ... . ... .. ......
Initial mesh and pressure contours of an inviscid hypersonic flow over a half
cylinder with p =1, M =17.605, a =270°. . . . . . . . . ... .. .. ...
Initial artificial viscosity contours of inviscid hypersonic flow over a half cylin-
der with p =1, M, =17.605, . =270°. . . . . . . . ... .. ... .....
Computed pressure contours on the final h-refinement and p-enrichment meshes
for inviscid hypersonic flow over a half cylinder, M., = 17.605, o = 270°.

Artificial viscosity contours on the final h-refinement and p-enrichment meshes

for inviscid hypersonic flow a half cylinder, M, = 17.605, o = 270°. . . . . .

xxii

221

230

232

236

237



7.11

7.12

7.13

7.14

7.15

7.16

7.17

7.18

7.19

7.20

7.21

7.22

Final h-refinement and p-enrichment meshes for inviscid hypersonic flow over
a half cylinder, My, = 17.605, a =270°. . . . . . . . ... .. ... .. ...
Computed drag error versus Np,r and wall clock time for the inviscid hyper-
sonic flow over a half cylinder, M,, = 17.605, a« =270°. . . . . . . ... ...
Stagnation point pressure profiles on the final adapted mesh using h-refinement
and p-enrichment for inviscid hypersonic flow over a half cylinder, M, =
17.605, a = 270° . . . . .
Final h-refinement grids used for computing the inviscid hypersonic flow over
a half cylinder, M, = 17.605, « =270° at p=2and p=3. . .. ... ...
Computed pressure contours on the final for the inviscid hypersonic flow over
a half cylinder, M, = 17.605, a =270°at p=2and p=3. . .. ... ...
Computed artificial viscosity contours on the final for the inviscid hypersonic
flow over a half cylinder, M., = 17.605, a = 270° at p = 2 and p = 3.

Stagnation pressure profile on the final mesh, for the inviscid hypersonic flow
over a half cylinder, M., = 17.605, o« =270°at p=1p=2and p=3.. . . .
Drag error for inviscid hypersonic flow over a half cylinder, M., = 17.605,
a=270atp=2andp=3. . . ...
Initial mesh and final hAp-adapted mesh employed for viscous hypersonic flow
over a half cylinder at M, = 17.605, a = 270°, Re = 376,930. . . . . . . ..
Computed Mach number and temperature contours of viscous hypersonic flow
over a half cylinder on the intial grid using N = 1,711 with p = 1 at My =
17.605, o = 270°, Re = 376,930. . . . . . . . . ...
Computed Mach number and temperature contours of viscous hypersonic flow
over a half cylinder on the final hp-adapted grid using N = 37,575 with p =1
top=4at M, =17.605, a = 270°, Re =376,930. . . . .. ... ... ...
Surface heating profile on final hAp-adapted mesh integrated surface heating
convergence history using hp-adaptation for viscous hypersonic flow over a

half cylinder at M., = 17.605, a = 270°, Re = 376,930, . . . . . . . . . ...

xx1il

243

244



7.23

7.24

8.1
8.2

8.3

8.4

8.5

8.6

8.7

8.8

Comparison of surface heating error of viscous hypersonic flow over a half
cylinder using output driven hp-adaptation and h-refinement, M., = 17.605,
a=270° Re =376,930. . . . . . . ...
Temperature profiles versus radial distance at the stagnation point an 30°
circumferential point across the hp-adaptation for the hypersonic viscous flow

over a half cylinder at M., = 17.605, a = 270°, Re = 376,930. . . . . . . ..

Mesh employed for DG solver for viscous flow over a NACAO0012 airfoil. . . .
Sequence of meshes employed by the finite-volume solver for viscous flow over
a NACAO0012 airfoil. . . . . . . . . o
Mach number contours for laminar flow over a NACA0012 airfoil, M, = .5,
a = 1°, and Re = 5,000 using a second-order finite-volume solver on the finest
mesh of N = 142,246 and a DG solver with a discretization order of p = 3 on
a mesh with N = 4,487 resulting in 57,434 DoFs .. . . . . . . .. .. .. ..
Close-up of trailing edge separation zone of the laminar flow over a NACA0012
airfoil, M, = .5, @ = 1°, and Re = 5,000 using a second-order finite-volume
solver and a DG solver with a discretization order of p=3. . . . . . . . . ..
Comparison of drag error over refinement for laminar flow over a NACA0012
airfoil, M, = .5, a = 1°, and Re = 5,000 using nearly uniform mesh refine-
ment with a second-order finite-volume solver and uniform p-enrichment with
a DG solver fromp=1top=3. . .. .. ... ... . ... ..., .
Computed design space for the inviscid flow over a NACA0012 airfoil at o =
3.5 and M., = .5 to 1.5 using a second-order finite-volume solver.(Courtesy
of M. Rumpfkeil Personal Communication. . . . . . . . .. .. ... .. ...
Unstructured meshes employed for the finite-volume and DG solvers for the
computation of the Mach number design space. . . . . . ... ... .. ...
Computed lift and drag design spaces for the inviscid flow over a NACA0012
airfoil at v = 3.5 using several CFD solvers M = (.75)...(.76) by .001 at both

first and second-order accuracy. . . . . . . ...

XX1V

248

249

258

259

260

261

262

266

266



8.9

8.11

8.12

8.13

8.14

8.15

8.16

8.17

8.18

Computed surface pressure for NACA0012 airfoil at a = 3.5° and M = .75
using the finite-volume solver with two different limiter settings and a first-
order discretization, limiter+pressure is the more diffusive setting. . . . . . . 267
Computed design space for the inviscid flow over a NACAQ0012 airfoil at
a = 3.5° using three CFD solvers at exclusively second-order accuracy, M =
(.75)...(.76) by .001. The limiter settings of the finite-volume solver were
adjusted in an attempt to generate monotone surface pressure profiles. . . . 269
Computed surface pressure for NACA0012 airfoil at a = 3.5° and M = .75
using the DG solver with a discretization order of p = 1 and a second-order
finite-volume solver with two different limiter settings.. . . . . . . . . . . .. 269
Computed design space results for the inviscid flow over a NACA0012 airfoil at
a =3.5%and M = (.75)...(.76) by .001 using the DG solver with discretization
ordersp=1top=3.. . . . . . . 270
Computed surface pressure coefficient for inviscid flow over a NACA0012 air-
foil at @ = 3.5° and M = .75 using the DG solver with discretization orders
p=1ltop=3. . . . 270
Convergence of finite-volume and DG flow solvers versus wall clock time at
a=350%and My, =.75. . . . . . 272
Computed Mach number contours for inviscid flow over a NACA0012 airfoil
at o = 3.5°, M = (.75) by .001 using the second-order finite-volume and DG
with p=1solver. . . . . . . . . . 272
Regions of the mesh where stabilization is applied for the inviscid flow over
a NACAO0012 airfoil at o« = 3.5°, M = (.75) by .001 using finite-volume and
DG p=1solvers. . . . . . . . . 273
Mach number and A.V. contours for the inviscid flow over a NACA0012 airfoil
at a = 3.5%, M, = .75 with the DG solver using a discretization order of p = 2.274
Mach number and A.V. contours for the inviscid flow over a NACA0012 airfoil
at a = 3.5%, M, = .75 with the DG solver using a discretization order of p = 3.274

XXV



9.1

B.1
B.2

B.3

B4

Entropy contours for the ILES flow over tandem NACAOQ012 airfoils using a
DG discretization of order p =4, M = .2, Re =10,000 . . .. ... .. ...

Original and modified g across the parameter space. . . . . . . . .. .. ...
Original and modified non-dimensional production source term across the pa-
rameter space defined by (and x. . . . . .. ...
Original and modified destruction source terms across the parameter space
defined by Cand x. . . . . . .. .
Original and modified SA model source terms across the parameter space

defined by Cand x. . . . . . . ...

XXVi



4.1

6.1

6.2

6.3

7.1

8.1
8.2

List of Tables

Comparison of convergence rates for Poisson problem, using N = 1,102 ele-

ments with and without stretching forp=3.. . . ... .. ... .. ... ..

Computed lift and drag coefficients for the RAE2822 airfoil with M, = .4,
a=2.79° and Re = 6,500,000 usingp=1top=4. ... ... ... ....
Computed lift and drag coefficients for the 30P30N multi-element airfoil con-
figuration using mean flow discretization orders p=1top=3.. .. ... ..
Computed lift and drag coefficients for the AGARD L1T2 multi-element airfoil
configuration at M., = .197, a = 20.18°, and Re = 3,520,000 using p = 1 to

Comparison of finite-volume and DG solvers at second-order accuracy. . . . .
Listing of legend markings for the results of the computed design space of

transonic inviscid flow over a NACAQ012 airfoil. . . . . . . . . . . . . . ...

XXVvil



XXViil



Acknowledgments

I would like to acknowledge the support of my colleagues, friends and family.

First and foremost I would like to acknowledge the contributions of my advisor Professor
Dimitri Mavriplis. His contributions as an advisor and as a mentor cannot be overstated.
He provided exceptional guidance and showed a great deal of patience during the course of
this work. He has provided me with a truly unique opportunity by allowing me to do all
of my work from scratch and for providing an excellent education in the area of CFD. I
have gained more knowledge than I thought possible in the field of CFD. Also thank you to
Dr. Jay Sitaraman who was always available for helpful discussions about aerodynamics and
validation. Also I would like to acknowledge the contributions of Dr. Jonathan Naughton
who helped me to understand some of the difficulties I encountered with turbulent flows.

Second, I am very grateful to the members of my doctoral committee: Dr. Dimitri
J. Mavriplis, Dr. Luis F.Pereira, Dr. Jay Sitaraman, Dr. Jonathan Naughton and Dr.
Andrew C. Hansen who put time and effort into reading and revising the manuscript of
this dissertation. Their comments and criticisms have helped to clarify the work presented
within. Also a special thank you is given to the external examiner, Dr. Zhi J. Wang of lowa
State university for his review of the manuscript.

[ would also like to acknowledge the contributions of two of my colleges in the CFD lab:
Brian Lockwood and Karthik Mani. They were always available to bounce ideas around with
and offer their opinion on this work as it progressed. Their comments and criticisms helped
improve this work more than I can acknowledge. Furthermore, thank you to Dr. Andrew
Shelton of Auburn University for the many helpful and insightful conversations and for his

advice during the course of this work. Also thank you to Dr. Markus Rumpfkeil for his many

XXIX



helpful and insightful conversations regarding turbulence modeling and for providing some
supplementary data. Finally, I would like to acknowledge my former research advisors Dr.
Terry Delph (Lehigh University) and Dr. Marilyn Smith (Georgia Tech) for their support
of my decision to come to the University of Wyoming and for their advice during my time
under their mentorship. This work was made possible by the following funding agencies,
NASA under grant number NNX07AC31A, AFOSR under a Phase 2 STTR project: contract
F9550-09-C-0051 and NSF under grant 0904936.

On a personal note, I am grateful to my family and friends for all their support during
this process. It has been a long and difficult road and without their support I would not
have been able to get to the end of this road. In particular, I would like to acknowledge the
support of my family: Fred, Joan, Matthew as well as two of my oldest and closest friends
Scott and Kate, all of whom have supported me throughout my academic career. This work

is dedicated to them, for everything they have done to keep me going.

NicHorLAS K. BURGESS

University of Wyoming
November 2011

XXX



Chapter 1

Introduction

Computational fluid dynamics (CFD) is now a standard tool for conducting flow field anal-
ysis for a variety of applications spanning engineering and science. Current state-of-the-art
techniques in CFD are nominally second-order accurate flow solvers that are usually based
on finite-volume [1-6] or finite-difference methods [2,3,7-10]. However, solvers based on
second-order continuous finite-element methods [11,12] have also been developed for CFD
applications. Due to the second-order accuracy of these CFD solvers, computing low error
simulations requires very large meshes that take a great deal of time to generate, process,
and partition for parallel processing. As CFD matures and computational resources grow,
the complexity and scope of the problems being solved grows in tandem. However, as the
complexity of the problems increases, the resolution requirements of the computational sim-
ulations also increase. For example, it is now commonplace to compute entire helicopter
fuselages and rotor blades in the same simulation, which requires very high resolution to
obtain adequate results for non-trivial flight conditions. Due to the high resolution re-
quirements of such problems, interest in the use of high-order discretizations (higher than
second-order) for industrial computational fluid dynamic problems, including aerodynamics
and aerothermodynamics, has become more widespread over the last several years. This is
partly due to the difficulties encountered with traditional second-order accurate methods at
delivering consistently grid converged results and in quantifying the spatial discretization

errors [13,14]. Furthermore, complex multi-scale problems such as the Large Eddy Simula-



tion (LES) of turbulent flows require very high resolution to obtain accurate results. The
asymptotic error properties of high-order methods makes them suitable for problems where
high spatial accuracy is required, since for smooth solutions, spatial error is reduced ever
more rapidly with increasing grid resolution at higher “p” orders of accuracy. However, there
is still a great amount of research that must be conducted before high-order methods are
suitable for industrial scale problems. In particular, the robustness of high-order methods is
considered specifically in this work. Robustness is an area that has received limited attention
in the literature and is critical to industrial applications.

Complex aerodynamic flow fields exhibit a wide range of phenomena including thin
boundary layers, high streamline curvature regions, shock waves and turbulence model arti-
facts. The resolution of the latter two types of phenomena represents a significant challenge
for high-order methods. Direct application of high-order methods results in Gibbs phenom-
ena that may cause solver failure [15], which is a result of using high-order polynomials
to approximate non-smooth solution behavior. The standard treatments of Gibbs phenom-
ena that are employed in the low-order methods context are not suitable for high-order
discretizations. As a result, much of this work focuses on finding optimal strategies for
dealing with these challenges robustly and efficiently, while maintaining high-order accuracy
as often as possible. In order to address these challenges, a discontinuous Galerkin(DG)
method is employed as the basis for the high-order unstructured CFD solver in this work.
DG discretization methods are capable of generating arbitrarily high-order accurate results
on unstructured grids made of triangles and/or quadrilaterals, in two spatial dimensions.
In addition, DG discretizations have a rich mathematical foundation with excellent stability
theory, conservation properties, and consistency.

An efficient and robust high-order accurate unstructured CFD solver for aerodynamic
applications based on a DG discretizations, requires the consideration of many facets of CFD.
In particular, the discretization must be able to ensure that high-order accuracy is obtained.
The stabilization methods employed must be robust and suitable for DG discretizations.
Furthermore, the non-linear solver and the corresponding linear solver must ensure adequate

and rapid convergence of the discrete equations. Finally, refinement must be conducted



carefully so that degrees of freedom (DoFs) are placed efficiently and robustly. This work
focuses on each of these areas as well as the coupling between them to develop a high-order
accurate DG CFD solver on mixed-element unstructured meshes. The dual consistency of
the discretization is derived by analysis and verified through numerical experiments. Pre-
conditioned Krylov subspace methods are developed for the efficient solution of the discrete
equations. Additionally, adaptive methods are also investigated for both efficiency and ro-
bustness enhancement. The adaptation is driven via a goal-oriented adjoint-based error
estimation technique similar to those used in references [16-20] such that the adaptation

strategy targets the error in a specific simulation output (objective) as efficiently as possible.

1.1 High-order Discontinuous Galerkin Methods

High-order methods have been successfully applied to linear partial differential equation(PDE)
based problems [21-24]. However, this does not preclude the application of high-order meth-
ods to non-linear equations e.g. such as those associated with CFD [25-32]. High-order
methods represent an excellent strategy for removing the discretization error from CFD
simulation results because they can deliver asymptotic solution error convergence rates of
O (hP*1), where h is the average element size and p is the discretization order. Furthermore,
under a specific condition known as dual consistency, simulation output functional error will
convergence at the rate of O (h?"). Therefore, for increasingly high accuracy tolerances, the
use of high-order methods such as DG becomes more appealing because simulation error is
reduced evermore rapidly as the discretization order is increased. However, as the discretiza-
tion order is increased the number of degrees of freedom (DoF) rises rapidly. For example,
second-order accurate (p = 1) DG discretizations for the two-dimensional Euler or Navier-
Stokes equations have 12 DoFs per element while a fourth-order accurate (p = 3) element
has 40 DoFs per element. Thus high-order methods have a significant computational cost
associated with them, and this cost scales with the discretization order of the element.

DG methods are, in their most basic form, a finite-element method. However, typi-

cal finite-element methods are continuous finite-element methods where the basis functions,



which approximate the discrete solution, are continuous at the element interfaces. Contin-
uous finite-element methods traditionally have been applied to linear structural and ther-
mal analysis problems that constitute purely elliptic operators, and hence continuous basis
functions are appropriate. DG methods employ basis functions that are discontinuous at
the element interfaces, which makes DG methods naturally suitable for computing convec-
tion dominated problems. DG discretizations are an ideal choice for convection dominated
problems because the discontinuous basis functions allow for upwind flux calculations using
approximate Riemann solvers. Employing approximate Riemann solvers at the element in-
terfaces is a strategy that is borrowed from finite-volume methods. Thus DG can be thought
of as a combination of traditional finite-element and finite-volume methods. The blending of
these methods is the result of simultaneously viewing the element as a control volume and
as a domain over which interpolation functions (which are also known as basis functions)
may be defined. However, since the DG method is a finite-element method, the order of
accuracy and number of unknowns are coupled. DG methods attain high-order accuracy by
adding additional basis functions within the elements, which results in additional degrees of
freedom for increased orders of accuracy. Alternatively, finite-volume and finite-difference
methods reconstruct high-order data from neighboring elements, which does not increase the
total number of degrees of freedom. Therefore, finite-volume and finite-difference methods
do not couple the order of accuracy with the number of degrees of freedom. The coupling of
the order of accuracy and number of unknowns within an element is a non-trivial property
of DG methods, which affects many aspects of solver robustness and hence is a recurring
theme throughout this work. However, locating extra unknowns within the elements can
be advantageous, provided that great care is taken in constructing and implementing these
methods.

As problem size increases, the efficient use of parallel computers becomes more impor-
tant. DG methods add resolution to a given problem via two approaches. DG methods can
add resolution by increasing the number of degrees of freedom within the element, which
results in increased parallel efficiency over low-order methods for unstructured grids [33].

By locating the DoFs within the element, higher computational density is achieved and pro-



portionally less inter-element data communication is required. This makes high-order DG
methods an ideal candidate for large scale parallel computing. Contrarily, while high-order
finite-difference methods have been developed, these methods require the construction of ex-
tended interpolation stencils. Extending the interpolation stencil can cause parallel scaling
to degrade as the order of accuracy is increased. This degradation of parallel efficiency is a
result of the stencils of the grid points on partition boundaries relying on information from
multiple data points on neighboring processors. Reference [33] has shown that high-order DG
methods have the opposite trend, as the order of accuracy increases the parallel scalability

increases as well.

1.1.1 Shock Waves and High-order Methods

High-order methods rely on the solution being sufficiently smooth to attain high-order con-
vergence rates and maintain non-oscillatory solutions. However, if the solution is not suffi-
ciently smooth high-order methods often fail due to Gibbs phenomena. Gibbs phenomena
are manifested as oscillations due to the use of high-order interpolation for non-smooth or
discontinuous solutions. These oscillations can cause negative pressure and density values,
which are non-physical states for the equations of fluid motion and hence result in solver fail-
ure. While there has been extensive work conducted on stabilization methods [15,28,34-38|
additional work is still warranted to determine the most effective way to robustly compute
flows with discontinuities. Despite the availability of several shock capturing schemes, there
is still a great deal of debate [39] on the most effective way to compute flows containing
shock waves. In order to discuss resolving shock waves with compact high-order methods,
the coupling between order of accuracy and number of degrees of freedom must be addressed.

In this work, stabilization methods for shocked flows are discussed. In particular, stabi-
lization methods are evaluated based on their ability to account for the coupling of order of
accuracy and the number of degrees of freedom. In CFD, stabilization methods take two main
forms, slope/flux limiters and artificial diffusion methods. Slope and flux limiters are com-
monly used in finite-volume and finite-difference methods, and reference [1]| gives a concise

review of these techniques. However, artificial diffusion methods have also been investigated



for finite-volume and finite-difference methods. VonNeumann and Ritchmeyer were the first
to consider this idea in reference [40]. Reference [4] also considered artificial diffusion shock
capturing methods in a structured two-dimensional finite-volume setting. Recently, there
has been a resurgence of interest in artificial diffusion methods for shock capturing within a
compact high-order discretization setting [28, 34,36, 37]. Artificial diffusion is an attractive
method for application to DG discretizations because it can take the coupling between order
of accuracy and number of degrees of freedom into account. The governing parameter of an
artificial diffusion method is the artificial viscosity. This work discusses limiters and artificial
viscosity and makes some comparisons between two of the most successful artificial viscosity
techniques applied to high-order methods. While stabilization methods are an important
subject pertaining to the computation of shocked flows, the choice of refinement method
is equally important. Therefore, refinement methods for shocked flows are also discussed
in detail in this work. The relationship between refinement method and robustness for the
resolution of shock waves is of particular importance for DG discretizations because of the

coupling between the order of accuracy and the number of degrees of freedom.

1.1.2 Turbulence Modeling

Turbulent flows modeled using the Reynolds Average Navier-Stokes (RANS) equations rep-
resent another challenging application area for high-order DG discretizations. Turbulent
modeled using the Reynolds Averaged Navier-Stokes (RANS) equations employ a closure
model for the turbulent eddy viscosity. This work employs the turbulence model of Spalart
and Allmaras (SA) [41] as the closure model for the RANS system. The challenges in com-
puting RANS flows stem from a discontinuity in the SA turbulence model working variable.
This discontinuity takes the form of artificial sharp interfaces that occur at the edges of
boundary layers and wakes and has proven extremely difficult to eliminate. The presence of
this discontinuity has gone largely ignored in the low-order methods and turbulence modeling
literature. For example, reference [41] does not mention this discontinuity in the turbulence
model working variable. This discontinuity can lead to negative values of the turbulence

model working variable which impact the stability of the SA turbulence model discretiza-



tion. References [20,42,43] have also computed RANS solutions using a DG method but
have cited significant difficulty in doing so. Herein, an attempt is made to explain why the
discontinuity is so pronounced in the high-order setting. While obtaining high-order solu-
tions to the turbulence model is sometimes possible, obtaining these solutions is not robust
enough for general applications. Reference [20] presented modifications to the SA turbu-
lence model source terms that are intended to stabilize the model for negative values of the
turbulence model working variable. These modifications are implemented within the pre-
sented DG solver in order to help alleviate the difficulties encountered when the turbulence
model working variable becomes negative. Additionally, the behavior and effectiveness of
these modifications are analyzed in detail. The discretization and solution method of the SA
turbulence model equation are discussed extensively. In particular, the choice of convective
numerical flux function as well as implicit solver treatments are important aspects of the
discretization and solution methodology of the SA turbulence model equation.

The lineage of the work on turbulent RANS flows can be traced directly to reference [20].
However, there are significant differences between reference [20] and the work on RANS flows
presented in this dissertation. In particular reference [20] does not consider the robustness
of high-order DG discretizations of the RANS equations. Furthermore, this work expands
on reference [20] by considering the grid convergence of lift and drag rather than attached
viscous drag alone. This work also considers the solution of turbulent high-lift flows on
mixed-element meshes and is the first to demonstrate a robust strategy for these flows,

which are particularly challenging to solve.

1.2 Error Estimation and Adaptation

Functional or output error estimation has been the subject of intense research over the last
decade [16-18,43-48]. Error estimation can be used to drive adaptive refinement procedures
that target the error in a particular output of interest. For aerodynamic flows, the output
is often an aerodynamic loading such as lift or drag. Output-based error estimation often

results in adaptive mesh refinements that are non-intuitive, which is the reason one appeals



to these methods to guide adaptive refinement. In order to estimate the error in a functional,
one must solve the discrete adjoint problem to obtain the sensitivity of the functional with
respect to the solution residual. In this work, the discrete adjoint is obtained from the
discretization of the physical or primal problem. Functional error super-convergence and
accurate error estimates are only obtained if the discrete adjoint problem is consistent with
the corresponding continuous adjoint problem. The consistency is defined such that the
discrete adjoint derived from the primal discretization represents a discretization of the
continuous adjoint equation. This property is known as dual consistency [49].

Dual consistency is a particularly important property for high-order discretizations, be-
cause if a discretization is dual consistent one can show that functional error behaves as
O(h?), where h is the mesh size and p is the discretization order. This functional error
convergence behavior is known as super-convergence. In this work, dual consistency is ana-
lyzed for some model problems to demonstrate that the strategies adopted are indeed dual
consistent. In particular, the dual consistency of the stabilization methods for shock waves
is discussed in Chapter 3. When applying stabilization methods for shock waves one must be
very careful not to introduce terms that may be dual inconsistent. If this dual consistency is
lost, then output error estimates will be affected and one cannot use them as reliable adapta-
tion, correction or simulation termination criteria. Additionally, the treatment of boundary
conditions affects the dual consistency of a discretization, and hence this work examines the
dual consistency of an example boundary condition. The analysis demonstrates the origin
of the mathematical form of the boundary conditions used in this work. Additionally, the
functional error super-convergence bound (i.e. O(h?")) is also derived.

A large part of this work focuses on the computation of shock waves and other discon-
tinuous solutions. Therefore, the subject of error estimation for discontinuous solutions is
discussed. Solution irregularities are oscillations in the solution such as Gibbs phenomena
that result from projecting the solution from a coarse to a fine mesh. Usually the irregularity
is the result of projecting a solution that is discontinuous from a discretization order p to a
discretization order p+ 1. If the solution contains irregularities, then these irregularities will

likely corrupt the functional error estimate. Corrupt error estimates often manifest them-



selves as error estimates that do not converge under conditions when the actual functional
error is obviously converging. This work shows how to obtain accurate error estimates for
shocked flows even in the presence of potential irregularities. The effect of turbulence model
discontinuity on functional error estimates will also be considered.

In this work, functional error estimates are used to drive mesh adaptation. In particular
hp-adaptation [17,47] is used throughout this work. Recall that DG methods can increase
resolution via two approaches: mesh-refinement which decreases the size h of the elements or
p-enrichment which increases the discretization order p within the elements. hp-adaptation
is an adaptation strategy where both forms of resolution enhancement are conducted simul-
taneously and was first presented in reference [17]. While the hp-adaptation strategy in this
work is based on reference [17], this work has made several improvements to enhance the
robustness and flexibility of this adaptation strategy. In particular this work considers non-
conforming hp-adaptation on mixed-element meshes as well as viscous flows. Furthermore,
this work considers combining hp-adaptation with artificial diffusion for shock capturing,
which has not been considered by previous work. While hp-adaptation certainly shows
significant efficiency improvements compared to low-order mesh adaptation and uniform re-
finement [17,47], hp-adaptation can also be used as a robustness enhancement method. By
resolving non-smooth features using low-order accurate discretizations, the solver becomes
significantly more robust and still maintains high-order accuracy of functional outputs, as
will be shown. Slope limiters examine the smoothness of a cell to decide whether to reduce
the discretization order locally. Additionally, hp-adaptation can be viewed as slope limi-
tation applied in the reverse direction, and is similar in that it examines the smoothness
of an element to decide whether or not to increase the discretization order locally. Thus
these two procedures are similar but operate in reverse directions. The benefits of applying

hp-adaptation to DG discretizations will be discussed and demonstrated.



1.3 Dissertation Overview

The main theme of this work is robust, efficient, and accurate high-order discretization and
solution strategies that can be applied to real world fluid dynamics problems. Much of the
work focuses on shocked and turbulent flows, although simpler laminar and inviscid flows are
considered as well. The applications range from simple inviscid flows to viscous supersonic
and viscous hypersonic flows, as well as turbulent flows over complex geometries, all in two

spatial dimensions. The main contributions of the dissertation are:

e Chapter 3 considers the dual consistency analysis of artificial diffusion methods for

shock capturing.

e Chapter 4 develops efficient h and p-independent solvers for viscous flows on high

aspect ratio mixed-element meshes.

e Chapter 5 considers an investigation of hp-adaptation for robustness and development

of this adaptation strategy for mixed element meshes.

e Investigation of the effectiveness of combining hp-adaptation and artificial diffusion for

computing shocked flows is considered in Chapters 5 and 7.

e Chapter 6 considers the development of robust Spalart Allmaras turbulence model

discretizations for the RANS equations.

e Chapter 7 considers an investigation of the most robust and effective combination of

refinement and shock capturing methods for hypersonic flows.

e Chapter 8 compares high-order unstructured DG methods to current state-of-the-art

second-order accurate unstructured finite-volume methods.

The overall goal of this work is to examine the robustness of high-order DG methods
and improve the robustness where necessary. In order to demonstrate the robustness and
efficiency of the presented DG solver, several test problems that span a range of complexity

and difficulty from simple steady-state laminar viscous flows to hypersonic and turbulent
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flows are examined. The goal of the dissertation is to demonstrate that, with the described
strategy, high-order solutions to practical problems can be obtained. Furthermore, a wide
range of problems is considered in order to demonstrate the robustness of the solver. The
final chapter discusses quantitative comparisons between the DG solver and a finite-volume
solver also written by the author. The subjects of computational expense, robustness and
shock capturing are compared between the two solvers in a quantitative fashion. A graphical
outline of the dissertation is shown in Figure 1.1, which demonstrates how various subjects

in the dissertation are related to one another.

‘ Discontinuous Galerkin Solver

Output-Based
Adaptation

Steady-State
Solver

‘ Shock Waves

\ J y y y
Output Error h-refinement p-enrichment Line-Implicit Artificial Viscosity Turbulence Model
Estimation Smoothing Formulation Discretization
\ J A A A
Dual Consistency Adjoint-based Line-Implicit Refinement DG Model
hp-refinement Smoothing Methods Results
y y y
Combined with GMRES Inviscid Hypersonic Non-smooth
Artificial Diffusion Flows Behavior
x \ \ / \
Laminar Flow Supersonic Transonic Viscous Hypersonic Results Results hp-adaptation Hybrid Discretization
Results Flows Flows Flows Results Results

Conclusions

Figure 1.1: Diagram of how various portions of the dissertation are related.
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Chapter 2

Discontinuous Galerkin Methods

Discontinuous Galerkin(DG) methods can be regarded as a combination of finite-volume
and finite-element methods. DG methods are capable of obtaining arbitrarily high-order
accuracy by expanding the solution as a set of basis functions and coefficients within each el-
ement. This is similar to traditional finite-element methods with the exception that the basis
functions are allowed to be discontinuous at the element interfaces. Allowing discontinuous
basis functions establishes upwinding inter-element communication similar to finite-volume
methods. This property of DG discretizations allows for the natural computation of hy-
perbolic operators but complicates the treatment of diffusion operators. In this work, both
the Euler and Navier-Stokes equations are considered, which requires stable and accurate
convection and diffusion discretizations. This section discusses the governing equations and
discontinuous Galerkin discretization of both convection and diffusion operators as well as
shock capturing via artificial diffusion. A detailed derivation of the discretization of diffusion
operators is provided in Appendix A.

In addition to the discretization, the boundary conditions used throughout this work
are derived and discussed in detail. In particular the derivation of the slip wall, no-slip wall,
and far-field boundary condition is considered. Boundary conditions play a critical role in
obtaining optimal functional error convergence and are not derived in the typical “ghost”
cell fashion, which is common in many unstructured finite-volume methods. The “ghost”

cell method is avoided due to the lack of dual consistency of this approach (Chapter 3).
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2.1 Governing Equations

The conservative form of the compressible Reynolds Averaged Navier-Stokes (RANS) equa-
tions describing the conservation of mass, momentum and total energy in two dimensions is
given as:

Ju

e +V- (f‘c(u) — ]ﬁ?‘v(u, Vu)) =S (u,Vu) (2.1.1)

within a domain €2, subject to the appropriate boundary conditions on the domain boundary
I' and a suitable initial condition at t = 0. In equation (2.1.1), u is the vector of conserved
variables, F. is the convective flux, F, is the viscous flux and S is the source term. In this
work, the RANS equations are coupled to the one equation turbulence model of Spalart and
Allmaras (SA model) [41] with the modifications given in reference [20]. The equation for
this turbulence model is given by:

007

1
5 + V- (prd) =P (u,Vu) + - [V - (nV7D) + cp,pVv - V] — D (u, Vu) (2.1.2)

where 7 is the turbulence model working variable, p is the density, « is the velocity field,
and o, ¢, are constants. In equation (2.1.2), V - (pri) is turbulence model convection term,
the term multiplied by % is the diffusion term, 7 is the diffusion coefficient, P (u, Vu) is the
production source term, and D (u, Vu) is the destruction source term. Appendix B gives
a full description of the model terms and analyzes the modifications to the production and
destruction terms given in reference [20].

The state vector and flux vectors including those of the SA model equation for two
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dimensional flow are explicitly given as:
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where p is fluid density, (¢ = (u,v)) are the Cartesian velocity components, P is the fluid
pressure, I is the total energy, ¢, is the specific heat at constant pressure, 7" is the fluid tem-
perature, P, and P,, are the Prandtl and turbulent Prandtl numbers respectively and 7;; is
the total viscous stress tensor including the Boussinesq approximated Reynolds stresses. As-

suming a Newtonian fluid and using the Boussinesq approximation for the Reynolds stresses,
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the viscous stress tensor takes the form (with z; = x,y; i=1,2):

Tij = 2(u+ pr) S

1 (Ou;  Ouy 1 0uy,
Sij = 5 <8xj + (9@-) 3&%5 (2.1.4)

fori=1,2,7=1,2

where p is the fluid viscosity obtained via Sutherland’s law and pz is a turbulent eddy

viscosity, which is given by:

(%)3 (2.1.5)

The components of the viscous stress tensor for two dimensional flow are given explicitly as:

4 Ou 2(%) ou 8v>

Tow = (10 + pir) <§%_§8_y Toy = (14 pi7) <8_+%

ou  Ov 40v 20u
Tye = (1 + pir) a_y""% Ty = (1t pr) ga_y—gg

(2.1.6)

It should be understood that all quantities in the above equations are the Reynolds Averaged
quantities (the usual () notation is omitted for simplicity). The pressure is obtained from

the ideal gas equation of state given as:

P=(y-1) [Et — %p (v + u2)} (2.1.7)

where v = 1.4 is the ratio of specific heats.

The RANS equations are subject to a non-reflecting far-field boundary condition and a
wall boundary condition. The wall boundary condition is a no-slip wall, hence the velocity
is zero at the wall. Additionally, the eddy viscosity is zero at the wall because the Reynolds

stresses are zero at the wall.

U = (O, O) T e Fwall
(2.1.8)
pﬂ =0 T¢ Fwall
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Laminar flow solutions are obtained by simply setting i = 0 and eliminating the turbulence
model from the system of equations.

When shock waves are present, artificial diffusion fluxes are added to the governing
equations in order to stabilize the solution in the vicinity shock waves. In this case the

governing equations take the following form

W9 (Fulw) ~ Fofu, Vu) ~ Fu (6,0, 90)) = 0 (2.1.9)

where the convective (F.) and viscous (F,) fluxes are the same as equation (2.1.3) and the

artificial diffusion fluxes are given as:

( ) ( 3\

¢ha Op chy Op
€ h Oz € h Oy
~hy Opu ~hy Opu
Fagw=4 "0 L g ={ 7o (2.1.10)
adzx gh_wM ) ady ~hy Bpv L.
h Ox h Oy
gh_& opH éfl_y_ opH
\ h Oz ) \ h Oy )
where € is the artificial viscosity and H is the total enthalpy, which is given as:
P
H=FE+— (2.1.11)
p

The terms, h,, h, and h are mesh size metrics, which are discussed in Section 2.7.3. For
an infinitely fine mesh, which is obtained by taking the he mesh size h taken to zero, the
artificial diffusion fluxes vanish. Therefore the artificial diffusion operator is consistent with

the governing partial differential equations (PDEs).

2.1.1 Simplification to the Euler Equations

This work also considers inviscid shocked flows that are governed by the compressible Euler
Equations of gas dynamics. For an inviscid flow both the molecular viscosity g and the
turbulent eddy viscosity ur are set to zero and thus no viscous stresses exist. Additionally,
since the viscosities are zero there is no heat conduction, as seen in equation (2.1.3). This

gives rise to the following governing equations

Ju - S
SV (Fc(u) ~ P (e, Vu)) —0 (2.1.12)
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where the artificial diffusion fluxes are the same as in equation (2.1.10) and the convective
flux is the same as in equation (2.1.3). The appropriate boundary condition for the Euler

equations is a zero normal flow boundary condition.
u-n=0 Tl (2113)

The far-field boundary condition is the same non-reflective boundary condition that is applied

to the Navier-Stokes equations.

2.2 Discontinuous Galerkin Discretizations

To discretize the governing equations, a mesh is defined consisting of elements such that the
union of these elements makes up the domain on which the PDEs are to be solved. Within
each element, a finite dimensional function space consisting of a finite set of functions of
order p is defined. DG discretizations are carried out by first taking the inner product of
the governing equations with each function on each element. These weighting functions are
known as test functions, which in this work take the form of polynomials. The solution
u is then discretized into a polynomial representation u, that takes the form of known
polynomials and unknown coefficients or modes. The solution expansion polynomials, also
known as basis functions, are the same as the test functions and are defined in a standard
element that must be mapped to the physical element. Taking the solution basis functions
to be the same as the test functions is the key property that defines a Galerkin method.
The final step of the discretization is to integrate the governing equations by parts once
to yield the weak form discretization. The integrals are evaluated using numerical quadrature
formulas in the standard element. The integrals are transfered back to the physical space
using a mapping from the standard element to the physical element. In order to account
for geometry curvature, super-parameter mappings are used, i.e the mappings of boundary
elements are generated to p+1 order where p is the solution order. For each boundary element
the mapping is generated by interpolating additional surface points on the boundary onto
a set of mapping basis functions for each element on the boundary. The additional surface

geometry points are taken from original analytic definition of the configuration geometry. In
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general, the mapping basis functions are defined differently from the solution basis functions
used to define the approximate solution uy.

Before the discretization is described in detail it is important to explain the notation
used in deriving the discretization. Firstly, a bold face symbol denotes a vector with size
equation to the number of fields (i.e. the number of partial differential equations denoted Ny)
while (4) denotes a vector in d spatial dimensions (herein d = 2). A matrix will be denoted by
[-]. With regard to the discretization, given an exact solution u, the corresponding discrete
solution is denoted u,,. Likewise for a continuous test function v the discrete test function
is denoted by vj. For the derivation of the discretization, the test functions are written as
vectors with the same dimension as the solution. The inner products result in scalar discrete
equations from the continuous system, the test function space has enough functions to obtain
the required number of discrete equations (i.e. number of PDEs Ny times number of modes
M on the element).

The DG discretization is carried out by considering u € V, where V is the space which

contains the exact solution. Let the computational domain 2 be partitioned into a set of

non-overlapping elements such that

N
Q=% ke, (2.2.1)
k=1

where Ty, = {k} is the set of all elements k in the mesh of size h and discretization order
p. Subsequently the subscript p in the notation will be omitted for brevity and simply let
Ty represent the discretized domain. Let k denote an element k € 7, on which a discrete
function space V! is defined, which is chosen such that V¥ C V. Additionally, let the
collection of interior faces of 7, be denoted Z;, = {i}, where i denotes a face € Z;,. Also let
the boundary 02 be discretized into a set of non-overlapping faces B, = {b} with a single
boundary face denoted b € Bj,. Let u, represent the discrete solution to u, then the DG
discretization is derived by substituting u, for u in equation (2.1.9), multiplying with the
test function v, and integrating over the domain €2, which has been partitioned in elements

as defined by equation (2.2.1). Formally, the discretization is given by finding u;, € V; such
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that

—

Z h 8t VZ;V . (]-?‘c (uh) — FU (uh, Vuh) — ﬁad (E, up, Vuh)>
keTy S (2.2.2)

— VhTS (uh, Vuh) ko = 0, Vvh € V}IZ
This can be written as
8uh P
Z ko + Ry, (uh, Vuy, Vh) =0, Vv,e€e Vh (2.2.3)
kETh Qe
where the Ry, (uy,, Vuy, vy,) is the discrete spatial residual. The spatial residual is integrated
by parts resulting in the following weak form
Rh (uh, Vuh, Vh Z VVh . ( (uh) — ﬁv (uh, Vuh) - ]-E;ad (6, Uy, Vuh)>
kET

+ VhTS (llh, Vuh) ko+

E — + - = + — + — + - =
uhyuhyvh7vh7n)_HU(uh7uh7vh7vh7vuh7vuh7n)_ (224)
€Ty
+ + E b + g
Had(e 76 uhauhavh7vhavuhavuha dS—|— /H ( h)’n)_
beBy,

HE (wf (), vir, Vi, i) — Hey (65, ud (), v, Yy, ) ds

Numerical fluxes take the discontinuous states on each side on the interior faces and compute
a unique flux for the face. The numerical fluxes H%(-,7), Ho(-,-, -, @) and H, (-, -, 7)
denote boundary numerical fluxes (which are different from the interior numerical fluxes)
on a boundary edge I'. The ()* and ()~ notation refers to the elements on each side of
an edge i € T, where a ()" denotes the element with the normal 7 of i pointing out of
the element and ()~ denotes the element with the normal of ¢ pointing into the element,
depicted pictorially in Figure 2.1. In the case of boundary edges, ()® denotes the state at the
boundary interface and () denotes the state from the element adjacent to the boundary.
The boundary edge normal 7 points out of the ()* element as shown in Figure 2.2
Reference [49] has shown that taking H? (u}, (u)), @) = He (0, u;,, v, v, , i) results

in a dual inconsistent discretization. Dual consistency is discussed in Chapter 3 where the
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Figure 2.1: Graphical explanation of £+ notation used in edge flux discretization.

k-i-

Figure 2.2: Graphical explanation of () and ()* notation used in boundary flux discretization.

analysis of this boundary condition will prove the dual inconsistency. For a dual consis-
tent discretization, the boundary numerical flux is taken as H? = F. (uz (uZ)) - 17, which
is the convective flux F, given in equation (2.1.3) normal to the boundary evaluated at the
boundary condition state ul(u;). The interior convective numerical fluxes are chosen to
be approximate Riemann solvers, which are approximations to the exact Riemann problem
on the interface. The Riemann problem considers the solution of a system of PDEs at the
interface between two discontinuous states e.g. u)” and u, . This solution results in a unique
value of the flux at the interface between the two discontinuous states. An approximate
Riemann solver considers the same two states u;} and u;, and solves the Riemann problem
approximately to generate the single valued interface flux. Reference [50] provides an ex-

cellent description of theory and applications of Riemann solvers, as well as descriptions of
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several approximate Riemann solvers. Current implementations of approximate Riemann
solvers include the flux difference splitting schemes of Rusanov [51] and Roe [52] as well as
the flux vector splitting scheme of Hénel and Schwane [53].

The numerical flux for the viscous term is obtained via a modified version of the sym-
metric interior penalty method (SIP) presented in references [54-57], which seeks to penalize
the solution for being discontinuous at the element interfaces. The form of the SIP method
used in this work is the same as reference [56], however the penalty parameter value is taken
from reference [57]. It is now convenient to introduce the following average and jump oper-
ators for both vector and scalar quantities. The average operator is defined for a scalar ¢

and vector x by

1 _
{0} = 3 (o7 +9¢7)
1 (2.2.5)
{x} = 3 (XT+x7)
with the scalar and vector jump operators given by
[e] = (¢ — )it
(2.2.6)

Xl =®x"—x") 7
respectively. Note that the jump in a scalar quantity is a vector and the jump in a vector
quantity is a scalar. Also note that the jump of a vector denoted with a bold symbol,
which is a vector across the system of equation of size Ny, is obtained by considering each
component of the vector as a scalar. Therefore, the jump of u, is a matrix with the number
of rows equal to the number of equations and the number of columns equal to the number
of spatial dimensions in the domain. Using this notation the SIP interior numerical flux is

given as

= [T {Fo (e Vun) } o+ {16 ()] 9 f - [] + v[vi] - (G ()]} [w] (227)
and the boundary SIP numerical flux is given by

Hy = (VDT (w) (wy) V) i 4 [G (uh (u))] ™ Vv i ()~ (uf))

VD (G (u ()] (i () -
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The corresponding SIP numerical fluxes for the artificial diffusion are
Haa =V 1 {Faa (€ un, Vi) } + { [Gua (e, u)]"* Vv | - [ T+
V[VE] - {[Gaa (€, w)]} [un]
HEy =(v]) T F,, (¢80 (uf), Vuy) - 7
(G (e, (u))] " Wvi - (uz —uj, (w;)) +
v(vi) " [Gad (¢, (uf))] (uy

For the SIP numerical fluxes the matrix [G] is actually a block matrix with d x d blocks and

(2.2.9)

—wj, (uf)) 77

with each block having Ny x Ny dimensions, where N; is the number of equations (or fields).
The [-]74ock indicates a transposing of the blocks of [G]. The blocks of [G] are defined as
derivative of the viscous flux F,, from equation (2.1.3) with respect to the solution gradient

Vu. In particular for two dimensional flow the blocks of [G] are given such that

ou ou
= [Gu] = + [Gro] 5
ox dy
o, o, (2.2.10)
= [Ga] —— + [G]
ox dy
The [G;;] matrices for two dimensional flow are given as:
0 0 0 0
4 4
G = l —3QuU 300 0 0
— QU 0 ' 0
@,7 <u +? ]it) — (%u2 + UQ) —Byyu + ozygu —Buyv + v By
0 0 0 0 0 0 0 O
Gl = 1 %avv 0 —%aqj 0 Gl = l — QU 0 a, 0
—QU Qy 0 0 %avu —%av 0O O
2 1 2
| UV QU =3 0 | | 3w 3a,U ayu 0 |
0 0 0 0
1 _a’l)u av O O
[Gao] = —
— QU 0 Qyy 0
Bvy <u2 + 02 — %) — (u2 + %1)2) —Boyu + ayu —Byyv + %avv o
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where the «, and (3, viscous coefficients are defined as:

av:ﬂ'+,uT7 Bv:%+gT
r rT

P, and P, represent the laminar and turbulent Prandtl numbers respectively (which are the
ratio of momentum diffusivity to thermal diffusivity). The values of the Prandtl numbers
are set based on the working fluid of air as P, = .72 and P, = .9. The [G,4] is defined as the
derivative of the artificial diffusion fluxes in equation (2.1.10) with respect to the solution
gradient Vu. The [Gadij] for the artificial diffusion operator are diagonal matrices since the

artificial diffusion operator is a Laplacian type operator:

=0 0 0 0000
0 ¢= 0 0 0000
[Gadu] - h 9 [Gad12] =
0 0 eé= o0 0000
0 0 0 ¢ 0000
0000 w0 0 0
0000 0 = 0 o0
[Gadm] = ) [GadQQ] = h
0000 0 0 & o0
0000 0 0 0 &

The final piece of the discretization is the approximation of u € V by u, € V¥ for each
element. In particular V} is the space spanned by the polynomials {¢;,7 = 1..M} where M
is the number of polynomials or modes required to specify a complete basis of order p on
an element. The set of functions chosen are Legendre polynomial-based bubble functions ¢;
from reference [58], which are so-called modal basis functions. The discrete solution uy, for

an element is given as a sum of the unknown coefficients times the basis functions

w, = w,(7,t) = Zﬁj(t)qﬁj(f) (2.2.11)

where M is the number of modes defining the truncation level. The semi-discrete discon-

tinuous Galerkin formulation (i.e. continuous in time) is given by choosing v, to be each
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¢i, Vi = 1...M, resulting in Ny x M equations for each element k € 7, where Ny is the
number of equations (fields) in the system of Navier-Stokes equations.

The choice of the penalty parameter(r) can be rather ad-hoc as the value is only required
to be “large enough” to stabilize the scheme. However, Shahbazi in reference [54] derived an
explicit expression for the penalty parameter for Poisson’s equation. A modified version of
this expression given in reference [57] has been successfully implemented in this work. The

value of the penalty parameter on an interface is taken as

- 1090 | |09 |
v =mazx (M, M )mam( |Q;| : |Q£| (2.2.12)

where |QF[,|0Q3| and M* are the area, perimeter and number of modes of elements k*
respectively and where the (- )* denotes the elements on each side of the interface. Note
that as the discretization order p is increased the number of modes M in an element increases,
hence the number of degrees of freedom(DoFs) within an element is coupled to the order of

accuracy.

2.3 Basis Functions

As mentioned previously, the discrete DG solution uy, is expanded in a series of basis functions
{¢i;i =1,...M} and corresponding coefficients {1;(¢),7 = 1,...M} where M is the number
of modes and is chosen such that a complete basis of order p is obtained. Various basis
functions exist and this work uses a set of hierarchical basis functions ¢;, which take the
form of modal shape functions in a standard element that spans {—1 < ¢ <1,—1 <n < 1}.
The standard elements for a triangle and a quadrilateral are shown in Figure 2.3(a) and
Figure 2.3(b) respectively. The basis functions are hierarchical, meaning that a basis of
order p contains all the functions from a basis of order p— 1. This work employs meshes that
contain both triangles and quadrilaterals and the basis functions are defined for triangular

and quadrilateral elements separately. The basis functions are based on combinations of one
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(—=1,-1) (1,-1) (—=1,—1) (1,-1)

(a) Standard Triangle (b) Standard Quadrilateral

Figure 2.3: Standard triangle and standard quadrilateral on which basis functions are defined.

dimensional Legendre polynomials, which are given by

2n+1)xL,— () — nly,—s ()

Ln (@) = n+1
Lo(z) =1 (2.3.1)
Li(z)==x

where n is the polynomial order.

2.3.1 Triangular Elements

For triangular elements the basis functions take form of generalized Legendre polynomials
defined on the standard triangle [58]. Consider a local polynomial of order p for an element.
The complete basis set of order p is made up of the M = (p+1)(p+2)/2 Legendre polynomials
given by

¢i = Lp, (A3 —X2) Ly, Ao — A1) ,0<ny,no;ng+ny <p (2.3.2)
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where

NS
2

Mo = —“T” (2.3.3)
+1

Ny — 5T

and L, is the 1-D Legendre polynomial of order n;, which is given by equation (2.3.1). This
basis is hierarchical making it ideal for p-multigrid solvers, as discussed in Section 4.4.1,
and contains p = 0, i.e. the constant function within the hierarchical structure. Figure 2.4
depicts the basis functions of order p = 3 for a triangular element.

Reference [59] has made use of a set of so-called H' hierarchical shape functions, which
do not have p = 0 as part of the hierarchical structure. These H' basis functions are
particularly useful for geometry mappings and are used to generate the mapping from the
reference element to the physical element. The H' designation means that the lowest order
polynomial in the set is a linear or p = 1 polynomial. Details of these functions and their

formulation can be found in Section 2.4 as well as in references [58,59].

2.3.2 Quadrilaterals

The basis functions employed for quadrilateral elements are similar to those employed for
triangular elements. The functions are based on Legendre polynomials and are also hierar-
chical and have p = 0 within the hierarchical structure. Again consider a polynomial basis
of order p that is now made up of M = (p+1)? modes. This is actually more functions than
required for a polynomial basis of order p but still constitutes a complete basis set of order
p. The basis functions are a tensor product of 1-D Legendre Polynomials(equation (2.3.1))

that span {—1 < ¢ < 1,—1 <n < 1} from reference [58].
¢i = L, (§) Lny (n), 0<1n1,0 <y (2.3.4)

Figure 2.5 depicts the basis functions of order p = 3 for a quadrilateral element. Although
these functions are a tensor product, no effort is made in the implementation to take ad-
vantage of this property and these function are implemented in the same way as the basis

functions on the triangle.
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Figure 2.4: Complete basis function set for p = 3 discretization on triangular elements.

2.4 Element Mappings

In order to compute integrals and define basis functions on any given physical element in
the mesh, a mapping from the standard element in (£,7) to the physical element in (x,y), is
generated using a set of mapping basis functions, denoted {¢;}. The elements are mapped
t0 Prmaz + 1 order where p,,q. is the maximum solution discretization order in the mesh. Let

the mapping order be represented as ppap = Pmas + 1. Mathematically the mapping for an
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element amounts to defining the & coordinates by:
Mmap

Tk (ga 77) = Z :i'quvbj (ga 77)
j=1

Mmap

yk (§,m) = Z Ur,; 05 (§5m)
j=1

(2.4.1)

where the 1; basis function is a set of hierarchical basis functions which belong to the H*
space, i.e. the lowest degree of any function in the set is a linear or p = 1 polynomial. The

corresponding mapping Jacobian and mapping Jacobian inverse for an element k are given

by:

Oz, Omy
J.] = o6 On
[Ji] o ou
S (2.4.2)
1 dyp O 06 o¢
[Jkrl:— on on — | Oz Oy
| Je| | _0m  Oay o on
o¢ o¢ Oz, Oyg

The mapping from the standard or reference element to the physical element is depicted in
Figure 2.6.

The set of functions used to map the element from the standard element to the physical
element are a set of localized vertex, edge and bubble functions as described in [58]. These
functions are particularly useful due to the decoupling of the vertex, edge and bubble func-
tions as seen in Figure 2.7 and Figure 2.8 where the functions on a given edge are zero on
all other edges. This decoupling allows for the specification of a reference map of order p,qp
using only py,qp+ 1 surface points. These basis functions are all based on a Jacobi polynomial
kernel ®,, given as

g

2, (2) = —2-TPH (2)
1 (2.4.3)
o=
2
2n—1

where the P is the Jacobi polynomial of order n with weights a and 3. The Jacobi
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T

Figure 2.6: Diagram of mapping the standard triangle and quadrilateral to the arbitrarily curved
one in physical space.

polynomials can be generated via the recurrence relation
P7(2) =1
S, :%[a—m(mmz)z]
PR (2) = (an + ang2) P (2) = an, PR (2)

i, =2n+1)(n+a+B8+1)2n+a+p) (2.4.4)
an, = (2n+a+B+1)a” —

g = (2n+a+B)2n+a+B+1)2n+a+ B +2)

any =2(n+a)(n+ ) (2n+a++2)

from reference [60], which also contains additional useful formulas. The complete set of

mapping functions for the triangle are defined by vertexr functions

v S+

v = 2

W:”T“ (2.4.5)
+1

po =2
2
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edge functions

Y = YR, (% — )

Ui = O, (4 — ) (24.6)

Ut =P By (P — §")
and bubble functions

A Y (e L A AR 2.47)
{n1,n2 c1 < ny,nging +ng < ph— 1}

where superscripts v, e, and b denote vertex, edge and bubble respectively. The order of the
edge and bubble functions is the same as pyap, i.6. p° = p* = DPpap, where p° is the edge
function order and p® is the bubble function order. The mapping basis functions of order
Pmap = 5 are depicted in Figure 2.7. The separation of the vertex, edge and bubble modes is
seen in Figure 2.7, which shows that functions defined for the edges (e.g. 1) are zero at the
vertices and for all edges other than the edge on which they are defined. Similarly, bubble
functions such as 1)1y are zero on all edges and vertices of the element.

Quadrilaterals mappings are defined by an analogous set of basis functions which are

= (5) (5

also given as vertex functions

oo = (1—55) (1;7)
W = 1-&\ (147 (2.4.8)
gt
2 2
edge functions
o= (7)) (7)) () et
o= () () () oosto N
e — (1;n> <1;§) (1;5) o (6)
e — <1;n> (1;§> (1;5) o (6)
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Figure 2.7: Complete mapping basis function set for py,qp = 3 on triangular elements.

and bubble functions

1-¢ 1+¢ 1—n 1+n
¢?Ll,n2 = 2 2 ®TL1 -2 (5) 2 2 qi)7'12_2 (77) 1)

(2.4.10)
{ni,ns:2 <ny,ny <p°}

where the superscripts v, e, and b denote vertex, edge and bubble respectively. The order
of the edge and bubble functions is the same as pap, i.6. p° = p* = Prap, Where p is the

edge function order and p’ is the bubble function order. The mapping basis functions for
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quadrilaterals of order p,,q, = 3 are shown in Figure 2.8.

The surface points, which are the physical points that are interpolated to the mapping
basis functions to define the element mappings, encompass the two nodes an a boundary
edge and additional points interior to the edge, which are all given by the mesh generator as
shown in Figure 2.9. The black points in Figure 2.9 are the element nodal points and the red
points are the additional geometry points given by the mesh generator. The mapping modal
coefficients X and y are found by interpolating the x and y coordinates to the mapping basis

functions, following:

y=WV"y
Vij = ¢i (&, m)) (2.4.11)
zj = x (&, 1)

i =y (&)

where [V] is the Vandermonde matrix found by evaluating the mapping basis functions {¢; }
at the standard element locations(&;, n;) at both the red and black points in Figure 2.9. The
vectors x and y are the coordinates given by the mesh generator at the points illustrated in

Figure 2.9.

2.5 Numerical quadrature

The set of discrete equations (2.2.3) is solved in modal space and the integrals are evaluated
using Gaussian quadrature rules [58,61,62]. Modal space is the space V} that is made
up of the basis functions in Section 2.3. These quadrature rules require projection of the
solution from the modal space to the quadrature points. To preserve the p + 1 accuracy
of the DG scheme, the volume integrals, which are the ka terms in equation (2.2.4), are
computed using a rule that integrates a polynomial of degree 2p exactly. To the same end,
surface and boundary surface integrations, which are the fri and be terms in equation

(2.2.4) respectively, are carried out with a rule that integrates a polynomial of degree 2p + 1
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® Element Nodal Coordinates
@ Extra Points for Curving

Figure 2.9: Diagram of the points used to construct curved elements on a boundary. Black points
are the element nodes and red points are the additional geometry points used to define the curved
element mapping

exactly [63]. Figure 2.10 shows an element stencil with the quadrature points employed for
integrating a p = 3 solution on a mixed element mesh.

In order to apply Gaussian quadrature, the integrals must first be mapped into the
standard element. For volume integrals the integration is transformed as

Z / va . <ﬁc (uh) — F‘v (uh, Vllh) — F‘ad (6, Up, Vuh)> ko =
Qf

keT

Emax NMmazx . . . (251)
> / / vvl. <F (up) — F, (up, Vuy,) — Foq (e,uh,Vuh)> | Ji| dndé
ke'fh gmin Nmin
where the gradient is defined by:
00 9on 9o 0o\
===t =+ == 2.5.2
v <8§8x onox 0Ly | ondy (252)

Let the integrand in equation (2.5.1) be denoted as F (£,7n), then the integral in equation

(2.5.1) is approximated using Gaussian quadrature as

Emaz  fNmaz Ng
Z/ / F(&n)dnds = Y Y F (&, m,) wi, (2.5.3)

k€T, Emin TNmin keTy ig=1
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Stencil and Quadrature points

___Volume Points

Interior Surface Points

© e eo|/o|e e e o
| I
ole e o olo|e ° ° °
| |
+oo oo+o ° ° °
dle o o o|ld|e ° ° °

Boundary Points—

Figure 2.10: Example quadrature points for p = 3 discretization. Volume integral: red points,
surface integral: green points, boundary surface: blue points.

where §;, and n;, are the quadrature point locations in the standard element and w;, are
the quadrature weights. For volume integrals, the location, number of points and weights
are selected such that a polynomial of degree 2p is integrated exactly. Surface integrals are

computed in a similar fashion. For interior surfaces the integration in the standard element

is given by:
+ + 0= vt v + - =
E uh,uh,vh,vh, )—’H,v(uh,uh,vh,vh,Vuh,Vuh,n)—
1€y,
+ + + _
Heaa ( e ul,u, v vy, Va), Vu, i )ds-
2.5.4)
+ + 0= vt v + - = (2.5,
E / uh,uh,vh,vh, )—HU(uh,uh,vh,vh,Vuh,Vuh,n)—
€Ly

dz® dy®
Haa (¢, e wh vy, v vy, Vu), V| 7)) d_i +d_3; ds

which is also approximated by Gaussian quadrature. The quadrature point locations and

weights are defined on the edges of the elements. Let the integrand in equation (2.5.4) be
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denoted by F; (£,n). The integration of equation (2.5.4) is approximated as

Z /1 Fi(§m)ds ~ Z Z Fi (&yomi,) wi, (2.5.5)

i€y, i€T) ig=1
where quadrature point locations (fl-q,mq) and weights w;, are obtained from a rule that
integrates polynomials of 2p + 1 exactly on the edges. The boundary surface integral is
transformed in the same way as the interior surface integral.

YRR

Ho () (), v, Vul, i) — He, (eh,a) (wh) v, Vu),id) ds =

1 2.5.6
S () 1) — () i T ) (255)
beBy, ¥ 1

o dz? dy2
Hog (€, up (wh) vy, Vg, i) \/;d

Let the integrand in equation (2.5.6) be denoted by F; (£, 7). The integral in equation (2.5.6)

is approximated using Gaussian quadrature as

Z/lfb (§m)ds = Zifb (&, mi,) Wi, (2.5.7)

beBy, beBy, ig=1
where the quadrature point locations and weights are the same as for the interior surface
integrations. The Gaussian quadrature point locations and weights used in this work are

tabulated in reference [58].

2.6 Turbulence Model Discretization

Due to the aforementioned turbulence model discontinuity discussed in Chapter 1, this work
employs an alternative discretization which makes use of a first-order finite-volume discretiza-
tion of the convection terms for the turbulence model in equation (2.1.2). This discretization
has been successful in many applications such as those in references [5,41,64-66]. In order to
maintain an appropriate testing method, two options are available for discretizing the turbu-

lence model equation. The standard DG discretization can be utilized or the aforementioned
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first-order finite-volume discretization can be employed. The standard DG discretization
is exactly the same as previously described for the mean flow equations. The first-order
finite-volume discretization is carried out in a slightly different manner due to the lack of
turbulence model variable gradients (i.e. a first-order discretization cannot contain gradient
information).

This section will discuss the first-order convection term finite-volume discretization of
the SA model as well as how it is coupled to the DG discretization of the RANS equations.
Unfortunately by discretizing the turbulence model to first-order accuracy, there is now a
resolution discrepancy between the mean flow equations and the model equation. This is
inevitable for a DG method because of the coupling between degrees of freedom (DoF's) and
order of accuracy. In order to have a first-order finite-volume representation and not recon-
struct model variable gradients, the diffusive source term must be cast in a non-conservative
form, as shown in reference [41]. This allows one to place the entire diffusion term on the
surface in order to avoid requiring gradients of the SA model variable. The turbulence model
is discretized on a mesh of elements 7}, ¢ and the discrete solution is in the space of piecewise
constant functions pr, € V. Substitution of the discrete solution into the model equation

given in equation (2.1.2) and integration over the domain yields.

Z /Q { pyh 0 (unpin) - 9 (vnpin) _ %V - ((un + pon) (1 + cp,) Vi) —

keTh Oz 83/
Cop PRV — Sy ] dSY, = 0 (2.6.1)
with

Sh =P (llh, Vuh) -D (uh, Vuh)

where P (uy, Vuy) is given in equation (B.1.3) and D (uy, Vuy) is given in equation (B.1.6).
Integration by parts of equation (2.6.1) results in

Z / (9pvh — Sh U.h, Vllh ko + Z uh) — (Hv (uh))i d8—|—
keTy, St iezy VT

(2.6.2)
HY (u), (uf)) +H (uf,u) (uf)) ds =0

b
beB, VT
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where

R U L
He. = 5 [(@npon)™ + (@npin)~ + maz (G, ) (oo — poy) ] (2.6.3)
ﬂh = (uhnx + Uhny)
HE = (anpin)’ (2.6.4)

H. is an upwind numerical flux function for a scalar convection equation and H? is a bound-
ary numerical flux function for a scalar convection equation. The numerical flux for the

turbulence model equation diffusion term is taken as:

(Ho)" = F (™ +p= + (pot +po7) (1+cby)) — pﬁ+cbg} X

2
((ﬁ_ —vT) (Aaji)n N (o~ — i) (Ayi)n ) (2.6.5)
(1)’ ’ (1%)? v
with

AJTi = — Qj+

Ayt =y —y* (2.6.6)
(Ho)™ = E (™ + =+ (pot +p7) (1 +cby)) — pﬁ_cbg} X

(2.6.7)

(e, | oo, )

- n
(1%)* (1)’ ’

HE are thin layer approximation viscous flux functions and are employed so that turbulence

model gradients are not required. The same formulation of the turbulence model viscous

flux is employed in [5]. Similarly, the boundary numerical flux is taken as:

2

((Db ) (A () () ) (2.6.8)
(li)Q x (li)Z Y

1
H = {— (t 4+ ub + (ot + pi®) (1 +cby)) — ,017+ch] X

H? is the boundary thin layer viscous numerical flux. These flux formulations treat the SA

turbulence model equation decoupled from the mean flow RANS equations.
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The source term discretization is straight forward since it does not depend on the gra-
dient of the turbulence model variable. While the convective discretization can be used with
any numerical method, the diffusion discretization is specifically tailored for a first-order
finite-volume method. Additionally the form of the continuous diffusion term used in this
work is only advantageous for finite-volume and similar discretizations. This form of the
diffusion term is not advantageous for DG discretizations because the manipulation used to
obtain the non-conservative form of the diffusion term is undone upon integrating by parts
to obtain a weak form DG discretization.

When employing this turbulence model discretization method, the turbulence model
and the RANS equations discretizations occupy different function spaces, and a method
by which to obtain pu™, u,f etc. for use in the turbulence model discretization is required.
Due to the first-order accurate turbulence model discretization, an appropriate quadrature
rule consisting of a single Gauss point is chosen for the integrations. For volume integrals
the Gauss point is at the cell-center and for edge integrals the Gauss point is at the edge
mid-point. Mean flow quantities are projected from their modal representations to these
quadrature points directly, via equation (2.2.11). This amounts to a “reconstruction” of
the mean flow variables but not the turbulence model variables since the turbulence model
variables are constant over the cell in question. The combination of this first-order finite-
volume discretization for the turbulence model equation combined with a DG discretization

of the mean flow equations is denoted as a hybrid discretization.

2.7 Artificial Viscosity Formulation

This work makes extensive use of artificial diffusion for shock wave capturing. The govern-
ing parameter for artificial diffusion is the artificial viscosity € in equation (2.1.10). Many
researchers have developed artificial viscosity methods and this work has tested and imple-
mented those of references [28,34,37,38]. After much experimentation, two methods have
been observed to be the most robust, these are the methods of references [34,37]. The

method of reference [38] was abandoned due to an extended numerical stencil and a dual

41



inconsistency(see Chapter 3) when using a DG method. The method of reference [28] was
abandoned due to robustness problems at high-order. This work makes use of both the piece-
wise constant method of reference [34] and the PDE-based artificial viscosity of reference [37]

to control the values of €.

2.7.1 Piecewise Constant Artificial Viscosity

The piecewise constant artificial viscosity formulation is taken from reference [34]. The value

of the artificial viscosity coefficient € in each cell k is given as

0 Sk < S0 — K
gk = %60 (]. -+ sin (%w(skgso)>> S0 — R S Sk S So + K
(2.7.1)
€0 Sk > So + K

so = —4log (cs,p)
where cg,, k and € are user defined coefficients. The coefficient €, controls the magnitude
of the artificial viscosity coefficient € and the coefficients £ and ¢, control the minimum
value of s that yields non-zero artificial viscosity. s, for the cell k is given by the resolution

indicator )
Jo (Po = Pa)
Jo, Br

where P, is the pressure computed from equation (2.1.7) using the number of modes in a

s = logio (2.7.2)

discretization of order p and P, is computed using the number of modes in a discretization
of order p — 1. The function controlling € is essentially a smooth min-max function, which
limits the viscosity in the cell between two bounds in a smooth differentiable manner. Notice
that the minimum and maximum values are determined based on the width x of the smooth

function that goes between the minimum and maximum values. The final artificial viscosity

is given as
h
€= )\max_gk
p
Amaz = [u| + 0] + a (27.3)
-1
h = 5 (har + hy)



where A,,q, is an estimate of the maximum eigenvalue of the Euler equations and h, and h,
are anisotropic mesh size metrics, which are given in Section 2.7.3.

While the basic formulation is taken from reference [34], significant changes to the
artificial diffusion flux given in equation (2.1.10) and to the definition of é, have been made
relative to those in reference [34]. Most notable is the addition of the A, scaling term,
which allows for the method to automatically adjust the applied viscosity based on local flow
conditions. Additionally, the use of anisotropic mesh size metrics allow for robust behavior
on anisotropic viscous meshes. In contrast, reference [34] sets ¢ = &h/p and h, = h, = h,
which results in a significantly less robust method. The present method in equation (2.7.3) is

capable of capturing shock waves within one element. Note that € is constant on an element

k.

2.7.2 PDE-Based Artificial Viscosity

The piecewise constant artificially viscosity method can fail due to large jumps in € be-
tween elements for strong high Mach number shock waves, hence the PDE-based method
of reference [37] was also implemented. The PDE-based artificial viscosity solves a non-
linear Poisson equation for the artificial viscosity coefficient e, which is appended to the
Navier-Stokes equations. Solving this diffusion equation results in a smooth artificial viscos-
ity distribution throughout the mesh. This equation is discretized to the same order as the
mean flow equations using a Symmetric Interior Penalty (SIP) method. This new system of

equations is solved in a fully coupled manner. The diffusion equation governing the artificial
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viscosity for two dimensional flow is given as:

5= (29 + 2 (i)

S hmin
Clp/\max

|:ni| o CICZP)\ma:c h920 0
B hmin
0 R

T

Amae = |u] + [v] + a (2.74)

h==(h,+h,)

N —

Ronin = min (hy, hy)
cl = 3
C1Cy = 15

In this case the source term §; in equation (2.7.4) is given by

0 sk < 8o — Ak
=1 deo (14sin (3755)) so— Ak < s <so+ An

€0 Sk = S0+ K (2.7.5)
s = — (K + 5, logyo (p))

Ak — =
T3

with €, ¢, and x are user defined coefficients. The coefficient ¢, controls the magnitude
of the source term. The coefficients x and c;, control minimum value of the shock detector
that will trigger artificial viscosity as seen in equation (2.7.5). The value of s is given by

the jump indicator of reference [67]

1
|0S%] Joq,

[P -7
{Pn}

This indicator is used to drive source term in equation (2.7.4) because it has proven to be

s, = logio (

ds) (2.7.6)

more reliable for very strong shock waves and viscous flows. While using equation (2.7.6) to
drive the piecewise constant artificial viscosity method is possible, using this indicator in the

piecewise constant setting extends the numerical stencil beyond the nearest neighbors and
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hence violates one of the constraints on shock capturing methods. The artificial viscosity
coefficient, which is the solution to equation (2.7.4) is limited to give é. The final expression

for €, which is a limited version of ¢, is given as:

0 € < €low
a=q  3(1+sin(r S 1)) G <e<an
. i €= i (2.7.7)
o = O\ e
" p
€ni = )\maxﬁ

which acts as a limiter to bound the viscosity between minimum and maximum threshold
values given by €, and é,; respectively. One should also note that ¢ = 0 is an exact solution
to the artificial viscosity diffusion equation if the source term vanishes. Thus if p is taken to
infinity or the mesh size to zero the artificial viscosity will vanish, which implies consistency

with the original governing PDEs.

2.7.3 Mesh Metrics

The artificial viscosity method in this work relies on the computation of mesh size metrics.
The mesh size metric is computed based on finding the minimum Cartesian quadrilateral
that encloses the cell. The size is then based on the sizes of the sides of the enclosing
quadrilateral. Figure 2.11(a) and Figure 2.11(b) show graphical representations of the mesh
sizes for triangles and quadrilaterals respectively. The mesh metrics are computed by finding
the maximum distance between the element nodes in each Cartesian i.e. (z,y) direction

separately for a given cell.

2.7.4 Artificial Viscosity Method Comparison

While both piecewise constant and PDE-based artificial viscosity methods are implemented
within the DG solver, the PDE-based method has become the method of choice because

it has demonstrated superior robustness when compared to the piecewise constant method.
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Figure 2.11: Mesh size metrics for triangles and quadrilaterals.

In this work, robustness is measured in several ways. First of all, an artificial viscosity
method is considered robust if it can adequately remove the Gibbs phenomena, caused by
using high-order discretizations to approximate shock waves, over a large range of Mach
numbers. For aerodynamic problems this range encompasses transonic to hypersonic flow
regimes. Secondly, the method must avoid applying diffusion to smooth phenomena such as
boundary layers (resulting in adverse accuracy implications), while still applying adequate
diffusion to shock waves, even on coarse grids. In references [47] and [68] piecewise constant
artificial viscosity was used in conjunction with Ap-adaptation for inviscid transonic flow
and viscous supersonic flow. Attempts to apply this method to a hypersonic flow at a
Mach number M., = 6.0 resulted in robustness problems as the piecewise constant artificial
viscosity was unable to simultaneously avoid the boundary layer and adequately smooth the
strong shock wave. However as will be shown, the PDE-based artificial viscosity can be
applied to very high Mach number flows relatively robustly.

There is a third, somewhat more subtle, though just as critical, measure of robustness
that must be considered for artificial viscosity methods in a high-order setting. This measure
of robustness is related to setting the adjustable coefficients of the presented artificial vis-
cosity methods. These coefficients control how aggressively the artificial viscosity attempts
to smooth the discontinuity. The third measure of robustness is related to assigning the
values of the adjustable coefficients as the discretization order p is raised (either adaptively

or uniformly), a process known as p-enrichment. A robust artificial viscosity method should
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be able to maintain the values of the adjustable coefficients across the p-enrichment range.
This is of critical importance when considering grid convergence of functional outputs.

In order to compare the two artificial viscosity methods, the inviscid transonic flow
over a NACAOQ012 airfoil is considered. The flow conditions are a free-stream Mach number
M., = .80 and an angle of attack a = 1.25°. This flow was computed using both piecewise
constant and PDE-based artificial viscosities with p = 1 to p = 4. The computational mesh

for this flow is depicted in Figure 2.12. Figure 2.13(a) through Figure 2.14(b) show the
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Figure 2.12: Computational mesh used for the transonic flow around a NACA0012 airfoil employing
piecewise constant and PDE-based artificial viscosity

resulting computed Mach number contours for p = 1 and p = 4 using both artificial viscosity
methods. As the discretization order p is increased the shock wave becomes significantly
sharper, regardless of the artificial viscosity method employed. However, the PDE-based
artificial viscosity spreads the shock wave over a wider area, as is also seen by examining the
artificial viscosity contours in Figure 2.15(a) through Figure 2.16(b). Figure 2.17 shows the
surface pressure distribution using both artificial viscosity methods at p = 4. Clearly the
piecewise constant artificial viscosity yields a sharper shock wave. However, the piecewise
constant artificial viscosity admits some oscillations at the lower surface shock wave, which
is undesirable.

The computed lift coefficient is plotted as a function of the number of degrees of freedom
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Figure 2.13: Mach number contours for an inviscid flow over a NACA0012 airfoil computed with
piecewise constant artificial viscosity using p = 1 and p = 4.

Figure 2.14: Mach number contours for an inviscid flow over a NACA0012 computed with PDE-
based artificial viscosity using p = 1 and p = 4.

(Npor) is depicted in Figure 2.18. Figure 2.18 clearly demonstrates that the computed lift
coefficient produced by the piecewise constant method does not converge towards a fixed
value as p-enrichment is performed, as the values change dramatically as p-enrichment is

performed. This is due to adjustments in the artificial viscosity coefficients at each refine-
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Figure 2.15: Artificial viscosity contours for an inviscid flow over a NACAO0012 computed with
piecewise constant artificial viscosity using discretization orders p = 1 and p = 4.
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Figure 2.16: Artificial viscosity contours for an inviscid flow over a NACAO0012 computed with
PDE-based artificial viscosity using discretization orders p =1 and p = 4.

ment level, which was required in order to obtain a fully converged solution. Adjusting the
coefficients for the artificial viscosity method has a significant impact on the computed lift
coefficient. Note that the p = 4 solutions using both methods resolve the shock wave within

one element. It is critical that the coefficients remain fixed during refinement procedures.
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Figure 2.17: Surface pressure coefficient C,, comparison at a discretization order of p = 4, using
PDE-based and piecewise constant artificial viscosities.
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Figure 2.18: Computed lift coefficient(Cr) vs. Np,r for the transonic flow over a NACA0012 airfoil
using both piecewise constant and PDE-based artificial viscosities at a discretization order of p = 4.

Otherwise one can easily end up in a situation where higher discretization order solutions
give nicer “looking” results, while producing no quantitative improvement in output func-
tional accuracy. This is the case in Figure 2.13(a) and Figure 2.13(b) where the solution is
more highly refined, while Figure 2.18 shows no improvement in accuracy of the computed
lift coefficient. Figure 2.14(a) and Figure 2.14(b) show the computed Mach number con-
tours using the PDE-based artificial viscosity with p = 1 and p = 4 respectively. While the
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PDE-based artificial viscosity has smeared the shock wave over a larger distance (best seen
in Figure 2.17 ) the functional is converging towards a fixed value, as the values change less
between refinement levels as the discretization order is increased.

Of the two methods presented, the PDE-based artificial viscosity method has been found
to be more robust than the piecewise constant method. This is due to the large amount and
smooth distribution of the artificial viscosity produced by the diffusion equation controlling
the artificial viscosity. In fact, observations made during the course of this work agree
with those of [37,69] with regard to the added robustness of smooth artificial viscosity
distributions. The added robustness is also demonstrated by checking the grid convergence
when uniformly raising the polynomial order or p-enrichment of a transonic flow.

As a result of this test, PDE-based artificial viscosity is considered almost exclusively for
the remainder of this work. PDE-based artificial viscosity has proven to be significantly more
robust by all the presented measures. It has excellent detection and limitation properties
and can handle a very large range of Mach numbers, as will be demonstrated. In addition
p-enrichment can be performed without adjusting the coefficients of the method. Two of the
presented examples will make use of the piecewise constant artificial viscosity formulation in

order to make a full assessment of this method.

2.8 Post-Processing

In the previous section, the computed Mach number contour lines are not always smooth and
continuous, such as in Figure 2.14(a). These non-smooth contour lines are the result of post-
processing artifacts, or rather a lack of post-processing of the solution. Most state-of-the-art
CFD solvers store the solution at the element-center or at the nodes in the mesh. Contour
lines are drawn by constructing interpolation functions using these uniquely specified data
values. However, DG methods store the solution in a more general fashion. For example,
this work makes use of modal basis functions, therefore the solution coefficients have no
relevance in physical space. In order to visualize the solution, it must be projected from the

modal space to physical space, which is accomplished by picking a set of output points (£, 7)
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in the standard element and obtaining the solution at these points via equation (2.2.11). In
this work, a set of equally spaced points is specified for each element and these points are

used to generate sub-elements for visualization purposes, as seen in Figure 2.19. In order

Figure 2.19: Example of output points. The circles are output points, the dashed lines are connec-
tions between output points and the solid lines are element boundaries.

to capture the solution over the full element, output points are specified along the element
edges, which creates doubly valued solutions along the edges in the mesh(an edge is shared
by two elements). The non-continuous behavior of the contours lines is the result of doubly
valued solutions at the output points on the element edges. The post-processor is unable to
display doubly valued data smoothly. However, this representation of the data is actually
a more accurate representation of what the CFD solver produces, since the interpolation
used to construct the contour lines cannot generate unique contour line values for data sets
that contain doubly valued solutions. Therefore, if a figure contains smooth continuous
contour lines such as in Figure 2.14(b), then the data produced by the CFD solver is nearly

continuous at the element edges.
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2.9 Boundary Conditions

A particularly attractive feature of compact high-order methods such as DG discretizations
is the ability to incorporate high-order boundary conditions. However, the boundary con-
ditions must be properly understood and implemented in order to obtain high-order super
convergence of the functional outputs. For example, if the approximate Riemann solver,
which is employed for the interior surface flux H,, is used on a slip wall then the func-
tional super convergence will be lost, which is the result of dual inconsistency as discussed
in Chapter 3. This section details the various boundary conditions used for the presented
test cases. DG discretizations present a challenge for applying boundary conditions due to
the presence of artificial diffusion and viscous terms on the boundary. Since gradients are
not reconstructed, special boundary conditions are required for these operators such that
they reflect the physics of the boundary while at the same time maintain proper mathemat-
ical treatment. In particular, the boundary conditions on the artificial diffusion operator
are derived since the treatment of this operator at boundaries is often omitted from the
literature [28,34,36-38, 70, 71].

When considering the mathematical treatment of boundaries one must be mindful of
both accuracy and stability. Reference [3] discusses this issue in detail, with the main theme
that stable boundary conditions are those that satisfy the direction of information propa-
gation based on the characteristics. In this work, the characteristics of the two-dimensional

Euler equations are utilized to derive the boundary conditions. These characteristics are

given as:
)\1 =u-n—a
)\2:7,_[:7_1:
\ o (2.9.1)
3=U-'n

M=U-T+a

Figure 2.20 depicts these characteristics for a slip wall boundary condition. The character-
istics enforce the constraints on how the information must be propagated at the boundaries.

An outward(relative to the domain interior) pointing characteristic indicates that informa-
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Figure 2.20: Ilustration of characteristic directions at the boundary.

tion leaves the domain and hence the boundary state should use information from the interior
of the domain, while an inward pointing characteristic implies the opposite and the bound-
ary state should be fixed based on the physical boundary values. One simply counts the
number of incoming and outgoing characteristics to obtain the correct number of bound-
ary conditions that must be specified by the physical boundary. The constraint is that one
must obey the characteristics and maintain the form of the boundary condition utilized in
equation (2.2.4). Furthermore let ()° represent the boundary state and let ()* denote the
state inside the element that is on the boundary. The various boundary conditions will
be described individually beginning with a slip wall. The goal of this section is to obtain
boundary conditions of the form

uy (uf) (2.9.2)

for each type of boundary condition required for the numerical examples. Here u? is the
boundary state that is computed from u;, which is the solution from the element that lies
on the boundary. The state u is evaluated at the quadrature points that lie directly on the
boundary, which means that the state is defined on the boundary, not in a ghost element
that is adjacent to the boundary. The boundary state u? is then used in computing fluxes
on the boundary using H2, H%, and H?,. In the description of the boundary conditions the
()n will be dropped to simplify the notation.
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2.9.1 Slip Wall

The inviscid slip wall boundary condition is used throughout this work for various applica-
tions in both viscous and inviscid flows. In the case of inviscid flows and curved walls this
represents the wall boundary condition that the Euler equations must satisfy. However, in
the case of viscous flows and walls that are aligned with the coordinate directions this repre-
sents a symmetry boundary condition, which is often used so that only half of the geometry
needs to be specified. The slip wall specifies that the flow should be everywhere tangent to

the surface as shown in Figure 2.21.

VoYV

Figure 2.21: Illustration of slip wall boundary condition on velocity.

Flow tangent to the boundary requires that the velocity normal to the wall be zero and

the velocity tangent to the wall be preserved,

=
SL
I

(2.9.3)

ﬁ}ro

i -7

ml

where 7 is the vector normal to the surface and 7 is the vector tangent to the surface as

shown in Figure 2.21. For an arbitrary curved edge the coordinates Z are represented as
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Z (s) where s is a parameterization variable. This gives the tangent vector as

L dr dy\ _ T
T = (ds’ ds> = (Ty, Ty) (2.9.4)

and the normal vector 77 is defined such that:

0

mll
I

i (2.9.5)

7 (nm,ny)T

The tangent vector components can be written in terms of the normal vector components as
7 = (ny, —ny) (2.9.6)

which is used to simplify the notation when the tangent vector is employed.

The slip wall boundary condition results in one inward and one outward pointing charac-
teristic as well as two ambiguous characteristics(@-7 = 0), which allow for the information to
be specified from either the boundary condition or from the element adjacent to the bound-
ary. In this case the velocities are set according to the requirements of equation (2.9.3) and
the density and total energy are taken from within the element. Enforcing the requirements

on the velocity results in

u’n, +v’n, =0

(2.9.7)
u’ng, —v'n, = utn, —vin,
which are solved to give
w =ut — (vt n, +vtny) n,
(2.9.8)
v’ =ovt — (uTn, +vny)n,
The resulting boundary state vector u® is given as
( n )
p
b
w=1{" (2.9.9)
ptot
+
E, )

\
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For the SA model equation and PDE-based artificial viscosity the quantities are extrapolated
from the interior (as was done with density and total energy).

(p2)" = (pir) "

Gb:€+

(2.9.10)

The viscous and artificial diffusion fluxes have yet to be specified. These are perhaps
the more difficult boundary conditions to apply because no information about the gradient
is given in the boundary condition. However, since this is essentially a symmetry boundary
condition one can infer that no gradients are present at the wall. Rather than enforce the
boundary condition on the gradient of the state variable, instead the boundary condition is

enforced on the fluxes.

HP =0

v

b _
%ad_

(2.9.11)

This results in no physical or artificial diffusion on the boundary, which is a stable and
accurate boundary condition. Applying appropriate boundary conditions to the artificial

diffusion is critical to maintaining a stable discretization.

2.9.2 No-slip Walls

For viscous flows a no slip boundary condition is applied as the wall boundary condition.
There are two types of no slip wall boundary conditions, the no-slip adiabatic and the no-
slip fixed temperature wall. The adiabatic wall is normally used in aerodynamic simulations
while the fixed temperature wall may be used in aerothermodynamic simulations such as
hypersonic flow. Both boundary conditions specify zero velocity at the wall. For an adiabatic
wall, density is taken from the element and total energy is computed from these values. The
Reynolds stresses are also zero at the wall, which implies that the SA working variable v is

zero at the wall. Treating the artificial viscosity for the PDE-based artificial viscosity as in
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the slip-wall boundary condition, the boundary flux vector becomes

( )

pT
0
ub:
0
(2 L e (2.9.12)
| B3 (W) 4 0h))
(pp)" =0
Eb:€+

The viscous and artificial diffusion fluxes are computed using the state gradients from the
element on the boundary with the exception of the energy equation viscous flux, which is
set to zero.

Ho(4)=0 (2.9.13)

In the case of the fixed temperature wall the state vector is given as

o
, 0
] o
(5 (2.9.14)
(p7)" =0
where
P'=(y-1) (Et* — 50" ()" + (v+)2>)
E.b _ Twall
v(r=1) (2.9.15)
b __ Pb
SRICENY
(Et)b = "E’

where T,y is the specified wall temperature. In this case the viscous and artificial diffusion
fluxes are computed using this boundary state and the gradient from the element adjacent
to the boundary without modification. For the fixed temperature wall the SA model variable

is set to zero and the artificial viscosity is extrapolated from the interior.
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2.9.3 Characteristic In/Out Flow

Due to the specified form of the boundary condition e.g. u’(u™), the far-field boundary
requires special attention. A typical implementation of the far-field boundary condition
considers using the Riemann solver at the far-field boundary, which is simple and stable.
However, this approach will not satisfy equation (2.9.2). In order to continue to use boundary
conditions of the form specified in equation (2.9.2), a characteristics-based far-field boundary
condition is employed. In this case, the Riemann invariants of an isentropic inviscid flow are
considered, including a scalar transport equation for the turbulence model equations.

In order to find the boundary state u®, the Riemann invariants must be obtained. The
full analysis is too lengthy to be considered in full here. Instead the Riemann invariants will
be presented without derivation for two-dimensional flow with a scalar transport equation
appended to the system. It will be shown how to derive far-field boundary conditions for

sub/supersonic flows using the Riemann invariants. The Riemann invariants are given as:

wp = S
Wo = U-T
w3 = S
2
wi=d i+ “1) =R,
7 (2.9.16)
L. 2a
Wy =U-N — =R,
(v—1)
where
S = entropy
s = scalar

and must remain constant across the boundary. The actual boundary conditions will depend

on whether the flow is subsonic or supersonic.

Subsonic Flow

In the case of subsonic flow, the number of characteristics pointing into or out of the domain

depends on whether the boundary is an inflow or outflow boundary. The inflow and outflow
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boundary situations are depicted pictorially in Figure 2.22(a) and Figure 2.22(b) respectively.

In the case of subsonic flow the Riemann invariants are solved to determine the boundary
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Figure 2.22: Inflow and Outflow characteristic information propagation directions for subsonic flow.

state. For an inflow boundary (i.e. @ -7 < 0) the Riemann invariants are

( P
S=-—=
(Pso)”
2a+
R, = (i 7)™+
p = (i) (v—1)
* (y=1)
(u F)b —UooMy + VooNg
| s* = s
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where (), specifies the far-field or free-stream state. Similarly, the outflow (i.e. @ -7 > 0)

Riemann invariants are

/ p+
S=——
(p*)
2a™
R, = (i 7)™ +
p = () (v—1)
" < (y—-1)
(@-7)° = —utn, +vtn,
\ U

The Riemann invariants are then used to compute the boundary state. First of all, the

boundary normal velocity and sound speed are given as
b (v-1

a =

?(Rp — ) (2.9.19)
(@-7) = L (B, + Ra)

which are intermediate quantities. The density is computed as

o= <<fb7)2> o (2.9.20)

and the velocities are computed as

(2.9.21)
=y (i@ 1) 4 ng (- 7)°
Finally the total energy is given by:
Pb — S (pb)"/
pb 1 ) ) (2.9.22)
B — L < b b )
Inserting the expressions for velocity, density, and energy into the state vector gives
( )
P
by
u = P
pbob (2.9.23)
(B |
(p)" = ps"



where in this case the scalar s, equals the turbulence model variable 7;,. Viscous and artificial
diffusion fluxes are set to zero at the outer boundary.
HE =0

(2.9.24)
Hgd - O

Supersonic Flow

The case of supersonic flow is quite simple since all the characteristics point in a single
direction as shown in Figure 2.23(a) and Figure 2.23(b). For supersonic inflow all information
comes from the far-field conditions and for supersonic outflow all information comes from

the domain interior. Mathematically the supersonic inflow state vector is given by:

( 3\

Poc
OOuOO
u’ = P
PooVso (2.9.25)
\ (Et)oo J
b
(py) = PooSoo
and the supersonic outflow case is given by
()
p
- ptut
u’ =
ptot (2.9.26)
(B |
(p7)" = p*s*

The artificial viscosity transport equation far-field boundary condition is different from
that of the Navier-Stokes equations. Following reference [37], the far-field boundary condition
of the artificial viscosity PDE is a Robin boundary condition applied such that

Je € — €

3= (2.9.27)

— 2 —
where in this work L = 104/ (h . ﬁ) ., h = (hy, hy) is the mesh size metric in Section 2.7.3,
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Figure 2.23: Inflow and Outflow characteristic information propagation directions for supersonic
flow.

and €., = 0. One such expression that satisfies this requirement is

9" _ ¢
or . 2 ¢
10 (hﬁ)
o ; (2.9.28)
i S

(0

Then the flux for the artificial viscosity PDE on the far-field boundary is computed as usual
but the symmetry and penalty terms are set to zero because this is not a Dirichlet boundary
condition.

b b
% N, + ¢ Ty (2.9.29)

where fpge—qo is the equation number corresponding to the artificial viscosity PDE.

Hgd (fpde—av> -

63



64



Chapter 3

Dual Consistency of Discontinuous

Galerkin Discretizations

When considering DG discretizations, dual (or adjoint) consistency is a key property that
must be fulfilled by the discretization in order to obtain optimal error convergence properties
[49,72]. Dual consistency requires that the adjoint of the discretized equations satisfies the
continuous adjoint equations. Through the dual consistency property one attains the so-
called order doubling of functional error, where the functional error behaves asymptotically
as O (h*) rather than O (h?). For two dimensional problems, h = +/Np,r where Np,r
is to the total number of degrees of freedom in the mesh. Dual consistency of the Euler
and Navier-Stokes equations has been studied in references [49,56]. References [20,72] have
studied the dual consistency of the SA turbulence model source terms and reference [71] has
studied the dual consistency of “Bassi-Rebay 27 [73] discretizations of the artificial diffusion
terms.

This work also considers the dual consistency issue, in particular for non-linear Poisson
type diffusion terms such as those encountered in turbulence modeling and artificial diffusion
schemes. The dual consistency of the proposed SIP discretization is analyzed and remedies
for dual inconsistent discretizations are presented when possible. Additionally, the dual
consistency of the Navier-Stokes discretization is studied via numerical experimentation to

ensure that the implementation has been performed correctly. The proof of dual consistency
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for the Navier-Stokes discretization is detailed in reference [49].

This section describes the analysis of dual consistency of the Symmetric Interior Penalty
(SIP) discretization for the artificial diffusion operators in Section 2.1. The section very
closely follows the analysis framework laid out in reference [49]. A non-linear Poisson equa-
tion is used as a model for this analysis, since this equation mimics both the artificial diffusion
terms of the Navier-Stokes equations and the diffusion operator of the PDE-based artificial
viscosity. This equation also mimics the diffusion and source terms of the SA turbulence
model equation, which enables one to draw conclusions regarding the dual consistency of the
turbulence model discretization.

In addition to analyzing the dual consistency of a non-linear Poisson equation, the dual
consistency of the Euler equations is also established. The analysis demonstrates the im-
portance of boundary condition treatment on dual consistency and illustrates the procedure
employed for the dual consistency analysis of boundary conditions. The inviscid wall bound-
ary condition specified in Chapter 2 is analyzed in order to justify the mathematical form of

the boundary conditions in equation (2.9.2).

3.1 The Adjoint of Non-linear Operators

Since the dual or adjoint problem is inherently linear the dual problem of a non-linear
operator must be defined in terms of an appropriate linearization. Consider a general Fréchet

differentiable non-linear operator
Nu=0 inQ, Bu=0 onT (3.1.1)

on the domain €2 with the boundary of €2 denoted as I'. The problem defined in equation

(3.1.1) is known as the primal problem. Let J (u) be a non-linear functional given as

J(u):/ﬂjg (u)dQ—i—/Fjp (Cu)ds (3.1.2)

where C'u is a non-linear operator that takes the solution v and generates derived products

for the output functional. For example, computing heat flux from temperature and thermal
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conductivity is an example of using C'u to derive a product from the solution u. Let the

Fréchet derivative about some point be denoted as,

(5:), w1 =Fuw (3.13)

where the term in square brackets is the state about which the derivative is taken and w is

the linear variation of u. The linearized functional is given by
and the linearized non-linear operator as
Ny (w)=0 VFeQ, By (w)=0 Viel (3.1.5)

Using the linearized functional J[/u] (w) and operator N, [/u] (w), the adjoint operator is defined

as the operator (N *)’M (¢) that satisfies the following duality identity.

(Mg (w) ), + (B @) (€Y (), =
(s (7Y ), + {0 (B (), = 516
< L

UJ,JQ[U]>Q + <w7jF/[C’u]>F

where 1 is the adjoint variable. (-,-) is an inner product defined on the domain Q and
(-, )p is an inner product defined on the boundary I' of the domain. Note that <w, jg/[u]>9 +
<w, jF/[cu}>F is equivalent to JEU] (w). In this identity B is the boundary operator and B* is
the adjoint boundary operator. This duality identity is not arbitrary, in fact the identity is
chosen so that the operator controlling the linearized solution w and linearized functional
J['u] (w) satisfy the same duality statement, as seen in equation (3.1.6). This defines the
adjoint which can also be thought of as the sensitivity of the functional with respect to the
non-linear operator Nu. The adjoint is the variable ¢ that satisfies the following equation

!

(N () =Jap F€Q, (B @) =lrey TET (3.1.7)

which is the so-called continuous adjoint equation. The continuous adjoint equation is used
in dual consistency analysis. Furthermore, an adjoint variable is only defined for a particular

output functional J (u).
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3.2 Definition of Dual Consistency

Dual consistency is the property that the continuous adjoint solution satisfies the discrete
adjoint equation where the discrete adjoint equation is derived from the discretization primal
equation and not by directly discretizing the continuous adjoint. The definition of dual
consistency is such that the discrete adjoint equation derived from the the discrete primal
problem does represent a discretization of the continuous adjoint equation. Obtaining a
discrete adjoint equation via this approach is shown below.

In order to define dual consistency one must first introduce a discretization of the con-
tinuous problem Nwu. Consider a discretization of Nu given by:
find uy, € V), such that

N (up,vp) =0 Yo, €V (3.2.1)

where N (up,v;) is a semi-linear form, which is linear in the second argument. The dis-

cretization is said to be consistent if
N (u,v) =0 Yo, €V, (3.2.2)

where u is the exact solution satisfying equation (3.1.1), which is the same as the mesh size
h going zero(h — 0). Given the linearization of N (uy,vy,), denoted as /\/'[/uh] (wp,vy), the
discrete adjoint problem is given as:

find 5, € V), such that
'/V-[/uh] (wn, ¥n) = quh] (wp)  Vwn € Vg (3.2.3)

Analogous to a consistent discretization, the statement of equation (3.2.2), a dual consistent

discretization satisfies

'/\[[/u] (wh, w) = J[Iu} (wh) ‘v’wh € Vh (324)

where 1 is the exact solution of the continuous adjoint problem in equation (3.1.7). Armed
with this definition of consistency and dual consistency, a simple analysis is carried out in

order to determine the dual consistency properties of the discretization used in this work.
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3.3 Importance of Dual Consistency

While dual consistency is important to primal problem accuracy as shown in reference [74].
The effect of dual consistency on functional accuracy is just as important. The ability
to attain functional error super-convergence(O (h?F)) is a beneficial property of high-order
methods, which should be preserved by a high-order discretization.

To illustrate the importance of dual consistency a linear functional is considered in order
to make the argument formality easier to work with. A similar analysis holds for non-linear
functionals but requires more formality, which only serves to complicate the conclusion.

Consider a weak bi-linear form £ (u,v), which defines a linear problem.
L(u,v) = (fv), YveV (3.3.1)

The corresponding dual problem which defines an output of interest (linear analogue of

equation (3.2.4)) is given by:
L(u,)=(ug=Ju) YueV (3.3.2)
The discrete problem is find u; € V), such that
L (up,vp) = (f,on)q Yo, € Vg (3.3.3)
By definition, the discrete dual problem for J (uy,) is find ¥y, € V),
L, (up,¥n) = (Jyun)g = J (up)  Yup €V (3.3.4)
Consider the error in the discrete functional
J(u) = J (up) = L (u,¥) — Ly (un, ¥n) (3.3.5)

If one assumes that the continuous solution v and continuous adjoint ¢ satisfy the discrete

operator L, then equation (3.3.5) can be written as

J(u) = J (up) = Ly (u, ) — Ly (up, Yn)
= Ly, (u, ) — Ly (un, V) + Ly (up, ) — L (un, Yn)

(3.3.6)
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where zero was added in the form of £y, (un, ) — Ly, (up, ). This can be collapsed into

J(u) = J (un) = Ly (u — up, V) + Ly (up, v — n) (3.3.7)
Adding zero in the form of L, (v — up, ¥p) — Ly, (u — up, ¥y, results in
J(u) = J (un) = Ly (u— up, b = y) + Ly, (up, ¥ — ) + Ly (u — up, Pp) (3.3.8)
Now if £}, is consistent then
Ly (u,vh) = <f, Uh>Q Yo, € V), (339)
and if £ is dual consistent then
Ly (uh,¢) = J(uh) Yuy, € Vy, (3310)
since ¥, € V), and uy, € Vy, then the following is true.
Lh (un, ¥ —¥n) = J (un) — J (un) =0
Ly (u—un, V) = (f,vn)g — (f;¥n)g =0 (3.3.11)
J(u) = J (up) = Lp (u— up, 1 — 1)
From approximation theory the absolute value of the error can be bounded.
| (w) = J (up)| < C [ w—upn ||| ¥ —tn ||
U — U 1 < CO (kP
I wlla (h?) (33.12)
| ¢ = [ < CO(RP)
| (u) — J (up)| < cO (h") O (RP) = CO (k)
where || - ||z is a Sobolev norm of order one. It follows that without dual consistency one

cannot form the argument used to generate the O (h?") functional error estimate. This is the

reason dual consistency is important. One should also notice that primal consistency plays

a role in obtaining the functional error estimate, thus both primal and adjoint consistency

are needed to obtain optimal results. However, dual consistency is often the one that is over

looked in the literature.
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3.4 Dual Consistency of a Non-linear Poisson Equation

One of the strategies to improve solver robustness is the addition of artificial diffusion to the
governing equations. As such one of the principal questions pertains to the effect of artificial
diffusion on the discretization. The analysis of a non-linear Poisson equation serves as a
model for the artificial diffusion used in this work.
As model problem, consider a non-linear Poisson equation
V- (v(u, Vu) Vu) + S (u, Vu) = 0 (3.4.1)
subject to the boundary conditions
uw=ua,7 P
(3.4.2)
Vu-ii=ay, eV
where the diffusion coefficient v and source term S are both non-linear functions of the

solution and solution gradient. For this problem let the functional be defined as

J(u):/ng(u)dQ—l—/FDjD(C'u)ds—i—/FNjN(C'u)ds

(3.4.3)
Cu=v(u,Vu)Vu -1
with the corresponding linearized functional given as
J[Iu] (w) = / jgl[u] (w) dQ2 + / le[u] (vVw -+ v,wVu - 1t 4+ vy, - VwVu - i) ds+
@ o (3.4.4)

/FN jN’[u] (vywVu -1+ vy, - VoVu - 1) ds = JQ/M (w) + JFDIM (w) + JFNI[U] (w)

This equation can model both the artificial diffusion flux for any component of the Navier-
Stokes equations, by setting S (u, Vu) = 0 or the PDE controlling the artificial viscosity by
including both. Furthermore, this model problem allows one to draw some conclusions about
the SA turbulence model, due to the similarity between this equation and the diffusion and

source terms of the SA model.

3.4.1 Continuous Adjoint

The derivation of the continuous adjoint begins by taking the Fréchet derivative, about

the solution u, of the non-linear problem defined in equation (3.4.1). Dropping the formal
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arguments of v and S for clarity the Fréchet derivative is

/ 0 0
Ny, (w) = o2 + 2 Vw-Vu+ V- v -VwVu | +
OU [u, V| OV U [u, V] (3.4.5)
oS N S c o
_ w _— . w =
OU [u, V] OV U [u, V]
For simplicity let %[H’VU] be represented as (-), and %[u,vm as (+)y,- Employing the duality

identity of equation (3.1.6), with the inner product defined as an integral for continuous

functions, the continuous adjoint is given as:

ov
OV U [u, V)

/ 0 {yv% +v,Vw-Vu+ V- ( ~ vauﬂ dQ+

(3.4.6)
/w[Suw+Svu-Vw]dQ:0

Integration by parts twice results in
/w V- wVY) =V -v,Vu+ V- (V- vy, Vu)] dO+
7{@& [vVw + v, Vuw + vy, - VwVu| - fids — f{w (Vv + Vi - vy, Vu| - ids+  (3.4.7)
/w [Sut) — Vb - Sg,] dQ + %vaUw -nds =0

Using the duality identity, the continuous adjoint equation and boundary conditions are

V- (VY) =V - v,Vu+ V- (VY- vy, Vu) + ¢S, — Vi - Sy, = —j;z[u]
Vit =y £V

by inspection.
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3.4.2 Discrete Adjoint and Dual Consistency

The DG discretization of the model problem equation (3.4.1) in weak from (i.e. integrated
by parts once) is given by:

N (up,vp) = — Z / vVuy, - Vo, — oS (ty, V) dQ+
keTh ke

Z {vVup} - [on] + {vVor} - [un] — p{v} [un] - [on]ds+

i i
o (3.4.9)
Z / VWVl il + 0PVl (uf = a) it — e (v — a) v ds+
D
beBy,
Z / veayvtds =0,V €V,
beBy, I

which is still a semi-linear form. In order to find the discrete adjoint, equation (3.4.9) is

linearized.
'/\/'[/uh] (wp, vp) = stl[uh} (wp, vp) +NFi/[uh} (wp, ) +NFbl[uh] (wp,vp) =0 Yo, €V, (3.4.10)
Where the individual terms are given by:

Ngl[uh} (wp, vp) = — Z / vNVwy, - Vo, + vy, wpVuy, - Vop + vy, - VwprVauy, - Vo —
keTh Q

UhS (uu, V’U,u)uh wp — ’UhS (Uu, Vuu)th . thko
(3.4.11)

Nrijy (whop) = /F {vVwn} + {vw, wnVunt + {vew, - VurVur}] - [un]

i€l

— [,U, {V} [[wh]] + p {Vuhwh} [[uh]] + {VVuh . th} Huh]]] . [[Uh]]+ (3.4.12)
{vVon} - [wn] + v, wnVon} - [un] + {veu, - VunVor} - [un]ds

./\/—pb/[uh] (wh,vh) = Z/

O Tyt o b Tt b +v7,+] ot . 7
. [PV + vwy V! + 03, - Vo V! v - a4
beBy *
bxT ot = b Tt (0 = b Tt (o =
v’Nuywy -+ vpw, Vuy (uh—a)~n+Vth-thVvh (uh—a)-n—

(w4 plwyt (wf — a) @+ pvd, Vi (uf — a) ii] v - dids+

b b
g / VWi anvf + v, - Vwfayvfds = 0,Yu, € V,
TN
beBy,

(3.4.13)
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which are the integrals over volumes, interior faces and boundary faces respectively. The

discrete adjoint is given by find 1, € V), such that

'/V’[iu,h} (whawh) =

, , / / (3.4.14)
N, Wy V) + Nri g,y (Wn, V) + Nrop,) (Way n) = T, (wn) Yo, €V,

For simplicity each integral will be handled separately. The discrete adjoint volume integral

in equation (3.4.14) ./\/Q/[uh] (wn, ¥y) is integrated by parts to yield

Ny, (wn,n) = Y [ wn [V - (0V8n) = Viby - v, Vi + V - (Vi - v, V)] +

keTh Q
wp, [YnSu, — Vp, - Svu, | dU + Z; + 2

Z; = Z f UV w i — V- v, VUi w) - i+ ) S, w) - fids
ke, Y OAL®

Zy = Z /FD —I/bvdih wh n—V@/Jh l/vuhVuhwh n+¢h SVuhwh - ids

beBy,

(3.4.15)

The Z; term is added to the surface integrals and the Z, term is added to the boundary

surface integrals. Let ¢, — ¢ and wu, — wu, which results in the following for the volume

integral.

(wn, ) = / (VYY) =V - 1, Vu+ V- (Vi - vy, Vu)] +
keT;, ¥ S (3.4.16)

The volume integral in equation (3.4.16) evaluated using the continuous adjoint variable is

zero by definition of the continuous adjoint equation given in equation (3.4.8).

The surface integral in equation (3.4.14) given by Npi/[uh] (wp,¥p) is

Nt (wn, n) = Z/ {vVw} + {vw, wnVun} + {vew, - VorVug}] - [¢a]

1€Ty

— [u{v} [wn] + p {Vuhwh} [un] + p {VVuh -V} [un]] - [n]+ (3.4.17)

{I/VQ/Jh} . [[wh]] + {I/uhth?/Jh} . [[Uh]] + {VVuh . thv¢h} . [[uh]]ds
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Translating this into an element based integral and adding the Z; terms from equation

(3.4.15) gives

/ 1 1 1
NFi [un] (U}h, 77Z}h) = § % |:§vah + 5 uhthuh =+ §VVuh . thvuh:| . Ihz)h]]
ner Jonre

1 1 1
g1 + g B + e, VLl | Tl 18
vV} w7+ {v, wn VRt - [un] + {vew, - Vo ViRt - Tun]—

vV wl i — V! vey, Vw4 Y Seu,w) - fids

Making use of the following identity
— — 1
wi Vi1 = {Vn} - nw + 5[[V¢h]]w;: (3.4.19)

results in

/ 1 1 1
Nri,g (wa ) = > j{ {ivah + 5V W Vun + 59, - thvuh} [4n]

- {N%Vﬂwhﬂ + H% wn Wh [un] + #%th ' th[[uh]]} wn]+

_ (3.4.20)
{VV@Dh} w,’: -n 4+ {Vuh’thlﬁh} . [[Uh]] + {VVuh . vthQ/Jh} . [[uh]]—

1
vV w1 — 5[[1/V2/1h]]w;{ — V;F - vy, Vu )l - i+
1/Jthuhw;LL . ﬁdS
Again let 1, — 1 and uj, — u. From the definition of the jump in equation (2.2.6), it is clear
that the jump in both exact solution u and exact adjoint ¢ are zero([¢)] = 0 and [u] = 0)
canceling many terms in equation (3.4.20). The remaining terms in equation (3.4.20) are

NFi/[uh} (wha Q/}) - Z % lezr (wSVU = VQﬂ ’ VVUVU ’ ﬁ> ds (3'4'21)
ner Joa\r

This expression should be equal to zero, but it is not due to the source term and viscosity

dependence on state-variable gradients. This is one source of dual inconsistency.
/

[un]

The boundary integral in equation (3.4.14) Nrep, 1 (wh, ¥y) plus the boundary term Z,
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resulting from the integration by parts of the volume term in equation (3.4.15) is
Nrb ] (Why V1) = Z / bth vow Vul + l/vuh Vw;LLVuh} (RIS
beB, V1P
PVl i+ w Vol (uf —a) i+ 08, - Vg Vol (uf — a) - ii—
(w4 by (uf — a) it + pvl,, Vi (uf — a) ii] ¢y, - ii— (3.4.22)
VPVYFwl i — Vo vk, Vufwl i+ O Sou,wy - fids+
Z / voawlanyl + uVuh Vw; ant; ds
beBy,
Again let ¥, — ¢ and u, — wu and subtracting the boundary functional definitions,
oo ? (wp) in equation (3.4.24) and J.y ] (wp) in equation (3.4.4). results in the cancel-

lation almost every term, the remaining terms are given by:

Nrb[u (wn, ¥) — JFD ) (Wn) — JéN[u] (wn) =

NFb[u} (wp, V) Z/ JD[u (VVwy i+ Vo Vu - i+ 108, - Vo V- i) +
beBy,

G (—twf — by (wy = a) = w,, - Vol (4 —a)) ds— (3.4.23)

Z/ ]N[u] l/thu n+VW Vuw) Vu - n) ds =
beBy,

Z/ wy (=V - vg,Vu + ¢¥Sy,) - fids
FD

beBy,
where the target functional Jf[u} (wp) has been modified according to reference [49]. Note
that as 1, — ¢, then ¢» — j,, on a Dirichlet boundary and Vi) - i — j5 on a Neumann
boundary. Likewise as u;, — u on the boundary, then v — a on a Dirichlet boundary and

Vu - i = ay on a Neumann boundary. The modified target function Jp.p ] (wp) is given as

Jpo w (Wn) = Jpo w (Wn) +

Z/FD_/th_M vy (u) —a) = pv,, - Vi (4 —a) ds
beBy,

(3.4.24)

which adds the penalty term to the functional definition in equation (3.4.4), in order cancel
the penalty contribution to the Dirichlet boundary integral in equation (3.4.22). This mod-

ification is not arbitrary and has an intuitive explanation. Essentially when evaluating the
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functional on the surface one should use the gradient from the element plus the so-called
"penalty gradient” (u (up, —a)). In other words, in order to obtain a dual consistent dis-
cretization one needs to define the functional based on how the boundary surface integral is
computed for the discretization in equation (3.4.9).

From the above analysis it is clear that dual inconsistency can occur for this problem

and discretization, as seen in equation (3.4.25).

-A/’[/u} (wh>¢) = NQ/[u] (wh77v/}) +Nf‘ll[u} (wh>¢) +NFb/[u] (wfu,é/}) =

0+ 27{ wi (Y Sy - 7t — VO - v Vu - 1) ds+
keT, J OU\L?

Z / wi (=V¢ - vg,Vu+ ¢Sy,) - 1ids  VYwy, € Vy,
FD

beBy,

(3.4.25)

However, the sources of inconsistency are relegated to state-variable gradient dependencies of
the viscosity and the source term. If one eliminates the dependence of these terms on state-
variable gradients, then the discretization is dual consistent. Either of the artificial viscosity
methods employed for shock capturing is dual consistent because neither the viscosity or
the source term has any dependence on the state-variable gradient. However, this is not
true of the SA turbulence model(equation (2.1.2)) used to close the RANS equations in
this work. The SA turbulence model has a source term that depends on the state-variable
gradient causing the model to be dual inconsistent. Attempts were made to eliminate the
dual inconsistency by following the methods in reference [42]. Unfortunately, applying these
methods increased computational time by a factor of two and resulted in a significantly less
robust solver.

The viscosity dependence on the state-variable gradient has implications beyond artifi-
cial viscosity. Large Eddy Simulation(LES) often employs a sub-grid scale(SGS) viscosity,
which is algebraic and depends on the gradients of the state-variables. The dual consistency
analysis of the model problem implies that SIP discretizations of LES models employing
algebraic SGS models, which depend on state-variable gradients, will result in a dual incon-
sistent discretization. Hence extending the presented SIP method to LES will not be straight

forward, as optimal accuracy will not be obtained for these types of algebraic SGS models.
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3.5 Dual Consistency of Boundary Conditions for the
Euler Equations

An important aspect of the discretization is the effect of boundary conditions on dual con-
sistency. Dual consistency gives guidelines for constructing optimally accurate boundary
conditions, both from a solution error point of view and functional error point of view. This
section will detail the analysis of the wall boundary condition applied to the Euler equations.
The purpose of this section is to give an example of how the analysis is conducted and what
conclusions can be drawn from this analysis.

Consider the compressible Euler equations written in a general flux form equation
(2.1.12). Recall that bold face symbols are vectors in the number of unknowns and vectors

with arrows over the top are vectors in the number of physical dimensions. Therefore a bold

du

face symbol with an arrow over it is a rank 2 tensor. Neglecting the temporal derivative 3

and artificial diffusion fluxes f‘ad in equation (2.1.12), the steady-state Euler equations are
written as

V-F(u)=0 (3.5.1)

where the subscript ¢ is dropped because it is not necessary for this analysis. Also consider
the following functional,
7 (u) = /j (C (w))ds (3.5.2)
r
which is defined only on the surface, since for acrodynamic flows this is the principal type
of functional, examples of surface based functionals are lift or drag. Here C'(u) is a non-
linear function that can change the state vector into derived products such as pressure or

temperature. j is a surface sampling function indicating what surface to use and how to use

it. For example if the desired target is lift then

j=i-(—sin(a),cos ()" =i Zpa (3.5.3)
Zwan = (—sin (), cos (a))"

where P (u) is the pressure, « is the angle of attack and the integral is done on I',4;, which
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is the wall boundary.

3.5.1 Continuous Adjoint of Euler Equations

The steady-state Euler equations represent a non-linear operator, which is linearized to
obtain the continuous adjoint equation. Linearizing the steady-state Euler equations, given

in equation (3.5.1), around the state u.

V- (ﬁ’[u] (w)) - (ﬁ’[u]> Vw =0 (3.5.4)

Linearizing the functional about u as well, results in the following.

J[,u] (w) = /FjECU]C[’u]WdS (3.5.5)

Taking the inner product of the adjoint variable with the linearized PDE results in

/Q WAV (F’M (w)) Q=0 (3.5.6)

which is integrated by parts once to obtain

_ /Q vy - (f‘/[u] (W)) dQ) + /FwTﬁl[u]W . fids = J[/u] (w) (3.5.7)

and is transposed to give

- /Q wT (F’[u]>T VapdQ + /F wT (F’[u])Tw dids = Jpy (w) (3.5.8)

This results in the continuous adjoint equation, found by analogy to the duality identity in
equation (3.1.6)
— T
(Fi) - Ve =0 (3.5.9)

where the right hand side is zero because in this case there are no volume sampled objectives.
The adjoint boundary conditions are a bit more difficult to obtain. Recall the part of the
identity in equation (3.1.6) <C['u] (w), (B*)/[u] (@Z))>F and recall the definition of C' (u) = P (u),
which is the pressure, hence the the linearization of C' (u)
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The flux at the slip wall boundary is pressure alone and thus

/ (F[UO P - ndS—/WPu] M+ Zyauds (3.5.11)

which allows for the deduction of the continuous adjoint boundary condition. Considering
that at the wall F = (0, P1i,0), one can deduce the continuous adjoint boundary condition
as

—

Y= Zyau (3.5.12)

which pertains to the momentum adjoint variables. The density and energy adjoint variables
have Neumann conditions just like the primal density and energy as in equation (2.9.9).
Now that the continuous adjoint equation and the associated adjoint variable wall boundary

condition are known, a dual consistency analysis is conducted.

3.5.2 Dual Consistency of Discrete Euler Equations

Consider the DG discretized Euler equations with the possibility of employing an approxi-
mate Riemann solver(discussed in Chapter 2) on the boundary. Note that during this anal-
ysis the ()" notation will not be used, for the clarity of linearizing the approximate Riemann
fluxes, H. The discretized steady-state Euler equations from Chapter 2 equation (2.2.3) are
given as

N (up,vy) = — Z Vvh - F (uy) dQy, + Z fgﬂk\rb (V,J{)T"H (w),uy,, 1) ds+

kET kET (3.5.13)

Z/ vh Hb uh,uh(uh) )ds—() Vv, € V),

beBy,
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where the viscous(F,), artificial diffusion(F,q), and source(S) terms in equation (2.2.3) are

set to zero. Equation 3.5.13 is linearized to obtain

, OF
Muh] Wyp, Vh Z VVh thQk+

heT Ty
Sfo (62 w2 e
ke, /O O [t ] Oy [ut ;1]
Z/ ( Hy +.8Hb % )W;erszo Vv, €V,
beBn oo ()] O o () ] O [

(3.5.14)

which is a bi-linear form for wj. The corresponding discrete adjoint equation is

T
Ny (W, - Vb, dQ+
h] h qph Z /{; [auh [uh}] T,Dh k

keTy,

o | oH B 1Y N\
Z fgﬂk\rb (Wh) lguh [y, "]] ’ (Wh) [auh Crt "]] v

kETh
oH oH 0 '
u

Z/ ( b +_8b —ai ) Yids=0 VYw, €V,

r ot (o )] O [, (o) ] O ]

(3.5.15)

Following the previous section dual consistency is shown one integral at at time and

the continuous solutions will be inserted into these small pieces. First consider the volume

integral of the discrete adjoint equations in equation (3.5.15).

h] kez;h I auh [un]
To show dual consistency let u, — u and ¥, — ¢
Nap (W) = > /Q 811 ul VpdQ, =0 Yw, € V, (3.5.17)
keTy,

by definition of the continuous adjoint equation (3.5.9). The interior surface term in equation

(3.5.15) can be re-written in a face based from.

Ny (Wh, 1)) = Z/ [ £

T
] [¥,] - ids Vwy €V, (3.5.18)

+ o=
€Ty u; ,u, 7”]
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Again let let u;, — u and 1, —

T
Nrily) (Wi, 3 Z/ {8u+ [uunJ [¥] - 7ids =0 VYw, €V, (3.5.19)

i€Lh

which is zero by [¢] = 0. Finally the boundary terms in equation (3.5.15) are given as

T
A7 [ Oy oty Ouy +4 3.5.20
Z /Fb (Wh) ( . T ouy [u) o, (uf) ] ou) fut] Py, ds (3.5.20)

into which the substitution u, — u and 1, — 1 is made.

T
OH,, OHyp ou, B
pr ) (Who 9 Z / (%[u ub (), * om, ou, [wub(u ]%[u) Vs =
beBn (3.5.21)
Z/ ][Cu]Cu]thS Ywy, € Vy,
beBy,

If the functional definition j (C'(u)) is modified so that it is evaluated at the boundary state
then one obtains j (C’ (ub)) as:

T

, P oub
: L 0,7,0) - Zyau (3.5.22)

0™ 9wl ) O g

Recall the continuous adjoint boundary condition 2/7 -1 = 1+ Zyau- Therefore on the left hand

side one needs the following to make this equality true.

T
OHy OHy, ouy, OP Ou,
n dh ) 8 9 3.5.23
( ou [uwtu)i]  Owy [1ub (w),7] ou [u] Oy [y OU [ul ( )
This is only possible if
Hy, (w0, 7) =7 F (w (uf)) (3.5.24)

which upon linearization and substitution with the continuous solution u, one obtains

T
(wi)" (%i 1 Ba e B ) V-
U fuut(wi] O [uub(u)i] O [u] (3.5.25)
or out T n

— — W
ol Ou "
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Using equation (3.5.25),equation (3.5.22) and the definition of the adjoint boundary condition
equation (3.5.12) in equation (3.5.21) gives

oP ou 1" | ,
g 7.0) - 2, uds = Y s —
Z/pb {011”[14 du [u]} i (07,0) - Zuands Z/rbj[“] i

beBy, beBy,

b o 1T (3.5.26)
Z/ [a_i l :| W}er (0,7_7:,0) 'gwallds
5 Jrv L0 ou [u]
Ny (W, ¥) = Ny (wn, ©) + Nrigy) (wn, 1) + Nysgy (wn, 1) =
(3.5.27)

o+0+Z/Fbj[u]ds:Z/Fbj[u]ds Ywy €V,

bEBh bEBh

Thus the scheme is dual consistent under this type of boundary condition as seen in
equation (3.5.27). While it is technically possible to devise a boundary condition of the form
Hy, (u), u, (uy)) , 7) that is dual consistent. It is much simpler to form a boundary condition
of the form H, (ub (u;) ,ﬁ), which is dual consistent by the presented analysis.

While the analysis of dual consistency is shown for model problems, the discretization
of the Navier-Stokes equations including stabilization terms and boundary conditions is dual

consistent. The proof of this is presented very nicely in reference [49].

3.6 Numerical Examples

While dual consistency analysis is helpful it does not necessarily prove that the implemen-
tation of the boundary conditions and other terms is dual consistent. Therefore a numerical
example is computed to demonstrate the dual consistency of the actual computer program.
References [56,74] have shown that dual consistency errors only affect the functional error
convergence rate of even p values i.e. p = 2,4,6.... For a dual inconsistent discretization
the even p values show error convergence properties of the odd p value one order lower than
p. For example, a p = 2 dual inconsistent discretization would have a functional error con-
vergence rate of 2 instead of 4. Therefore to demonstrate that a scheme is dual consistent
it is sufficient to show the error convergence rate of a p = 2 discretization, compared to a

p = 1 discretization. In addition to examining function accuracy, some sample contour plots
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of the adjoint solutions are shown. Smooth adjoint solution contours are a qualitative sign

of adjoint consistency [56].

3.6.1 Laminar Viscous NACAO0012 Airfoil: Drag Error

To demonstrate the dual consistency of the implementation the laminar viscous flow over a
NACAO0012 is considered. Uniform mesh refinement is conducted at p = 1 and p = 2 and
the drag error is computed at each uniform refinement. The flow conditions are free-stream
Mach number M., = .5, angle of attack a = 1°, and Reynolds number based on airfoil chord
length Re = 5,000. The reference drag value is computed at a discretization order of p = 4

with 250,000 unknowns. Figure 3.1 demonstrates the drag error convergence rate for p = 1
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Figure 3.1: Drag error convergence for the flow over a NACA0012 airfoil computed at p = 1 and
p = 2 to demonstrate dual consistency.

and p = 2 discretizations, using uniform mesh refinement. The scheme is dual consistent

since the p = 1 result converges with order 2 while the p = 2 result converges with order 4.
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3.6.2 Example Adjoint Solutions

This section presents some sample adjoint solutions for a viscous laminar flow and an inviscid
transonic flow. These give a qualitative picture of the adjoint variable distributions in space
for two flow problems.

Figure 3.2 shows the contours for the adjoint of drag for the laminar flow over a
NACAO0012 airfoil at M, = .5, @ = 1°, and Re = 5,000. Notice that all the adjoint
solutions are smooth near the boundary as well as in the wake. The leading edge looks a
little non-smooth, which is a post processing artifact due to coarse mesh resolution at the
leading edge as well as the inability of the plotting program to handle high-order data sets
adequately(Section 2.8). Smooth adjoint contours are a qualitative sign of a dual consistent
discretization, which is free of noisy adjoint variables that give improper error estimates.
Also notice the "reverse wake” coming off the leading edge of the airfoil. The adjoint shows
that the upstream region is important for the functional of drag. This is non-intuitive, which
is why one appeals to the adjoint for adaptive refinement guidance.

Figure 3.3 shows the lift adjoint contours for an inviscid transonic flow computed with
the PDE based artificial viscosity. The flow conditions are M., = .75 and a = 3.5°. Notice
that even in the triangle shaped region upstream of the shock smooth adjoint contours are
obtained. Again the lift shows more sensitivity to the upstream flow field than to the down

stream flow field.
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Figure 3.2: Drag adjoint contours for laminar flow over a NACA0012 airfoil at My, = .5, a = 1°
and Re = 5,000.
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Figure 3.3: Lift adjoint contours for inviscid transonic flow over a NACAQ0012 airfoil using PDE-
based artificial viscosity, with My, = .75, a = 3.5°.
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Chapter 4

Solution Methods

An efficient and robust CFD solver requires the consideration of many coupled tasks. One
such task that is often overlooked or glossed over is the non-linear solver. In high-order
methods research, one often finds explicit time-stepping is used to solve the non-linear equa-
tions, even for steady-state flows [36,38,75]. While this is easy to program and generally
robust, explicit time-stepping is prohibitively slow due to the time-step restriction based on
the Courant-Friedrichs-Lewy(CFL) constraint, which becomes more restrictive as the dis-
cretization order increases. Fully implicit solvers offer a significantly faster alternative to
explicit time-stepping because there is no time-step constraint.

Implicit solution techniques are gaining popularity within the high-order methods re-
search community. References [30, 31,33, 76-78] pioneered the use of multigrid methods for
solving the linear system arising from the application of Newton’s method to the flow prob-
lem, as well as for solving the non-linear problem directly. As a follow-up to the multigrid
solvers, numerical experiments with the application of Krylov methods were conducted in
references [15,57,79].

In this work, implicit solvers are used exclusively for all test problems. Newton’s method
is used to solve the non-linear algebraic system of equations resulting from the spatial dis-
cretization of the steady-state form of the governing equations in equation (2.2.4). In order
to solve the linear problem arising at each Newton iteration, the Generalized Minimum

Residual (GMRES) method is employed. Preconditioning is a key component of any GM-
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RES method, and this section details the results of various preconditioners. In particular,
preconditioning for anisotropic viscous meshes is considered in detail.

High Reynolds number viscous flows form a large part of this work. These flows require
highly anisotropic grids that necessitate curving not only the boundary elements in the
mesh but several layers of interior elements as well. Anisotropic grids induce significant
stiffness into the discrete equations, and one method to alleviate the stiffness is line-implicit
relaxation. The line creation and line-implicit relaxation methods are described in detail. To
make the solver more efficient, mixed-element meshes are employed using quadrilaterals in the
boundary layer and triangles in outer regions. The mixed-element grid generation method is
explained, and comparisons between triangular and quadrilateral meshes for boundary layer
flows are discussed. This chapter establishes the baseline numerical results of the high-order

DG CFD solver.

4.1 Grid Generation and Manipulation

The unstructured meshes in this work are generated using the UMESH2D unstructured
mesh generator of reference [80]. UMESH2D is an advancing front delaunay triangulation
unstructured mesh generator that generates triangular meshes. The meshes can have highly
stretched elements in the boundary layer and wake regions that are suitable for Reynolds
Averaged Navier-Stokes (RANS) computations around single and multi-element airfoils. Fig-
ure 4.1 shows an example mesh generated for a typical multi-element airfoil configuration.
In order to improve transformation computation cost and relieve stretched mesh stiffness,

mixed-element meshes with quadrilaterals in the boundary layer are employed.

4.1.1 Mixed-element Meshes

In the finite-volume literature, mixed-element meshes are employed to improve the accuracy
of gradient reconstruction in the boundary layer [81]. This is not the case with DG methods,
as gradients are computed via the derivatives of the basis functions and do not rely on the

neighbor stencil (gradients do however rely on the transformation metrics). However, the use
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Figure 4.1: Unstructured mesh around multi-element airfoil configuration generated using
UMESH2D.

of quadrilateral elements for DG discretizations can still be beneficial, since quadrilaterals
enable equivalent accuracy with fewer elements (a single quadrilateral can replace two similar
triangles). Figure 4.2 shows the mesh from Figure 4.1 with the boundary layer and wake
region triangles merged into quadrilaterals, resulting in an example of a mixed-element mesh

employed in this work.

& R A OO I
0 1

Figure 4.2: Unstructured mixed-element mesh around multi-element airfoil configuration generated
using UMESH2D with boundary layer and wake regions merged into quadrilaterals.

Additionally, quadrilateral elements are more flexible for computations involving curved
geometries in anisotropic regions of the mesh. In this work, super-parametrically mapped
elements are employed, where the element boundaries are mapped geometrically to order
p + 1 for a solution of order p. In the case of anisotropic meshes, this often necessitates the

curving of interior elements to avoid inconsistent mesh cross-overs. A variety of strategies
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exist for curving the interior elements of anisotropic meshes. For example, references [20,82]
have used elasticity-based node movement schemes. These methods have the advantage
that they can produce highly stretched meshes with positive element transform Jacobians
everywhere. On the other hand these elasticity-based methods lead to the entire mesh being
mapped to higher-order. This is unnecessary as once the mesh has become isotropic and
does not touch a curved boundary, straight-sided elements corresponding to linear mappings
are sufficient. As such this work employs a simpler approach.

To generate curved elements in anisotropic meshes, mappings of each of the curved
boundary faces are generated. Previously formed lines (for the line-implicit Jacobi smoother
described subsequently in Section 4.3.2) are then used to copy this curvature straight up the
line away from the surface as seen Figure 4.3. This approach ensures that only a small subset
of the mesh is mapped to higher than p = 1, saving computational cost when computing the
transformation quantities. This method does however have a disadvantage, since the element
Jacobian can become negative, especially for triangular meshes, which is the result of edge-
crossing for highly curved triangles. It is for this reason that quadrilaterals are employed in
the boundary layer. Quadrilateral elements can tolerate much higher curvature and aspect-
ratios without negative transform Jacobians. In fact, this curvature method has yet to
produce a mesh in this study where quadrilaterals have generated negative transformation
Jacobians. Employing mixed element meshes for DG discretizations allows for minimal

transformation computational cost and the use of highly curved high aspect-ratio elements.

4.1.2 Merging Triangular Meshes

Since UMESH2D generates purely triangular meshes, the mixed-element meshes employed
in this work are generated by post-processing the UMESH2D meshes. This post-processing
proceedure is known as merging and is designed to recover quadrilaterals in highly anisotropic
regions of the mesh. The merging proceedure employed is based on the one proposed in
reference [83]. In this work, the distance between triangle circumcenters relative to the

Vornoi perimeter is used as the metric to merge triangular elements. The circumcenter is
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Figure 4.3: Example of stretched curved mesh where several layers of cells near the boundary must
be curved in order to prevent edge cross over.

the center of the circumcircle of the triangle, which is the circle that contains all three nodes
of the triangle. An example circumcircle and the corresponding circumcenter is shown in
Figure 4.4. The Vornoi perimeter is the perimeter of the dual cell centered at the nodes of
the mesh. An example Vornoi perimeter is shown in Figure 4.5.

For highly stretched elements that are built in layers, the circumcenters are nearly
coincident. This means that the distance between circumcenters along certain edges of the
Vornoi diagram will make up a very small fraction of the Vornoi perimeter for the nodes that
define the edge. Hence these edges can be removed to form quadrilaterals. The algorithm
loops over the grid and removes all the edges where the ratio between circumcenter distance
and Vornoi perimeter of either node which defines the edge is less than 0.1. For example,
any edge in the isotropic stencil shown in Figure 4.5 would not be removed since each edge
makes up an almost equal portion of the Vornoi perimeter. Contrarily, Figure 4.6(a) shows
an example stencil where one of the edges is removed by the algorithm, as this edge makes up

a small portion of the Vornoi perimeter of each node defining the edge. Figure 4.6(b) shows
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Figure 4.4: Example of a circumcircle for a single triangle.

@ Node

X Circumcenter

Figure 4.5: Example of a Vornoi perimeter for the node at the center of the stencil.

the results of removing the marked edge in Figure 4.6(a). The algorithm proceeds through
each edge in the mesh and removes similar edges, until all such edges have been removed.

To ensure that no poorly shaped quadrilaterals are generated the algorithm is not allowed
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to remove any edges that would cause an internal angle of the resulting quadrilateral to be

greater than 115°.

(a) Before merge: red edge to be removed

(b) After merge: red edge removed

Figure 4.6: Example of stencil where an edge has a vanishing Vornoi perimeter contribution. The
red edge in (a) would is removed via the mering algorithm.

4.2 Implicit Solver Formulation

The steady-state flow equations are solved using a Newton method where the linear system
is solved approximately at each Newton step with a GMRES solver. By neglecting the

temporal derivative in equation (2.2.3) the system of equations becomes

Rh(uh) =0 (421)
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where Ry, (uy) is the non-linear residual in equation (2.2.4), which represents the spatial

discretization. This set of non-linear equations is solved using Newton’s method:

{8Rh

oay,

| = —Rafu)
(4.2.2)

)t = ap + Aapt!
Newton’s method will diverge if the initial guess is too far from the final solution. Thus
the flux Jacobian matrix is augmented with a damping term to increase robustness. The

damped Newton iteration is given as:

M R
{%+ 7o ] AT = ~Ru(u)

= Ay + Aapt! (4.2.3)

Mije = / gb,;qudQe Ve S 77L
Qe

where M;;, is the mass matrix resulting from spatial discretization of the temporal derivative.
The mass matrix defined per-element where ¢; is the solution basis function described in
Section 2.3. At, is an element-wise timestep used as a damping factor:
R, (u) "
CFL = min <CFme (w) ,CFLW)
| R, (u) |2
CFL|Q.|

A" = Ve € T,
(AT R

(4.2.4)

where the C'F'L is the Courant-Friedrichs-Lewy number and a is the sound speed. Due to
the block-sparse nature and size of the matrix an iterative method will be used to solve
the linear system arising from Newton’s method. In this work the C'F'L is used to aid in
selecting stable damping parameters for startup, not as a true time-step restriction that must
be satisfied throughout the solution process. Typical settings are

CFLpim =1.0

r=1.25
CF Ly, = 1.0e'

which can be adjusted as needed for a particular problem. The absolute minimum C'F'L,,;,

in any test case in this work is 1.0e72 and CF L., = 1.0e!® for all test cases.

96



4.3 Linear Solvers

The matrix arising from Newton’s methods consists of a sparse block matrix. Since the
matrix is quite large, iterative methods become the method of choice for inverting the linear
system at each Newton iteration. Consider the linear system [A]z = b where [A],x,b are
short hand for the damped flux Jacobian, linear solution update and right hand side of
equation (4.2.3) respectively. One way to derive iterative methods is to consider splitting
the matrix [A]. Nastase and Mavriplis [31] review some approximations and splittings of the
flux Jacobian. For this work three splittings are employed, namely the so called linearized
element Jacobi splitting [31], line-implicit Jacobi splitting and line-implicit colored Gauss-
Seidel splitting. Consider the linear system [A] x = b and let [A] be split as [A] = [M] + [V].

Thus for iteration k one can write the update to x as
2F = (1 —w)z® +w M) (b— [N]2") (4.3.1)

where w is an under relaxation factor w € (0,1]. The forms of [M] and [N] give different
iterative methods.

In this work three splittings are considered. In the first, [M] is taken as the block
diagonal of the full Jacobian matrix and [N] corresponds to all the block off-diagonals,
which yields the so-called linearized element Jacobi (LEJ) [31] scheme. The second splitting
yields the line-implicit Jacobi(LI1J) scheme where [M] is now taken as the part of the flux
Jacobian corresponding to the diagonal and off-diagonal blocks contained in a set of lines
drawn through the highly stretched anisotropic regions of the mesh, and [N] represents all
remaining off-diagonal block elements. Note that in regions of isotropic cells (lines containing
a single element) this splitting reverts to the LEJ splitting since the line length reduces to
a single element. The final splitting is the line-implicit colored Gauss-Seidel(CGS) splitting,
which uses the same lines as the L1J splitting but treats the off-diagonal entries contained in
[N] in a different manner. Any of these splittings can be used as a solver by itself. However,
reference [57] has shown that they are better utilized as smoothers for multigrid methods,

as preconditioners, or as part of preconditioners for Krylov subspace methods (GMRES).
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4.3.1 Linearized Element Jacobi (LEJ)

The linearized-element Jacobi splitting consists of the following

[N] = [O] (4.3.2)
= (1-w)a* +w (D] (b [0] %)

where [D] represents the diagonal block and [O] represents the off diagonal blocks of the
Jacobian matrix on the left hand side of equation (4.2.3). Thus only the diagonal block is
factorized and inverted. In this case direct LU factorization is employed with forward/back-

~! The LEJ smoother is especially simple to

ward substitution to give the effect of [D]
construct but does not provide adequate convergence rates on highly stretched meshes. In

order to over come this a more involved splitting is devised.

4.3.2 Line-Implicit Jacobi (LLJ)

In order to maintain fast convergence rates on anisotropic meshes a line-implicit smoother can
be used [84]. With this in mind, a line creation algorithm and line-implicit Jacobi smoother
have been devised and implemented to enable efficient solution techniques on anisotropic
meshes.

Line creation is accomplished using a two pass approach. Since the anisotropic cells are
used to capture boundary layers, anisotropic regions are found attached to the boundary
faces of the mesh that are solid surfaces. The line creation algorithm begins by considering
all the boundary faces in the mesh attached to solid surfaces. Lines that originate from
the solid surfaces are formed by taking each surface face and computing the corresponding
normal vector. Then the angle between the surface normal and all other faces attached to
the boundary element are computed. If any of the angles are less then 10 degrees then that
face is added to the line and the neighboring element across that face becomes the element to
be searched. The processes is repeated until all the current element’s face normals make an
angle with the surface normal greater than 10 degrees. This is repeated for each boundary

face in the mesh that is a solid surface.
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Once the lines attached to the solid surfaces are formed there can still be areas in the
mesh that are highly anisotropic (i.e. wake regions). Lines in these regions are created using
a weighted graph algorithm [85], which has been slightly modified for cell-centered rather
then node-centered discretizations. This algorithm assigns a weight to each graph edge (in
this case a graph edge is a line connecting two cell-centers). This edge-weight is taken
as the inverse of the graph edge length. The ratio of maximum to average edge-weight is
precomputed for each cell in the mesh. The cells are then ordered according to this ratio and
stored as a heap-list. The top element in the heap is chosen as the starting point for a line,
provided the element is not already part of a line. The most strongly connected neighbor is
added to the line provided that it is not already part of a line and that the ratio of maximum
to minimum connection strength is greater then § (5 = 3 for all cases). The element that
was just added to the line now becomes the current element. The line is terminated when the
current element’s ratio of maximum to minimum connection strength violates the threshold
on (. As these lines are not attached to a surface the process is repeated for the original
seed element with the second most strongly connected neighbor and proceeding as before,
adding to the same line. Figure 4.7(a) and Figure 4.7(b) shows the grid and corresponding
lines created around a NACAOQ012 airfoil. Figure 4.7(c) and Figure 4.7(d) show the lines
created on a flat plate geometry of zero thickness. These two examples demonstrate the
ability of the line creation algorithm to find lines through all the anisotropic regions of the
mesh. Examination of Figure 4.7(b) shows that the combined algorithm has generated both
lines connected to the surface and and in the wake. Note that for the flat plate mesh in
Figure 4.7(d) the weighted graph algorithm has formed lines in the convective direction off
the solid surface. This is due to the cell clustering at the plate leading edge. In fact, if
these lines are not created the convergence rate of the solver degrades significantly, showing
that lines are needed in highly anisotropic regions of the mesh regardless of the physical
phenomena present in those regions.

Once the lines have been created the line-implicit smoother is straight-forward to im-
plement. Implicit lines form a block tri-diagonal matrix for each line. Each row of this

block tri-diagonal matrix contains the block diagonal matrix of an element and at least one
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(b) NACAO0012: Lines

(d) Flat plate: Lines

Figure 4.7: Tlustration of lines used in line-implicit Jacobi smoother, as well as the grids from
which the lines are generated.

(usually two) block off-diagonal matrices. This is how [M] and [N] in equation (4.3.1) are de-

fined. [M] contains all the block matrices in a line and [N] contains those block off-diagonal

matrices that are not in a line. Figure 4.8 shows an example of three lines drawn vertically

through a sample stencil.

100



A sample of the split matrices [M] and [NV] for lines in Figure 4.8 are given as:

M)
0 0

V) = 0 |28 ]
0 0

n5 n3 ng
n4 i n2
n6 nl n7

0

0

Line 1

Line 2

Line 3

Figure 4.8: Sample line-implicit stencil with three lines defined vertically in the figure.
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In Figure 4.8 the stencil is centered about cell i with neighbors nl to n8. The [M] matrix
is made up of lines connecting the diagonal of an element with two of the element’s off-
diagonal blocks as shown in equations equation (4.3.3). The [N] are the remaining off-
diagonal elements not in [M] for each element in a line.

Using this matrix splitting the linear system is now solved using a block variant of the

Thomas algorithm [9]. Consider a block tri-diagonal matrix given as

where [A4;] is a block matrix in the i row of the full matrix and z; is a block vector in the "
row of the full vector. The r; vector on the right hand side is a place holder for all the right
hand side terms in the LIJ splitting. The block Thomas factorization algorithm is given by

Algorithm (1). For a given number of iterations the factorization is performed only once

Algorithm 1 :Block Thomas Factorization
[Bﬂ = [Bi] )
1B1] = LU ([B1])
for j=2,N do
[B)] = 1B - 4] ([B}-.] " [C-11)
[B,] = LU ([B]])
end for

and reused for several iterations of the solver. Algorithm (2) shows the solution algorithm
utilized for the LIJ splitting.

The line-implicit smoother is used to ensure that the convergence rate observed for
isotropic meshes is maintained for similar anisotropic meshes. To verify that this is the
case, the L1J smoother is implemented within a linear multigrid algorithm and used to solve
Poisson’s equation. Two meshes each of which contain N = 1,102 elements are used. The
first mesh is made of isotropic evenly spaced triangles and the second is made of anisotropic
stretched triangles(maximum aspect ratio = 26912 : 1). The results of solving Poisson’s
equation with a p = 3 DG discretization using linear multigrid are shown in Table 4.1, where

the average rate refers to the average decrease in the linear system residual || b — [A] z ||2
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Algorithm 2 :Block Thomas Iteration
for k = 17 Niteration do
11
= [BJ 1
for j=2,N—-1do

!/

Yyj = [Bj]il (rj — [Aj]yj-1)

end for )
yv = [By]  (rv — [An]yn—1)
IN = YN

for j=N-1,1 do
r7—1
Tj=yj— <[Bj] [Cj]> Tjy1
end for
end for

Table 4.1: Comparison of convergence rates for Poisson problem, using N = 1,102 elements with
and without stretching for p = 3.

Mesh/Smoother — Average rate

Isotropic/LEJ 49
Anisotropic/LEJ .98
Anisotropic/LLJ .55

over the convergence history. Mathematically this is given by

N,

iter b_ A n __ b_ A TL+1

Average rate = E <“| [ ]x||”lj— [L] ||"[ Jz 13 ‘)
2

n=1

(4.3.6)

where Ny, is the total number of linear iterations utilized to solve the problem. These
results very clearly show that without the line-implicit smoother the convergence rate drops
significantly. On the other hand, if the line-implicit smoother is employed the convergence
rate is almost unchanged from the isotropic case.

Additionally a line-implicit colored Gauss-Seidel relaxation method has also been im-

plemented as a stand alone solver and single-level preconditioner to GMRES.

4.3.3 Colored Gauss-Seidel(CGS)

In order to apply a Gauss-Seidel relaxation strategy in parallel the mesh must be “colored”.
Coloring is a process by which elements in the mesh are numbered in groups that are indepen-

dent of one another. Gauss-Seidel smoothing is then performed over the groups. Algorithm
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Algorithm 3 :Colored Gauss-Seidel Algorithm
for k= 1; Niteration do
for ¢ =1, N.y, do
Line smooth over lines on boundary: z5+1 = [M] ™ (b— [N]zh)
Post non-blocking send and receives
Line smooth over all interior lines: %1 = [Z\/[]_1 (b — [Neotors—c] % — [Neotor<e] mﬁ“)
MPI WAITALL
Solution is now updated correctly on each processor
end for
end for

(3) illustrates how the colored Gauss-Seidel(CGS) algorithm is used to solve the linear system
in a parallel computing framework using the message passing interface (MPI). One should
immediately notice that special attention has been paid to overlapping communication with
computation. Additionally, CGS allows for a fully parallel Gauss-Seidel method provided
the colors are created such that no element within one color requires data from the same
color.

Lines are colored via a greedy algorithm, which loops over all the lines formed for the
line-implicit solver assigning color integers to the lines. The algorithm begins by looping
over lines and assigning colors one at a time to lines that have not been colored and whose
neighbors have not been flagged due to a coloring. If a line has not been colored and has no
neighbor, that has been tagged from a coloring, then the line is given a color(in the form of
an integer). Once a line is given a color the line and the neighbors of the line are tagged and
not allowed to be colored again by this same color. Once all lines have been checked the color
index increases and the process loops over the lines again for the next color proceeding as
before. This is shown by Algorithm (4). The algorithm continues to create new colors until
all the lines in the mesh have been assigned a color. This results in lines that are colored
such that no color has lines that are neighbors in the mesh. An example of a colored mesh
with lines that are of length 1 and higher is given in Figure 4.9. In Figure 4.9 there are

several elements that have the same color. These are elements in the same line.
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Algorithm 4 :Coloring

Niine-colored = 0
color2line (:) =0
Neotor =0
while Ny,.-colored < nyp. do
line-touch (:) =0
Neotor = Neotor +1
for [ =1, Njjes do
color = .true.
if color2line(l) == 0 then
Check neighbors line-touch, if line-touch (neighbor) > 0 then color = . false.
end if
if color == .true. then
color2line (1) = Neoior
line-touch (1) = 1
Niine-colored = Nyjpe-colored + 1
For all neighbors set line-touch (1) =1
end if
end for
end while

—NWHrOO~®DO

Figure 4.9: Colors generated for a mixed-element stretched mesh around a NACAQ0012 airfoil.
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Once the mesh is colored, the Gauss-Seidel iteration proceeds similarly to the LIJ it-
eration. The factorization is the same but the [N] matrix multiplies the most up to date
neighbor information. For some elements the vector z is at the k' iteration and for other
elements the vector = is at the (k+ 1)th iteration. The elements that belong to a color
value less than ¢ use information from iteration k£ 4+ 1 and color values greater than c use
information from iteration k as seen in Algorithm (3), where k is the linear iteration index

and c is the color index.

4.4 Multigrid Methods

Multigrid methods are known as efficient techniques for accelerating convergence to steady-
state for both linear and non-linear problems [86,87], and can be applied with a suitable
existing relaxation technique. The rapid convergence property relies on an efficient reduction

of the solution error on a nested sequence of coarse grids.

4.4.1 The hp-Multigrid Approach

The spectral multigrid approach [30,76] is based on the same concepts as a traditional h-
multigrid method, but makes use of “coarser” levels which are constructed by reducing the
order of accuracy of the discretization, rather than using physically coarser grids with fewer
elements. Thus, all grid levels contain the same number of elements, which alleviates the need
to perform complex interpolation between grid levels and/or to implement agglomeration-
type procedures [87]. Furthermore, the formulation of the interpolation operators, between
fine and coarse grid levels, is greatly simplified when a hierarchical basis set is employed
for the solution approximation. The main advantage of a hierarchical basis set is that the
lower-order basis functions are a subset of the higher-order basis (i.e. hierarchical) and the
restriction and prolongation operators become simple projection operators into a lower- and
higher-order space, respectively [88]. Therefore their formulation is obtained by a simple
deletion or augmentation of the basis set. The restriction from fine level to coarse level is

obtained by disregarding the higher-order modal coefficients and transferring the values of
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Figure 4.10: Hlustration of hp-multigrid levels.

the low-order modal coefficients exactly. Similarly, the prolongation from coarse to fine levels
is obtained by setting the high-order modes to zero and injecting the values of the low-order
coefficients exactly. Figure 4.10(a) shows various p-levels for a reference triangular element.

Multigrid strategies are based on a recursive application of a two-level solution mecha-
nism, where the second (coarser) grid is solved exactly, and used to accelerate the solution
on the finer grid [86]. The exact solution of the coarse grid problem at each multigrid cycle is
most often prohibitively expensive, therefore the recursive application of multigrid to solve
the coarse grid problem offers the preferred approach for minimizing the computational cost
of the multigrid cycle, thus resulting in a complete sequence of coarser grids. For spectral
(p)-multigrid methods, the recursive application of lower-order discretizations ends with the
p = 0 discretization on the same grid as the fine level problem.

For relatively fine meshes, the (exact) solution of this p = 0 problem at each multigrid
cycle can become expensive, and may impede the h-independence property of the multigrid

strategy. The p = 0 problem can either be solved approximately by employing the same

107



number of smoothing cycles on this level as on the finer p levels, or the p = 0 problem can be
solved more accurately by performing a larger number of smoothing cycles at each visit to this
coarsest level. In either case, the convergence efficiency will be compromised, either due to
inadequate coarse level convergence, or to excessive coarse level solution cost. An alternative
is to employ an A-multigrid procedure to solve the coarse level problem at each multigrid
cycle. In this scenario, the p-multigrid scheme reverts to an agglomeration multigrid scheme
once the p = 0 level has been reached, making use of a complete sequence of physically
coarser agglomerated grids, thus the designation hp-multigrid. Agglomeration multigrid
methods make use of an automatically generated sequence of coarser level meshes, formed
by merging together neighboring fine grid elements, using a graph algorithm. Figure 4.10(b)
shows various h-levels for a Cartesian quadrilateral mesh. Figure 4.11 shows a sequence
of coarse meshes generated using the graph agglomeration approach. First-order accurate
(p = 0) agglomeration multigrid methods for unstructured meshes are well established and
deliver near optimal grid independent convergence rates [89].

The hp-multigrid procedure [31,33] has been shown to result in an h- and p-independent
solution strategy for high-order accurate discontinuous Galerkin discretizations of the Euler
equations, in both two- and three-dimensions [31,33]. For robustness it is important to
augment the resulting multi-level Ap-multigrid scheme with a full multigrid (FMG) technique,
in order to provide a good initial guess for the fine level problem. Moreover, the use of FMG
is critically important in the case of the linear multigrid scheme for it is known that the
Newton iteration will diverge if the initial guess is not close enough to the final solution.
In the hAp-multigrid approach, the solution process begins at the coarsest grid level (p = 0),
using all the h-levels available, and ends at the fine level where all the p- and h-levels are

used to advance the solution to the desired accuracy, as depicted in Figure 4.12.

4.5 Newton-GMRES

Krylov Subspace Methods represent an alternative technique for solving the linear system

given by Newton’s method. Since the linear system is non-symmetric, the Generalized Min-
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Figure 4.11: Coarse mesh levels generated via agglomeration of a slotted airfoil mesh.
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Figure 4.12: Tllustration of full hp-multigrid (FMG) levels for p = 3 and h = 2 (— restriction, - -
prolongation, e smoothing, o update).

imal Residual method (GMRES) is employed. The convergence of GMRES is often acceler-
ated using a preconditioner. In this work, the previously described linear multigrid algorithm
and colored Gauss-Seidel(CGS) are used as preconditioners. Reference [57] has shown that
this combination is a nearly optimal method for isotropic meshes, and showed some promis-
ing preliminary results for triangular anisotropic meshes. In this work the GMRES bases
solver of reference [57] is extended to hybrid anisotropic meshes.

The linear-system in equation (4.2.3) is again written as
[Ajz =0 (4.5.1)

where [A] is the flux Jacobian, = is the Newton update and b is the negative of the flow
residual. GMRES seeks to minimize the Ly norm of the residual of the linear system(r =
[A]z — b) over the space span{ro, [A]ro, [A]*ro, ..., A¥"1rg}. There are many excellent texts
on Krylov subspace methods [90-92] where details on the theory of Krylov subspace methods

are presented. For a right-preconditioned system one obtains the following
[A] [P]_1 y=>b, x= [P]_1 Y (4.5.2)

where [P] is the preconditioner. In this case the Krylov subspace is
span{ro, [A] [P]”" 7o, ([A] [P] ")2ro, ..., ([A] [P]"")* 'r¢}. To compute the Krylov subspace
basis a linear system of the form

[P]z=q (4.5.3)

must be solved, where ¢ and z are the Krylov and preconditioned Krylov vectors respectively.

This equation is solved approximately using a few cycles of multigrid. Using multigrid as the
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preconditioner yields an algorithm denoted as multigrid preconditioned GMRES (MGPC-
GMRES). Note that the preconditioning matrix is the full flux Jacobian and is never fully
inverted. Also note that GMRES requires additional storage for the Krylov basis. However,
it is expected that the multigrid preconditioner will be very effective so the size of the Krylov
basis will remain small. The details of the GMRES solver are given in Algorithm (5).

In this work the GGS linear solver is also used a preconditioner for the GMRES method.
Using the CGS linear solver has no impact on the GMRES algorithm beyond changing how

the approximate solution to equation (4.5.3) is generated.

4.6 Robustness Enhancement via Local Order-Reduction

One of the principal concerns when developing DG solvers is the robustness of the solver.
The author and others [20] have noted that under mesh-resolved regions of the flow can
adversely impact the convergence of the flow solver. If regions of smooth extrema are under
resolved, the smooth extrema can become non-smooth extrema. When these extrema become
non-smooth the DG discretization may produce unphysical oscillations, which may lead to
solver failure(as is shown in Section: 4.7.3).

A simple way of dealing with under-mesh resolved regions is to refine the mesh in the
under resolved region, thus causing the extrema to become smooth again. However, the
merits of direct limitation are also worth investigating. To decrease the oscillations that
result from these under-resolved areas, one can add additional diffusion to the equations to
smooth out the solution. There are a variety of ways to add additional diffusion to the discrete
equations. For example, artificial diffusion can be added, similar to the way shock waves are
treated in this work (Section 2.7). Yet another approach, is to recognize that as the jumps
between elements increase, so does the artificial diffusion associated with the upwinding.
In order to increase the jumps between elements a local element order-reduction technique
based on the element resolution detector developed in reference [34] is used. Decreasing the
discretization order of the element increases the inter-element jumps and thus the artificial

diffusion of the flux function. At the same time, reducing the discretization order p reduces
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Algorithm 5 :Multigrid preconditioned f{GRMES algorithm

N = # of Krylov vectors, M = # of linear iterations
Given z1, compute r; = b — [A] 24

i=1
while i <= M .and. ||r;|| > tol do
set 1 = [
set ((:) =0
set C(1) = [[r]|
n=1

while n <= N .and. res > tol do
Solve [P] z, = g, using linear multigrid
Z(:,n)]; = 2,
v =1[A4] z
% Compute new Krylov basis vector via Arnoldi procedure
for j=1,ndo

h(]v TL) =vV-qj
V=70 — h(]a n)Q]
end for

h(n+1,n) = |jv|
Gni1 =v/h(n+1,n)
% Make the upper Hessenberg matrix upper triangular via givens rotations
for j=1,n—1do
temp = cs(j)h(j,n) + sn(j)h(j + 1,n)
h(j,n) = temp
end for
% Compute the n'" givens rotation matrix( a very standard approach given in) [93]
call get_rot(h(n,n), h(n + 1, n), cs(n), sn(n))
h(n,n) = cs(n)h(n,n) + sn(n)h(n + 1,n)
temp = cs(n)zeta(n)
((n+1) = —sn(n)zeta(n)
((n) = temp
res — K01
end while
solve [hly = ¢
Tip1 = 2 + [Zi] yi
% where the n'" column of [Z;] is z,

1=1+1
end while
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the oscillations because p is lower. The detector for an element is given in equation (2.7.2)
with density used as the detection quantity instead of pressure. The value of s, for each
element k in the mesh is computed and if logio(sy) is greater then -4 for an element, the
discretization order of that element is reduced to p, = maz(py — 1,1) (here p = 1 is the
lowest possible value to retain all of the discrete viscous terms). This approach is used here
to test the concept of treating these kinds of under resolved regions as though they were
flow discontinuities. Furthermore, this highly simplified approach gives an example of how

a limiter would behave if one were applied.

4.7 Numerical Results

The flow solver is validated and tested using three separate test cases, a laminar flat plate,
a NACAO0012 airfoil, and a two-element airfoil. The laminar flat plate test case is used to
validate the Navier-Stokes terms in the flow solver. The efficiency of the MGPC-GMRES

solver is tested using a NACAO0012 airfoil and a two-element airfoil.

4.7.1 Laminar Flat-Plate

The laminar viscous flow solver is validated using a zero pressure gradient flat plate bound-
ary layer at the following conditions M., = .1, a = 0°, and and Reynolds number based
on chord Re = 200,000. This flow is computed using discretization orders p = 0 through
p = 3 for both a triangular mesh and a quadrilateral mesh with N = 6,372 and N = 3, 186
elements respectively. The results are compared against the well known Blasius boundary
layer solution. The triangular mesh is built from the quadrilateral mesh with each quadri-
lateral divided into two triangles, in order to maintain the spacing normal to the wall and
the cell height to length ratios between the two meshes. The meshes for this case are shown
in Figures 4.13(a) and 4.13(b).

Figures 4.14(a) through 4.15(b) show the computed u-velocity profiles with the Blasius
solution plotted as a reference. The computed velocity profiles agree very well for discretiza-

tion orders p = 1 and greater. For p = 0 the velocity profile is extremely inaccurate. This is
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due to the fact that the DG discretization of the viscous operator reduces to an inconsistent
edge-only approximation for the viscous terms. These results are included simply to show
that p = 0 is not sufficient to fully capture the viscous operator. The u-velocity profile
matches the Blasius profile for all discretization orders higher than p = 1. The v-velocity
profile is the harder of the two profiles to capture accurately. The second-order result on
the triangular mesh shows a considerable deviation from the Blasius solution in this profile,
while higher-order results show improved agreement. Additionally, note that above p = 1,
there is essentially no difference in the agreement between the computed velocity profiles
on the triangular and quadrilateral meshes. Also note that for p = 3 the quadrilateral
meshes contains 25% fewer degrees of freedom(DoFs) than the triangular mesh. Therefore,
quadrilateral meshes are capable of delivering equivalent or better accuracy compared to

self-similar triangular meshes at a lower computational cost.
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Figure 4.13: Meshes used for computing the laminar flow past a flat plate.
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Figure 4.15: Laminar flat plate v-velocity profile computed using a DG discretization for p = 0 to
p = 3 compared to the Blasius v-velocity profile.
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4.7.2 NACAO0012 Airfoil

The effectiveness and efficiency of the MGPC-GMRES algorithm is studied using two test
cases. The first is a NACAO0012 airfoil at M., = .5, @ = 0°, and Re = 5,000, which is used
to verify the h-independence and p-independence of the solver for purely triangular meshes.
In each case an iteration represents one Newton iteration. For each Newton iteration the
MGPC-GRMES solver convergences the linear system obtained via Newton’s method to the

tolerance given by equation (4.7.1) or until 15 Krylov vectors are generated.

(bl
tol = max (mm (%Tnj—p)’ 1HbHL2 ,1.06 — 14

nc=8+2(p—1)

(4.7.1)

In equation (4.7.1) p is the discretization order, b is the right-hand side of the linear system,
and n is the Newton iteration number. For each Krylov vector the preconditioning system
given by equation (4.5.3) is solved with four cycles of the linear multigrid solver using the
L1J solver as the multigrid smoother.

Two purely triangular meshes are used for this case and contain N = 2,250 and N =
7,750 triangles, with a maximum aspect ratio of 82:1 and 238:1, and with average line
lengths of 10 and 25 cells respectively. Due to the variance in aspect ratio, a slight h-
dependence is expected, since aspect-ratio can affect the stiffness of the problem. Figures
4.17(a) and 4.17(b) show the respective convergence rate obtained and demonstrate relatively
h-independent and p-independent behavior. These figures demonstrate that the MGPC-
GMRES solver gives nearly h-independent and p-independent results, despite the difference
in aspect-ratio. To ensure that the above results are also valid for mixed-element anisotropic
meshes, the NACAQ0012 airfoil test case is computed on a mixed-element anisotropic mesh
containing N = 4,964 elements (Figure 4.18(a)) with a maximum aspect-ratio of 65:1 for
DG discretization orders p = 1 to p = 4. Figure 4.18(b) depicts the convergence history
using this mixed-element mesh. This figure demonstrates that the MGPC-GMRES solver

retains its p-independence on mixed-element anisotropic meshes.
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Figure 4.16: NACA0012 mesh with N = 2,250 elements.
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Figure 4.17: MGPC-GMRES convergence rates for the solution of the NACA0012 case on two
meshes with NV = 2,250 and N = 7,750 elements and for DG discretization orders p =1 to p = 4.

4.7.3 Two-Element Airfoil

The third test case consists of the flow over a two-element airfoil depicted in Figure 4.19(a).
The flow conditions for this case are M, = .3, a = 0° and Re = 5,000. Solutions for
discretization orders p = 1 through p = 4 are computed using a mesh of N = 7,902 elements

(5,266 triangles and 2,636 quadrilaterals), with a maximum aspect ratio of 265:1 and using
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Figure 4.18: Mixed-element mesh containing N = 4,964 elements (220 quadrilaterals and 4,744

triangles) and MGPC-GMRES convergence rates for the solution of the NACA(0012 case for DG
discretization orders p =1 to p = 4.
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Figure 4.19: Two-element airfoil mixed element mesh used for solver comparison and local order-
reduction robustness improvement.

252 lines with an average length of 15 cells per line. This two-element airfoil test case is used
to compare the performance of linear multigrid vs. MGPC-GMRES linear solvers. Addition-

ally, a CPU time comparison between the LEJ smoother and LIJ smoother in the context
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of the linear multigrid solver is conducted. The presented results are generated in a manner
different from the NACAO0012 airfoil test case. To ensure accurate CPU time comparisons
both the linear multigrid and MGPC-GMRES solvers are run such that each Newton iter-
ation consisted of ten multigrid cycles. For the linear multigrid solver this constitutes ten
multigrid cycles while for the MGPC-GMRES solver this constitutes five Krylov vectors with

two cycles of multigrid for preconditioning each Krylov vector.
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Figure 4.20: Convergence rate of the two-element airfoil case for orders p = 1 to p = 4 using linear
multigrid and MGPC-GMRES.

First consider the p-independence of the solvers. Figure 4.20(a) shows the convergence
of such a solver for p = 1 through p = 4. The number of iterations required to solve
p = 2 and higher is nearly twice that of p = 1, indicating a relatively strong p-dependence
between p = 1 and higher-order (p > 2) solutions. The same problem is solved using
MGPC-GMRES and the convergence is depicted in Figure 4.20(b). The p-independence
for the MGPC-GMRES solver shows a slight improvement over that of the linear multigrid
solver because the convergence history of the p = 2 solution is closer to that of the p =1

solution. The overall p-independence is not improved very much for several reasons. The
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p = 3 and p = 4 solutions required the application of the local order-reduction technique,
which combined with the fixed small number of linear iterations caused a degradation of the
p-independence compared to the NACAQ012 case. Furthermore, each solver has a similar
number of rises in the residual over the convergence history, which affects the MGPC-GMRES
solver more severely because a single Newton iteration represents double the percentage of
the total number of Newton iterations compared to the linear multigrid solver. However, the
NACAO0012 airfoil results and the p = 2 result here show very good p-independence, leading
one to conclude that the results for p = 3 and p = 4 cases are affected by the under-resolved
stagnation point and/or the application of local order-reduction without which the p = 3
and p = 4 solutions could not converge.

Though the MGPC-GMRES solver does not obtain textbook p-independence, this solver
is preferred to the linear multigrid solver because it is faster in terms of overall CPU time. A
CPU time comparison between the linear multigrid and MGPC-GMRES solvers is shown in
Figures 4.21(a) through 4.21(d). These figures clearly demonstrate that the MGPC-GMRES
solver is faster in terms of overall CPU time than the linear multigrid solver. On average the
MGPC-GMRES solver is about 15% faster than the linear multigrid solver with the p = 2
case showing the most dramatic improvement. Figures 4.21(a) through 4.21(d) also illustrate
the iterative convergence obtained from these cases when the line-implicit Jacobi smoother
is replaced by the LEJ smoother in the linear multigrid solver. Clearly, not employing the
line-implicit smoother yields a very slow and inefficient solver for DG discretizations on

anisotropic meshes.

Robustness Enhancement

This case is also used to test the local order-reduction technique for enhanced robustness.
This particular mesh demonstrates the under mesh-resolved phenomena discussion in Section
4.6. Near the stagnation point at the leading edge of main airfoil the mesh is too coarse
to smoothly capture the high density and pressure gradients. As a result, for discretization
orders p = 3 and p = 4 the extrema become non-smooth resulting in solver failure. To

alleviate this problem the local order-reduction technique outlined in Section 4.6 is applied.

120



MGPC-GMRES

MGPC-GMRES C =S
MG Line-Implicit MG Line-Implicit
P=1 ———— MGLEJ P=2 ——— MGLEJ
1
10 107k

>

© © \
3 3
o o
2 \\ g1
[ [
3 107 \ 31010 k
= = =
Ti0" ™. T H‘\\/'H\\
™~ N 10" AN
10 \\\
07 107 \
— | I L TRTI R n — — — — — — —
100 200 300 400 200 400 600 800 1000 1200
CPU_TIME CPU Time(s)
(a)p=1 (b) p=2
MGPC-GMRES MGPC-GMRES
MG Line-Implicit P=4 ——e—— MG Line-Implicit
P=3 MG LEJ = ——+— MG LEJ
10" 10"
10° h—4% 10°

107

AR

RMS Density Residual
3

RMS Density Residual
=)

1o 10" \
10" \ \ 10" hN
0 700 2000 8000 0 2000 4000 6000 8000 10000
CPU_TIME CPU_TIME
(c)p=3 (d)p=4

Figure 4.21: CPU time comparison between MGPC-GMRES (line-implicit Jacobi smoother), linear
multigrid (line-implicit Jacobi smoother) and linear multigrid (LEJ smoother) for solution of the
two-element airfoil case for using DG discretization orders p =1 to p =4

By applying this technique, the solver is able to generate solutions for discretization orders
p = 3 and p = 4 where it was previously unable to do so. Figures 4.22(a) and 4.22(b) show
the cells and density contours where the discretization order is reduced for the p = 4 case.
The under mesh-resolved cell has large density variations across it and the density contours
show some oscillations. One should make note of the rises in the residual convergence history

for the p = 3 and p = 4 case. These rises correspond to the iterations where the discretization
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order is being reduced. In these test cases density is the quantity used in the detector given
by equation (2.7.2).

In conclusion, the MGPC-GMRES solver represents a significant improvement over
linear multigrid methods for DG discretizations due to the faster overall CPU time. Figures
4.23(a) and 4.23(b) show the Mach contours and stream lines for a p = 2 solution and
Figures 4.24(a) and 4.24(b) show the same for a p = 4 solution. Note that the wake is very
well preserved due to the anisotropic mesh and high-order accurate solutions. This case
also demonstrates the enhanced robustness given by the local order-reduction technique,
allowing the p = 3 and p = 4 solutions to converge. While local order-reduction is not the
most elegant technique it has proven sufficient this problem and warrants further study for

resolving other more challenging phenomena.

Order

s

rho
1.045
1.037
1.029
1.021
1.013
1.005
0.997
0.989
0.981
0.973
0.965

-0.001
-0.002
-0.003
-0.004
-0.005
>

-0.006
-0.007

-0.008

-0.009
-0.01

-0.011
-0.004  -0.002 0 0.002 0.004 0.006 0.008
X

-0.004  -0.002 0 .004  0.006 0.008
X

(a) Element discretization order (b) Density contours

Figure 4.22: Close-up of the two-element airfoil under mesh-resolved leading edge showing the
reduced-order cell and density contours for p = 4.

4.8 Summary

This work has investigated and developed efficient solution strategies for steady-state vis-

cous flows using high-order DG discretizations in the presence of curved, hybrid-element
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Figure 4.23: Illustration of computed solution using DG for the laminar viscous flow over the
two-element airfoil at My, = .3, & = 0°, and Re = 5,000 for p = 2.

anisotropic unstructured meshes. The solution strategy is based on the Ap-multigrid ap-
proach previously developed for inviscid flows. A line creation algorithm and line-implicit
Jacobi smoother were developed and implemented to enable efficient solution techniques
on anisotropic meshes. Further improvement has been demonstrated through the use of a
preconditioned Newton-Krylov technique.

Two-dimensional results are presented for a flat plate boundary layer, flow over a
NACAO0012 airfoil and a two-element airfoil. Current results demonstrate convergence rates
which are nearly independent of the degree of anisotropy, discretization order p and level of
mesh resolution (h). It was shown that the MGPC-GMRES algorithm outperforms standard
multigrid techniques both in terms of CPU time and optimality. The MGPC-GMRES solver
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Figure 4.24: Illustration of computed solution using DG for the laminar viscous flow over the
two-element airfoil at My, = .3, @ = 0°, and Re = 5,000 for p = 4.

exhibits better h- and p-independence when the linear problem is fully converged as in the
NACAO0012 airfoil case. However, this might prove impractical for more realistic cases (i.e
the two-element airfoil). A more practical scenario is to limit the number of multigrid cycles
per Newton iteration. In this case MGPC-GMRES has been shown to be faster than linear
multigrid in terms of CPU time for the same number of multigrid cycles.

One of the principal issues with high-order discretizations is the robustness of these
methods in dealing with discontinuous, non-smooth, or under-resolved features. In this
work, an element-wise order-reduction technique for addressing such robustness issues has
been investigated. By detecting and reducing the discretization order of “troubled” cells

for the two-element airfoil problem, the solver was able to overcome the under resolved
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stagnation point. For this case, the issue stems from an under mesh-resolved leading edge
where gradients in flow quantities are high. By under resolving the geometry at the leading
edge, what should be smooth extrema become non-smooth, resulting in the solver creating
overshoots that then cause failure. By locally reducing the discretization order, the increased
dissipation allows the solver to handle the overshoot and converge with this under-resolved
region. Based on these results, a robustness enhancement method that can increase the mesh
resolution until the extrema again become smooth should be investigated. One possible
strategy is apply an adaptive proceedure that will increase mesh resolution before applying

high-order discretizations to under mesh resolved regions.
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Chapter 5

Goal Oriented Adaptive Mesh

Refinement

The use of goal oriented adaptive mesh refinement has become a prevalent technique in
CFEFD [16-18,20, 43, 45,47, 71]. Rather than perform adaptive mesh refinement based on
local indicators or flow features, goal-oriented mesh refinement targets a specified output of
the simulation. However, goal oriented adaptive mesh refinement requires a posteriori error
estimates in the output of interest. Herein the output error estimates will be derived as will
the use of these estimates to drive mesh adaptation. The adaptive method employed is known
as hp-adaptation and combines grid refinement (i.e. h-refinement) and order enrichment (i.e.
p-enrichment) into a single adaptive method.

Due to the mixed-element meshes employed, h-refinement is more complicated than sim-
plex(triangle) only refinement. Mixed-element mesh refinement involves hanging nodes which
complicate surface integrations and interior element curvature methods. The combination of
h-refinement and order or p-enrichment, denoted as hp-adaptation, will be introduced both
as a method to enhance solver efficiency and also to enhance solver robustness. To demon-
strate both properties, hp-adaptation will be applied to several test cases including laminar
subsonic flows through supersonic viscous flows. Shock capturing will be accomplished using

the piecewise constant artificial viscosity formulation, combined with hp-adaptation.
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5.1 Motivation

A posteriori error estimation for functional outputs is becoming a mature technique for es-
timating the contribution of discretization error to simulation outputs [16-18,44,45]. These
error estimates are based on solutions to the so called adjoint (dual) problem. Such error es-
timates provide a method to guide adaptive refinement techniques to optimally place degrees
of freedom within a mesh. Recently these techniques have been used to perform adaptive
mesh refinement (i.e. h-refinement only) in the context of DG discretizations of the RANS
equations [20,43,46]. Reference [17] has used these techniques for the hp-adaptation of high
speed shocked flows using a DG discretization of the compressible Euler equations.

In this work, hp-adaptation is used to adaptively enrich the discretization order and
refine the mesh for DG discretizations of the Navier-Stokes equations on mixed-element
meshes, i.e. meshes containing triangles and quadrilaterals. A discrete adjoint formulation
is used to obtain the error estimates in the functional of interest. The formulation is based on
a discrete adjoint approach using a fully dual (adjoint) consistent discretization. References
[20,56,72] have shown numerically that using dual inconsistent discretizations can lead to sub-
optimal convergence of the primal solution, whereas using dual consistent or asymptotically
dual consistent discretizations leads to optimal convergence(O (h?*1)) of the primal problem
while producing more accurate adjoint-based error estimates. Furthermore, Section 3.3 has
shown that dual consistent discretizations result in the super convergence of the output or
functional error.

Discontinuous Galerkin (DG) methods are capable of generating high-order accurate
solutions to the Euler and Navier-Stokes equations. However, this is only attained if the
solution is smooth. Unfortunately, for aerodynamic applications, solutions are rarely smooth.
Non-smooth solutions can result from the expected discontinuities such as shock waves and
contact discontinuities as well as from additional sources, which are not covered as thoroughly
in the literature. For example, if the leading edge of an airfoil has been discretized with too
few cells, oscillations can develop due to under-resolution of smooth phenomena and cause
the solver to fail as shown in Section 4.7.3.

A unique property of DG discretizations is that the order of accuracy and the number
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of degrees of freedom (DoF's) are coupled (hereafter referred to as resolution coupling). This
is in contrast to traditional finite-volume or finite-difference techniques that instead rely
on extended stencils to increase the discretization order. Resolution coupling is the reason
that developing limiters for DG discretization is more difficult than for traditional CFD
methods. Furthermore resolution coupling poses a rather serious drawback for computing
discontinuous solutions with DG.

While for non-adaptive techniques the coupling between discretization order and the
number of degrees of freedom poses a rather serious problem for limiting the solution as
shown numerically in reference [15], the coupling is actually an advantage in the context of
an adaptive method. This property of DG discretizations allows for a flexible procedure by
which resolution can be added to a problem. This work examines the use of hp-adaptation
for two purposes: the first of which is to place degrees of freedom within the domain as
optimally as possible, the second of which is to improve solver robustness by avoiding the use
of high-order polynomial approximations in regions of the mesh where it is not appropriate.
In regions where the solution is smooth, p-enrichment is utilized, whereas in regions where
the solution is not smooth, h-refinement is employed. Furthermore, the constant presence of
discontinuous solutions in practical problems of interest motivates one to examine adaptation
techniques that take this into account as robustly as possible.

While the application of standard limiting methods from the finite-volume literature
have been attempted [35,67,75,94,95], these methods are either, not aware of the resolution
coupling properties of DG or extend the stencil beyond the nearest neighbors. Either of these
properties is sub-optimal in the author’s opinion. Rather than attempt this type of limiting,
hp-adaptation will be used to mimic the properties of a limiter. hp-adaptation can be viewed
as a resolution coupling aware limiting approach, a so-called bottom up limiter that starts
the solution at low discretization order and only increases the discretization order where
appropriate, based on solution smoothness. In regions where the solution is discontinuous
or non-smooth, h-refinement is invoked so that resolution is increased in a stable manner.
In contrast, traditional slope limitation assumes that second or higher-order accuracy is

appropriate everywhere in the domain and then reduces the order in non-smooth regions
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without adding additional unknowns. This can be thought of as a top down approach to
limiting. Thus hp-adaptation and slope limitation are very similar processes but operate
in reverse directions of each other and when resolution coupling is present the bottom up

approach of Ap-adaptation is preferred.

5.2 Output Error Estimation

In this work the adaptation procedure is driven by local error estimates or by estimating the
error in an output functional of interest. For output-based error estimation, the predicted
error may also be used to give a correction to the functional value. In this section the
derivation for output-based error estimation is presented along with the simplifications that

lead to local error estimates.

5.2.1 Formulation

The following formulation is based on the approach described in reference [45]. Consider
the functional of interest £ (u) evaluated with the discrete flow-field variables, where the

argument to the functional satisfies the following non-linear operator.
R(u)=0 (5.2.1)

Furthermore, consider a coarse mesh Ty and flow solution uy which satisfies the non-linear

residual on the coarse mesh.

Ry (ug) =0 (5.2.2)

The solution uy is used to evaluate the functional Ly (uy) on the coarse (i.e. current)
mesh. Given this flow solution and functional, one seeks an estimate of the functional on a
globally refined mesh 7},, without computing the flow solution on the globally refined mesh.
Therefore, the fine grid functional is expanded in a Taylor series about a solution projected
from the coarse mesh to the fine mesh denoted by u;.

oL,
8uh

Ly(uy) = Ly(ul) + ( >Uh (wp, —uy) +--- (5.2.3)
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where £;,(u’;) is the fine mesh functional evaluated with the coarse mesh solution projected
to the fine mesh. The vector (%) o is the sensitivity of the functional with respect to the
solution evaluated at the same projegted state. To eliminate the term involving the solution
on the fine mesh (uh — u}}{), one appeals to the constraint equation. The residual defined
by equation (5.2.1) evaluated on the fine mesh can also be expanded about the projected

solution as:

Rh(uh) = Rh(u}ﬁ) + lg—i:l} X (llh — 11};1) + - (524)

The fine level residual is constrained to be zero which allows one to re-arrange equation

(5.2.4) to solve for the quantity involving the unknown fine solution as

@} i Ry, (u’) (5.2.5)

(u, — u]}{) ~ — {8uh

uly
Upon substitution of equation (5.2.5) into equation (5.2.3) one obtains the following expres-
sion for the estimate of the error in the functional

catuwn) — ntuly) ~ — (Gt ) | ] R, (5.2.6)

8uh 8uh ul
H

where the flow residual on the fine mesh Ry (uy) is non-zero since the coarse mesh flow
solution projected to the fine mesh does not satisfy the discrete equations on the fine mesh.
Next the fine mesh adjoint variable Ay is defined as the variable satisfying

[@r A, = (%)T (5.2.7)

8uh uh 8uh
H

Therefore the functional error can now be defined in terms of the adjoint variable
,Ch(llh) — Eh(u]}_]) ~ —(Ah)TRh(u]};,) (528)

The solution of the adjoint problem should be expected to cost as much as the flow solution
and thus it is undesirable to compute the fine grid adjoint variable A, directly. Therefore
the coarse level adjoint solution is obtained via

{(m_H]T A, — (M_H>T (5.2.9)

8uH g 811[{
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which is solved on the coarse mesh. In this work, the fine mesh (level) employed for error
estimation contains the same number of elements as the original mesh but employs a dis-
cretization order of p+1 where the coarse mesh employs a discretization order of p. Therefore
the transition of mesh levels H — h is equivalent to the transition of discretization orders
p — p+1. The coarse adjoint solution is projected onto the fine mesh by injection. Injection
is the process of initializing the fine mesh solution with the coarse mesh solution without
performing any interpolation to obtain the fine mesh solution. Since the fine mesh employs
a discretization order of p + 1, the injection operator is defined by setting the modes from
1 to M, of Af}{ = Ay and setting the remaining high-order modes to zero, where M, is the
number of modes in a discretization of order p. The injection operator is followed by a small
number (<= 5) of linear solution iterations on the fine mesh to generate the approximate
fine mesh adjoint variable A%. Reference [17] has used a patch-wise least-squares method
to reconstruct the adjoint solution on the fine mesh. However, the reconstruction procedure
is more complicated in the current context, which involves mixed-element non-conforming
meshes. Furthermore, several solution cycles on the fine mesh results in a relatively low cost
operation and gives an approximate fine level adjoint solution, which is based on the discrete
fine mesh equations. Introducing the approximate fine level adjoint solution results in the

error estimate:

Eh(uh) — ﬁh(u}}{) ~ _EA];I)TR'h(u};Il_\(Ah — A];[)TRh(u}[L{l (5210)

where €. is the computable error and ¢, is the error due to the approximate fine level adjoint.

The magnitude of the contribution to the computable error from a particular element k is

o = | (M) R ()| (5.2.11)

Additionally a so-called local discretization error estimate can be obtained by using the

estimated fine level residual as an error indicator. This gives the local error estimate as
e, = |Rn (uly)], (5.2.12)

Essentially, the local error is measure of how well the current solution satisfies the discrete

equations of one order of accuracy higher than the current order of accuracy. The local error
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estimate is not a goal oriented error estimation approach and does not target any output of
the solver.

In this work the element-wise contributions of computable error €., or local error ¢, are
used as the adaptation criteria. Following reference [18], the mesh is adapted by targeting for
refinement elements that contribute a certain fraction of the total error in the mesh, usually
> 90%. For this work 99% of the total error is targeted. The process forms a sorted list of
the elements according to the magnitude of their contribution to the total error, from the
highest to the lowest values. A loop over the queue is performed and elements are flagged
for refinement until the total amount of error processed exceeds the specified percentage of
the total error. This ensures that only the elements with the highest contribution to the
total error are refined for highly non-uniform error distributions. When the error has become
more uniformly distributed near-uniform refinement will occur. Once the elements have been
tagged for adaptation they are refined via either a p-enrichment or h-refinement procedure,
depending on the measured local smoothness of the solution ug.

The computable error €. can be used to provide a more exact coarse level functional, by

providing a correction to the coarse level functional £, (u};[) given by:

Ly (uy), =Ly (u}) +e (5.2.13)

Ly (u]}{)cow is the so-called corrected functional. The corrected functional will be a good
approximation of £y (uy,) provided the linear Taylor series approximation employed to es-
timate the functional error is valid. A linear Taylor series is a valid approximation if the

behavior between coarse and fine level functionals is close to linear, which is not guaranteed.

5.3 hp-Adaptation

Discontinuous Galerkin methods increase the order of accuracy by adding additional modes
to the expansion in equation (2.2.11), hence increasing the discretization order adds addi-
tional unknowns to the mesh. This gives DG methods additional flexibility with regard
to the placement of the degrees of freedom by an adaptation strategy. In particular, DG

methods have two paths by which to increase resolution: h-refinement and p-enrichment.
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References [20,46] have developed an unsteady mesh adaptation procedure within the con-
text of high-order DG discretizations. However, the mesh adaptations are performed at
a fixed discretization order and thus only exploit one method of adding resolution to the
problem. References [17,59] have developed an hp-adaptive approach for DG discretiza-
tions of the compressible Fuler equations on purely triangular meshes and demonstrated the
effectiveness of this approach for computing both purely smooth flows and flows with discon-
tinuities. Herein the work of references [17,59] is extended to viscous flows on mixed-element
meshes. Additionally, the discontinuity capturing ability of hp-adaptation is enhanced, us-
ing a similar combined h-refinement and p-enrichment approach and artificial diffusion for
shock capturing. In what follows, each method of adaptation is described in isolation, and
the techniques developed for combining h-refinement and p-enrichment methods to achieve

hp-adaptation are presented.

5.3.1 h-Refinement

Reference [15] has shown that using quadrilateral elements in the highly stretched regions
of the mesh is advantageous, as demonstrated and discussed in Chapter 4. As a result, the
refinement process becomes more complicated than the simpler case of conforming triangular
meshes [17,59]. For meshes containing quadrilateral elements it is convenient to allow for
non-conforming interfaces (i.e. hanging nodes) in the mesh. Therefore, triangles are now also
refined such that triangles can have non-conforming interfaces. Refinement of both element
types is done on a four-to-one basis with no more than a two-to-one discrepancy between the
size of neighboring elements. Furthermore, while it is commonplace to smooth the refined
meshes after they are generated, no mesh smoothing is applied in this work because mesh
smoothing can corrupt the structure of the anisotropic boundary layer mesh.

The refinement pattern for triangles is depicted in Figure 5.1. The triangle is refined
using mid-point subdivision where a node is inserted at the mid-point of each edge on the
triangle. This results in four children (4:1) for each subdivided element. Quadrilaterals
are refined in an analogous manner as depicted in Figure 5.2 with the exception that an

additional node is placed at the center of the refined quadrilateral. The present method
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Figure 5.1: Illustration of the triangle h-refinement pattern.
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Figure 5.2: Illustration of the quadrilateral h-refinement pattern.

allows for the presence of hanging nodes for both triangular and quadrilateral elements as
shown in Figures 5.1 and 5.2.

In an attempt to enforce a no more than 4:1 refinement rule, any element with all but
one of its edges flagged for refinement will have its final edge refined. If an element has an
edge marked for refinement and that edge is connected to a hanging node, then the element
is flagged for a full refinement. While in this work de-refinement is not implemented, one
could also apply de-refinement in this situation to enforce a no more than 4:1 refinement
rule.

The presence of hanging nodes complicates the inter-element surface integral compared
to a conforming mesh. In this approach an edge connected by any two nodes is defined
as a unique edge in the mesh. Thus triangles with a hanging node actually have four
edges (similarly quadrilaterals can have up to six edges). The surface integral between
non-conforming elements where one has a hanging node is accomplished by computing each
edge integral separately and then adding these individual edge fluxes back into the elements
on each side of the edge. While for the element with the hanging node the two edges

that surround the hanging node have unique identification numbers in physical space, they
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have the same local edge number on the non-conforming element in the transformed space.
Essentially, the edges surrounding a hanging node make up equal portions of a single edge
in the transformed space, as depicted in Figure 5.3. The quadrature points for the non-

@ Mesh Node
[ ] Quadrature Point

® ® ® ® o
S1 S
- —>

® @ ®
S2 S

® o e ® @

Figure 5.3: Diagram of the surface integral done at a non-conforming interface.

conforming side, i.e. the points viewed from the element on the left are linearly mapped to
reside on half of a standard edge i.e. S — S; or S — S5. These points are compressed and

translated via the following formulas

Si—1is_g
2 (5.3.1)

Thus for the element on the right side S € [—1, 1], however for the element on the left side
S is split into S1 € [—1,0] and S2 € [0,1]. Thus for conforming edges the edge integral is
performed over the full edge length in transformed space(S € [—1, 1]), while the edge integral
for the non-conforming element is split over two halves of the edge in transformed space, i.e
S1 € [—1,0] and S2 € [0, 1]. The volume integrals are unaffected by the presence of hanging

nodes.

5.3.2 Non-conforming Mesh Adaptation Mechanics

The presence of hanging nodes in the mesh necessitates setting some standard rules for the

adaptation. When there are non-conforming interfaces the element surface integrals can
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become complicated. In order to simplify the surface integrals, a rule of no-more than 2:1
in standard element edge length is permitted for non-conforming interfaces. In order to
accomplish this, rules are placed on the mesh refinement strategy. Firstly, if all but one
edge of an element is split by refinement then the element is flagged for refinement. This
has two consequences. The first is to keep the number of non-conforming interfaces to a
minimum for each element type (one for triangles and two for quadrilaterals). The second is
to help provide smoother cell size distributions throughout the mesh by removing potential
un-refined holes from the pattern of mesh refinement. Figure 5.4 depicts this process for
triangular elements and Figure 5.5 for quadrilateral elements. Initially the two red elements
have been flagged for refinement but the light blue one has not been flagged. The algorithm
detects that all but one neighbor of the light blue element has been flagged for refinement

and then tags the light blue element for refinement as well.

- Flagged For Refinemt

Refined Due to Neighbor

Figure 5.4: Refinement rule for triangles.

The second measure put in place prevents the subdivision of half length non-conforming
edges. This keeps all non-conforming interfaces within a 2:1 edge length ratio, thus requiring

only the simple non-conforming edge integration rule described previously. Non-conforming
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Figure 5.5: Refinement rule for quadrilaterals.

edges that are less than half length are prevented by ensuring, that if a half length edge is
to be divided then the cell containing the non-conforming edge is also divided. Figure 5.6
shows a graphical example of this for triangles and Figure 5.7 shows a graphical example for
quadrilaterals.

In this case the red elements are flagged for refinement but the green elements are not.
Since refinement of the red element alone would result in an edge that makes up one quarter
of a full edge for the non-conforming element, the green element is also refined, which ensures
that all the non-conforming edge length ratios are 2:1. Enforcing this type of rule ensures
that the quadrature rule illustrated in Figure 5.3 is performed correctly based on remapping
the quadrature points according to equation (5.3.1). This measure also aids in generating
a smooth element size distribution in the adapted mesh by ensuring that refinement does
not proceed in too highly localized an area i.e. one element is continually refined while the
element’s neighbors never receive any refinement. It should be noted that large resolution
discrepancies can induce artificial oscillations in the solution and as such efforts to provide

smooth mesh resolution throughout the adaptive process are important.

5.3.3 Non-conforming Mesh Curvature

In order to attain optimal accuracy curved elements must be employed on the boundaries

of the domain that are curved surfaces, such as the surface of an airfoil. Furthermore, in
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Figure 5.6: Non-conforming refinement rule for triangles.
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Figure 5.7: Non-conforming refinement rule for quadrilaterals.

order to maintain the integrity of anisotropic meshes, interior mesh elements must also be
curved, which is a result of curving the elements on the physical boundary. The strategy
used to curve the boundary elements is described in Section 2.4 and curving the interior mesh
is discussed in Section 4.1.1. When considering non-conforming meshes, special attention

must be paid to how the elements that have hanging nodes are curved. The presence of
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non-conforming interfaces between elements means that there is a mismatch between the
number of unknowns used to curve the elements on each side of the interface. However, this
does not preclude using non-conforming meshes to refine curved elements.

There are two possible ways to curve an adaptively refined mesh. The first method takes
the initial mesh, applies the desired refinement and then re-curves the mesh edges. For non-
conforming meshes this can result in a situation such as the one depicted in Figure 5.8. In this
case, one cannot guarantee that the non-conforming interfaces will be aligned after curving

the mesh. This is due to the fact that the refined edges on a non-conforming interface

O Quadrature Point
® Node

O
W

Curved Edge Element 1
Curved Edge Element 2

Figure 5.8: Example of unconstrained element curvature for non-conforming element interface. The
red and green curves should be coincident at all points otherwise the mesh has a whole in it.

contain more mapping degrees of freedom, which if left unconstrained, will result in the
situation depicted in Figure 5.8. However, this can be overcome by applying a constraint to
ensure that the edges defined from both sides of the interface conform to the same mapping

as shown in Figure 5.9. This mapping is generated by constraining the two quadrature
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Figure 5.9: Example of constrained element curvature for non-conforming element interface. In
this case the edges defined from both elements are coincident at all points, since one cannot see the
green curve, which is under the red curve.

points(squares) to lie on the red curve in Figure 5.8, which essentially forces the two smaller
curved edges shown as green curves to lie on the red curve in Figure 5.8. In practice, this is
accomplished by curving the initial mesh in the adaptation to the maximum order required
for all adaptive meshes. Then new nodes are placed on this curvature and rather than on
the original geometry definition obtained from the mesh generator, which is where one would
normally place additional surface mesh points. This establishes the required constraint in
an indirect and easy to implement fashion. Using the mesh curvature definition to add new
nodes during adaptation is acceptable since the initial mesh was curved using the geometry

information from the mesh generator.
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5.3.4 p-Enrichment

In contrast to h-refinement, p-enrichment refines the element in question by maintaining the
current element size and connectivity. The p-enrichment procedure is much simpler than
the h-refinement procedure and consists of simply increasing the discretization order from
p to p + 1 on the element flagged for refinement. p-enrichment is implemented for both
element types as depicted in Figures 5.10(a) and 5.10(b), and a jump of no more than one
discretization order is permitted between elements. This is enforced by looping over the mesh
elements and checking to see if this rule is violated. If the rule is violated then the order
of the offending element is raised as illustrated in Figure 5.11. This looping is performed

iteratively until no more offending elements are found.

H,p . Hp+1
H,p Hp+1

(a) Triangle (b) Quadrilateral

Figure 5.10: Hlustration of p-enrichment on both triangles and quadrilaterals.

While p-enrichment induces no additional geometrical complexity, one does need to
address how many quadrature points must be used to integrate the fluxes along the edges.
In previous work the edge fluxes are integrated to 2p + 1 accuracy. When using a grid with
variable discretization order it is necessary to use an integration rule that integrates the edge
fluxes to 2(max(p*,p~)) + 1 accuracy where p™ and p~ denote the element order on each
side of an edge. The solutions on either side of an edge are evaluated using the number of
modes available from each individual element sharing the edge. The volume integrals remain

unaffected by the variable discretization order throughout the mesh.
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Figure 5.11: Order enrichment rule applied to quadrilaterals, triangles are treated exactly the same
way.

5.3.5 hp-Adaptation

It is well known that using high-order polynomials in the vicinity of discontinuities results
in unphysical numerical oscillations or Gibbs phenomena, which for the Navier-Stokes/Euler
equations can cause solver failure. Hence a combination of h-refinement and p-enrichment is
employed to account for the presence of discontinuities in the solution. This proceedure uses
h-refinement near discontinuities and p-enrichment in smooth flow regions. The objective
is to allow discontinuities to be captured using a low-order discretization while using high-
order discretizations in smooth flow regions where the use of high-order discretizations is
appropriate.

hp-adaptation is a hybridization of h-refinement and p-enrichment techniques. These
two techniques are used in tandem such that if an element is to be refined, a decision must

be made as to whether to use h-refinement or p-enrichment. The current implementation

143



examines the smoothness of the primal solution to determine which type of adaptation is
used for each element. The smoothness is determined by examining the jump indicator of

reference [67]. The value of the jump indicator for an element is given by

lq] - 7

{4}

where ¢ is taken as the pressure and the average({}) and jump([[]) operators are defined in

1

S = ds 5.3.2

equation (2.2.5) and equation (2.2.6) respectively. This indicator is essentially a summation
of the inter-element jumps in pressure for each element. For a shock wave the jump indicator
will return a value of O (1) because the jump of pressure and average pressure are of the
same order of magnitude for a shock wave, while for smooth regions the jump in pressure
is much smaller than the average. The choice between whether to refine an element with

h-refinement or p-enrichment is made by

Sk > %, h-refinement (5.3.3)

Sk < =, p-enrichment

where K = 25 is used throughout this work, as in reference [17]. In addition to selecting
the refinement strategy based on the solution smoothness, a maximum discretization order
Pmaz 18 also enforced. When an element reaches the prescribed maximum discretization order
and further refinement is required, h-refinement is substituted for p-enrichment even if the
solution within the cell is smooth.

Though hp-adaptation is designed to place degrees of freedom optimally for a given
objective functional, hp-adaptation can also be viewed as a technique to enhance the ro-
bustness of the DG solver. In essence hp-adaptation seeks to design the mesh based on
the solution, which for cases of under-resolved phenomena such as those encountered in
reference [15] should ultimately result in a mesh of sufficient local resolution such that a
high-order discretization can be used throughout. For flow features that will most likely
remain under-resolved for the entire simulation (e.g. shock waves and contact discontinu-
ities) the hp-adaptive scheme is capable of adding degrees of freedom while maintaining low
discretization order in such a way as to avoid Gibbs phenomena, providing a natural way

for the present DG solver to handle non-smooth solutions robustly.
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5.4 Numerical Results

The proposed hp-adaptive method has been evaluated using four test cases. The first two
test cases consist of the laminar viscous flow over a NACA0012 airfoil and a two-element air-
foil. The first test case is presented to compare hp-adaptation with h-refinement at second-
order(p = 1) as well as with uniform h-refinement and uniform p-enrichment. The two-
element airfoil case represents a practical application of the hp-adaptive method to a more
complicated geometry. The third test case consists of the inviscid transonic flow over a
NACAO0012 airfoil, which is presented to demonstrate the accurate and robust shock cap-
turing abilities of the hp-adaptive method. The results of the hp-adaptation are compared
with uniform p-enrichment using the piecewise constant artificial viscosity method of Section
2.7.1. Additionally, the piecewise constant artificial viscosity is combined with hp-adaptation
in order examine how these two robustness enhancement measures interact. The fourth and
final test case consists of supersonic viscous flow over a half cylinder geometry. In this case
hp-adaptation with integrated surface heating as the objective is employed. This case is a
culmination of the previous test cases as the objective depends strongly on both the shock
wave and boundary layer structures, e.g. on smooth and non-smooth flow physics.

Where appropriate the computational grid may contain both triangles and quadrilaterals
within the same domain. Mixed-element meshes are addressed by the adaptive algorithm by
allowing for non-conforming interfaces between elements of all types. For all test cases the
adaptation is terminated when the functional of interest is grid converged i.e. the functional
changes by less than .5% from one adaptation step to the next. The performance of the
method is measured by considering the number of degrees of freedom (DoF's) required to
yield a grid converged functional. The number of DoF's is determined as the total number
of unknowns per equation in the domain. For example, a purely triangular mesh of 100
elements with a uniform discretization order of p = 1 would have 300 DoF's, which is 3 DoF's
per triangle. The computational cost of generating these results is demonstrated by showing
functional or functional error versus wall clock time (i.e. CPU-time or computational time).

All results except the half cylinder have been computed using the Riemann solver of

Roe [52] on the cell interfaces. All test cases are steady-state solutions and the flow and
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adjoint equations have been converged such that the residuals have been reduced by 12
orders of magnitude at each stage of the adaptive process. In some sense this represents the
worst case scenario for timing adaptive methods because one would probably only partially

converge the intermediate steps before moving on to the next adaptive cycle.

5.4.1 NACAO0012 Airfoil: Drag-based Adaptation

The first test case consists of the laminar flow over a NACAQ0012 airfoil. The flow conditions
are a free-stream Mach number M, = .5, angle of attack a = 1°, and Reynolds number
based on chord length Re = 5,000. Adjoint-based hp-adaptation and h-refinement with
p = 1(second-order) are utilized for the adaptive mesh refinement of this flow. Additionally,
uniform h-refinement and uniform p-enrichment are performed in order to draw comparisons
between uniform and adjoint-based goal-oriented refinement strategies. All refinements are
initialized on a mesh consisting of N = 1, 148 elements, with a uniform discretization order
of p = 1 resulting in 3,930 DoFs. When employing the hp-adaptive approach for this case,
the maximum discretization order in the grid is set at p.. = 5(i.e. 6-th order accurate).
Thus any cell that requires refinement and already has a discretization order of p = 5 will
be subdivided using h-refinement regardless of how smooth the solution is within that cell.
This test case is shown to illustrate the high efficiency of the hp-adaptive approach, i.e. hp-
adaptation can produce very accurate functionals with respect to the reference solution using
relatively few degrees of freedom when compared against uniform refinement/enrichment
and/or h-refinement alone. Drag is chosen as the target functional for the adjoint-based
goal oriented adaptations. The MGPC-GMRES solver described in Chapter 4 is utilized to
converge both the flow and discrete adjoint equations for this test case.

Figures 5.12(a)-5.14(b) depict the initial and final grids using both adjoint h-refinement
and adjoint hp-adaptation as well as computed Mach number contours on those grids. Note
that the adjoint-based strategies target both the surface of the airfoil as well as the wake
region downstream from the trailing edge. Refinement has also been applied upstream of
the leading edge of the airfoil (recall the adjoint contours in Figure 3.2). Furthermore,

note that the computed Mach contours resulting from h-refinement and hp-adaptation look
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(a) Initial mesh: N = 1,148 elements, p =1
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(b) Mach contours: initial mesh

Figure 5.12: Initial mesh and Mach contours of the laminar flow over a NACA0012 airfoil with
p=1, My = .5, a=1° and Re = 5,000.

very similar at the final stage. However, examination of Figures 5.15 and 5.16 show that
the hp-adaptation results contain approximately one third the number of DoFs compared
with the h-refinement results. Figure 5.17 depicts the iterative convergence of the discrete
flow equations using the MGPC-GMRES solver for the final adaptive step of the adjoint
h-refinement and adjoint hp-adaptation. Note that the residuals are reduced by 12 orders of
magnitude in both cases in order to eliminate any algebraic error that may contaminate the
functional values.

Figure 5.15(a) depicts the computed drag versus the number of DoF's using adjoint-based
h-refinement, adjoint-based hp-adaptation, uniform h-refinement and uniform p-enrichment.

The reference value in Figure 5.15(a) was computed using the same DG solver with approx-
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(a) Adjoint h-refinement: final mesh, N = 174,145, p =1
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(b) Adjoint h-refinement: Mach number on the final mesh

Figure 5.13: Final mesh and Mach number contours of the laminar flow over a NACA0012 airfoil
using adjoint h-adaptation with discretization order p =1, My, = .5, a = 1°, and Re = 5, 000.

imately 250,000 DoF's at a uniform discretization order of p = 4 (i.e. 5-th order accuracy).
Figure 5.15(a) clearly shows that the hp-adaptive method yields a grid converged drag result
with the fewest number of degrees of freedom compared to any of the refinement methods
presented. Comparison of the hp-adaptive approach with the h-refinement approach shows
that the hp-adaptive approach yields a grid converged drag result with approximately one
third the number of DoFs used in the h-refinement approach. Figure 5.15(b) depicts the
drag versus the number of DoF's using the computable error predicted according to equation
(5.2.10) to correct the coarse level drag. The arrows in Figure 5.15(b) point from the coarse
level corrected drag to the fine level drag that the correction is estimating. The corrected

drag value is computed via equation (5.2.13). While initially the corrected coarse level drag

148



I

Order: 12345

(a) Adjoint hp-adaptation: final mesh N = 6,776, p=1top=>5
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(b) Adjoint hp-adaption: Mach number on the final mesh

Figure 5.14: Final mesh and Mach number contours of the laminar flow over a NACA0012 airfoil
using adjoint-based hp-adaptation with discretization order p=1top =5, My = .5, a = 1°, and
Re = 5,000.

does not agree with the fine level computed drag, as the refinement process continues and
the drag becomes closer to grid converged, the corrected coarse level drag values show im-
proved agreement with the fine level computed drag values. For the last two refinement
levels, the adjoint correction yields corrected coarse level drag values that closely match the
corresponding fine level computed drag values. The increased effectiveness of the correc-
tion is explained by the fact that the error is predicted as a linear Taylor series expansion
(equation (5.2.3)) about the coarse level solution and thus as the computed drag becomes
closer to being grid converged, the linear Taylor series becomes a better approximation of the
functional behavior between coarse and fine mesh levels. The adjoint hp-adaptive method

clearly gives the most accurate drag result (i.e closest to the reference solution) for a given
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Figure 5.15: Computed drag coefficient versus Np,p for the laminar flow over a NACAQ0012 airfoil
using various adaptation methods, with and without adjoint-based computable error correction.
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Figure 5.16: Computed drag error for the laminar flow over a NACA0012 airfoil using various re-
finement methods, including adjoint-based goal oriented hp-adaptation and h-refinement targeting
drag.

number of DoF's. Note that the h-refinement computation was terminated early because the
number of DoF's became impractically high and it was clear that the hp-adaptation result

had become grid converged using far fewer DoFs.
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Figure 5.17: Flow solver iterative convergence using the MGPC-GMRES solver from Chapter 4 for
the laminar flow over a NACAO0012 airfoil.

Figures 5.16(a) and 5.16(b) show the drag error versus the number of DoFs(Np,r)
and the wall clock time required for each computation. Figure 5.16(a) shows that the hp-
adaptive method gives the lowest drag error per degree of freedom. The asymptotic slope of
these error curves was computed for both the A-refinement and hp-adaptation computations.
Theoretically for a dual consistent discretization using a uniform discretization order p, super-
convergence of the functional error at a rate of order O(h*)(where h = v/Np,r) should be
observed [49]. This asymptotic functional error bound was proven in Chapter 3 and the final
result is shown by equation (3.3.12). Computation of the asymptotic slope of the drag error
versus h for the h-refinement computation yields the expected value of 2. If the scheme were
dual inconsistent then the asymptotic slope of the drag error versus h curve would be 1 i.e.
O(hP) (see Section 3.3). Computation of the asymptotic slope of the drag error versus h
for the hp-adaptation computation results in a slope of 8.8, which is a striking result. Even
though only a fraction of the grid contains cells with a p = 5 discretization hp-adaptation is

able to obtain very close to the theoretical slope of 10. Figure 5.16(b) depicts the drag error
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versus the wall clock time, which shows that hp-adaptation yields lower drag error using
a fraction of the wall clock time compared to h-refinement at second-order accuracy. The
comparison of functional error versus wall clock time is another metric that demonstrates
the efficiency of hp-adaptation. Recall that the wall clock time shown for the adjoint based
adaptation methods includes the fully converged adjoint and flow solutions at each refinement
level. In practice one would probably partially converge the flow and adjoint solutions during

the early stages of adaptive refinement.

5.4.2 Two-element Airfoil: Drag-based Adaptation

The second test case considers the laminar viscous flow over a two-element airfoil with the
following flow conditions, M, = .3, a = 1°, and Re = 5,000. The initial mesh consists
of N = 6,921 elements at a uniform discretization order of p = 1, which results in 22,401
DoFs. Based on the results of the previous test case, which have shown that hp-adaptation
is the most efficient method for obtaining a grid converged output functional, this case is
computed using only the hp-adaptive method where the maximum discretization order is
fixed at p = 5, as with the NACAOQ0012 airfoil case. As in the previous case, drag is chosen
as the target functional for the adjoint-based adaptation.

Figures 5.18(a)-5.19(b) depict the initial and final meshes along with the computed Mach
number contours on each mesh. Comparison of the computed Mach number contours in the
wake region between the initial and final meshes shows that the adjoint-based hp-adaptation
has increased the resolution in the wake, as seen by the increased distance over which the
wake is captured in Figure 5.19(b). Also notice that hp-adaptive method did not subdivide
any elements because the initial mesh is relatively fine and the smoothness indicator given
by equation (5.3.2) did not detect any non-smooth phenomena, i.e. in this case changing the
discretization order was sufficient to yield a grid converged result. The final mesh consists
of the same number of elements as the original mesh, but with variable discretization orders
ranging from p = 1 to p = 5 throughout the domain as depicted in Figure 5.19(a). Figure
5.20(a) shows the drag versus Np,r for this case. Clearly a grid converged drag value has

been obtained after four adaptive steps using approximately 80,000 DoFs. Figure 5.20(b)
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Figure 5.18: Initial mesh and Mach number contours of the laminar flow over a two-element airfoil
with p =1, M = .3, a = 1°, and Re = 5, 000.

shows the drag versus wall clock time for this case indicating that a grid converged drag
value is generated in 53 min of computational time. Figure 5.21 depicts the convergence of
the discrete flow equations using the MGPC-GMRES solver of Chapter 4 for all adaptation

cycles.
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(a) Adjoint hp-adaptation: final mesh with N =6,921,p=1top=>5
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(b) Adjoint hp-adaptation: Mach number on the final mesh

Figure 5.19: Final mesh and Mach number contours of the laminar flow over a two-element airfoil
using adjoint hp-adaptation with p=1top =5, M = .3, a = 1°, and Re = 5, 000.
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Figure 5.20: Computed drag versus Np,r and versus wall clock time for the laminar flow over a
two-element airfoil using hp-adaptation.
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Figure 5.21: Flow solver iterative convergence for the laminar flow over a two-element airfoil.
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For this test case the corrected drag coefficient values computed via equation (5.2.13)
match the fine level computed drag values throughout the adaptive process. This agree-
ment is obtained because the adaptive process was started on a much finer mesh than the
NACAO0012 airfoil case, hence the adaptive process was started much closer to grid conver-
gence than the NACAO0012 airfoil case. The reason that the initial mesh contains so many
cells is that the small tolerances induced by the gap between the two airfoil elements forces

the generation of relatively small cells in the initial mesh.

5.4.3 Inviscid Transonic NACAO0012 Airfoil: Lift-based Adapta-
tion

As an example of computing discontinuous solutions, the hAp-adaptive method is applied to
an inviscid transonic flow over a NACAO0012 airfoil at M., = .8 and o = 1.25°. While the
previous two test cases contained smooth flow solutions, this case has both a strong and
a weak shock wave. This case represents a scenario where the hp-adaptive approach not
only yields high efficiency but also enhanced robustness. For comparative purposes three
refinement scenarios are employed for this test case. In the first scenario the grid initially
contains N = 1,566 triangles with a uniform discretization order of p = 0, resulting in
1,566 DoF's, and is subsequently refined using hp-adaptation in the absence of any artificial
diffusion. The second scenario uses uniform p-enrichment on a grid with N = 3, 086 triangles
and artificial diffusion to stabilize the high-order solutions in the presence of the shock
waves. The final scenario employs hp-adaptation where the grid initially contains N = 1, 566
triangles with a uniform discretization order of p = 1, which requires artificial diffusion to
stabilize the p = 1 discretization in the vicinity of the shock wave. The objective function
in all cases is the computed lift coefficient. A reference solution was computed using a
second-order finite volume method with a 200,000 element mesh (Courtesy Dr. Karthik
Mani [19]). The goal of this case is to compare adaptation using p = 0 at the shock without
artificial diffusion, adaptation using p = 1 at the shock with artificial diffusion, and uniform
p-enrichment using artificial diffusion. It should be noted that using the piecewise constant

artificial viscosity with high discretization orders can be difficult due to the need to change

156



the artificial viscosity settings from as the discretization order is varied, as mentioned in

Section 2.7.4.
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(a) Initial mesh: N = 1,556 elements, p =0 (b) Mach contours: initial mesh

Figure 5.22: Initial mesh and Mach number contours for the inviscid transonic flow over a
NACAO0012 airfoil with p =0, My, = .8 and a = 1.25°.

(a) Final mesh: N =26,407, p=0top=>5 (b) Final mesh: Mach number

Figure 5.23: Final mesh and Mach number contours on the final mesh for the inviscid transonic

flow over a NACA0012 airfoil (M = .8 and o = 1.25%) using adjoint hp-adaptation with lift as
the objective, the discretization order varies from p =0 to p = 5.
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Figure 5.24: Computed lift coefficient versus Np,r using using hp-adaptation without artificial
viscosity and iterative convergence of the flow solver for inviscid transonic flow over a NACA0012
airfoil using the MGPC-GMRES solver.
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Figure 5.25: Error estimate in the computed lift coefficient over the hp-adaptation history employing
p = 0 at the shock and no artificial viscosity.

Figures 5.22(a)-5.23(b) depict the grids and computed Mach number contours for this
case, at the initial and final stages of the adaptive process using hp-adaptation with p = 0
at the shock. The computed Mach number contours in Figure 5.23(b) show that the shock
wave is very sharply resolved using the final hp-adapted mesh. Figure 5.24(a) depicts the
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computed lift coefficient versus Np,r and it is clear that a grid converged lift coefficient
that closely matches the reference value is obtained using approximately 60,000 DoFs. The
hp-adaptive algorithm has used less than one third the number of DoFs used to compute
the reference solution. Figure 5.24(b) depicts the iterative convergence using the MGPC-
GMRES solver for all adaptive cycles indicating that a fully converged solution is obtained
at every stage of the adaptive process. Furthermore, this approach is relatively robust,
requiring less than 100 Newton iterations for the flow solution at all adaptation cycles in
Figure 5.24(b). Although there are p = 0 elements directly involved in the computation of
the lift coefficient, a grid converged result is achieved efficiently.

While the computed the lift coefficient achieves grid convergence as shown in Figure
5.24(a), the corrected coarse level lift coefficient does not match the fine level computed lift
coefficient at any point during the hp-adaptation proceedure. Examination of Figure 5.25,
which depicts the adjoint error estimate €. in equation (5.2.10), shows that the computable
error is not converging towards zero, as was the case with the previous laminar viscous test
cases. This contradicts the computed lift coefficient result, which is trending toward a fixed
value as seen in Figure 5.24(a). If the computed lift coefficient is trending towards a fixed
value then the difference between the computed and exact lift coefficient must be decreasing
as the mesh is adapted. Examination of equation (5.2.10) shows that for |e.| to decrease
over the adaptation, the approximate fine level residual Ry, (u’ﬁ) must decrease, since the
magnitude of the adjoint variable A’}{ cannot decrease, due the dual consistent discretization,
as discussed in Chapter 3. Therefore, if |e.| is not decreasing then the residual Ry, (uf;) must
not be decreasing. Examination of the residual norm || Ry, (u}}{) |2 over the adaptation
confirmed that the fine level residual estimate is not reduced during hp-adaptation. This
is a result of using injection of the p = 0 solution into the p = 1 finite-element space to
estimate the fine level solution u’,, which induces Gibbs phenomena in the fine level solution
estimate uf;. The presence of Gibbs phenomena in u? cause the fine level residual estimate
R, (u}}{) to behave irregularly as the mesh is refined. The method for removing the Gibbs
phenomena from the fine level solution estimate u, and thus correcting or regularizing the

fine level residual estimate Ry, (u’}{) is discussed subsequently.
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While no explicit limiter has been used to generate these results, one can view the hp-
adaptive approach as a form of limitation. Tradition slope limiters effectively reduce the
order of accuracy locally. The idea behind slope limitation is to assume that a high-order
discretization is appropriate everywhere in the grid and then to remedy those areas where
a high-order discretization is not appropriate, corresponding to a top down approach. hp-
adaptation can be viewed as a bottom up approach to limitation because hp-adaptation
starts with a low-order discretization and moves towards a high-order discretization where
appropriate. In the context of DG discretizations, the bottom up approach has an advantage
because it takes the coupling between order of accuracy and resolution into account naturally,
by applying h-refinement in the regions of the domain which are non-smooth.

As a point of comparison, this flow is also computed using the piecewise constant artifi-
cial viscosity method from Section 2.7.1. The computations are performed using discretiza-
tion orders p = 1 to p = 4 on a triangular mesh with N = 3, 189 elements, which corresponds
to approximately 10,0000 to 50,000 DoFs. The flow solutions are converged using a CGS
preconditioned GMRES solver described in Section 4.3.3 and Section 4.5.
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(a) Initial A.V. and mesh: N = 3,086, p =1 (b) Initial mesh: Mach number

Figure 5.26: Initial artificial viscosity and Mach number contours for transonic flow over a
NACAO0012 airfoil with p =1, My, = .8 and o = 1.25°.
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Figure 5.27: Final artificial viscosity and Mach number contours for transonic flow over a
NACAO0012 airfoil (Ms = .8 and a = 1.25%), using uniform p-enrichment with discretization
order is p = 4.
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Figure 5.28: Lift versus Npop for transonic flow over a NACAQ0012 airfoil using using artificial
diffusion with p = 1 to p = 4 and iterative convergence of the flow solver using a CGS preconditioned
GMRES solver.
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Figures 5.26(a)-5.27(b) depict the grid, artificial viscosity contours and Mach number
contours for this flow, computed with uniform p-enrichment and using the piecewise constant
artificial viscosity. Note that the shock wave sharpens when uniform p-enrichment is applied,
indicating that increasing the discretization order p has increased the resolution of the flow
field. Figure 5.28(a) depicts the lift versus Np,, illustrating that the computed lift coefficient
does not converge to a fixed value as the discretization order p is increased. The conclusion
is that while the resolution is certainly increased, the piecewise constant artificial viscosity
has compromised the grid convergence of the higher-order result. Figure 5.28(b) depicts
the iterative converge for this case using the CGS preconditioned GMRES solver. One
can immediately see from the number of Newton steps required to converge the discrete
flows equations(up to 500), that computing shock waves with this method can become quite
expensive especially when compared with the adjoint hp-adaptation convergence history in
Figure 5.24(b). Additionally, for each order of accuracy adjustments to the artificial viscosity
parameters(up to a factor of 2) were required in order to obtain a convergent solution process
. The variations in the artificial viscosity parameters are the root cause of the poor computed
lift coefficient convergence behavior in Figure 5.28(a). This can be remedied by using a more
robust artificial viscosity method as seen in Section 2.7.4.

As a third and final comparison, this test case is computed using adjoint hAp-adaptation
combined piecewise constant artificial viscosity and a minimum discretization order of p = 1.
As shown in Section 4.7.1 a minimum discretization order of p = 1 is required for SIP based
DG discretizations of the viscous terms. Therefore, it is of interest to examine the viabil-
ity of employing a minimum discretization order of p = 1 for shocked flows. Furthermore,
it is of interest to investigate if hp-adaptation can remedy the poor objective convergence
observed(Figure 5.28(a)) when employing uniform p-enrichment with piecewise constant ar-
tificial viscosity for this flow.

Figures 5.29(a)-5.30(b) depict the grid and Mach number contours for this flow, com-
puted with adjoint hp-adaptation and piecewise constant artificial viscosity. One clearly sees
that h-refinement is applied in the region around the shock and p-enrichment is applied else-

where. Figure 5.30(b) shows that the shock wave thickness is reduced dramatically during
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Figure 5.29: Initial mesh and Mach number contours for inviscid transonic flow over a NACA0012
airfoil with p = 1 and artificial diffusion, My, = .8 and o = 1.25°.
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Figure 5.30: Final mesh and Mach number contours for inviscid transonic flow over a NACA0012
(My = .8 and o = 1.25°) airfoil using adjoint hp-adaptation and piecewise constant artificial
viscosity, the discretization order varies from p =1 to p = 4.

the adaptive process. Figure 5.31(a) shows the lift versus Np,r for this case, where one
can immediately notice that hp-adaptation remedies the functional convergence problems

shown in Figure 5.28(a). Employing h-refinement rather than p-enrichment in regions where
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Figure 5.31: Inviscid transonic NACAO0012 airfoil: computed lift coefficient versus Np,r using using
hp-adaptation combined with piecewise constant artificial viscosity. Iterative convergence using the

CGS preconditioned GMRES solver.
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Figure 5.32: Error estimate in the computed lift coefficient over the hp-adaptation history employing
a discretization order of p = 1 and piecewise constant artificial viscosity in the vicinity of the shock
wave.

artificial viscosity is applied results this improved functional convergence behavior for this
test case. The localized mesh refinement in the vicinity of the shock wave allows the artificial
viscosity coefficients (Section 2.7.1) to remain fixed throughout the refinement process, which

is significantly more effective at increasing functional convergence than p-enrichment, which
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requires altering these coefficients as refinement is applied. Comparison of Figure 5.31(a)
and Figure 5.24(a) shows that using hp-adaptation with a minimum discretization order of
p = 1 combined with artificial viscosity uses significantly fewer degrees of freedom than hp-
adaptation using p = 0 as the minimum discretization order. This improvement in efficiency
is due to the uniform second-order accuracy in the regions of smooth flow features, resulting
in a significantly better initial solution. Thus hp-adaptation with artificial diffusion is even
more efficient than hp-adaptation using p = 0 to resolve the shock wave. Figure 5.31(b)
depicts the iterative convergence of the flow solver using the CGS preconditioned GMRES
solver. Note that the hp-adaptation results require far fewer Newton steps than the uniform
p-enrichment results(Figure 5.28(b)), especially for the final refinement.

Furthermore, combining artificial viscosity with hp-adaptation has resulted in improved
agreement between coarse level corrected lift coefficients (equation (5.2.13)) and the fine
level computed lift coefficient as seen in Figure 5.31(a). Examination of the computed lift
error estimate in Figure 5.32 shows that the error estimate is decreasing over the adaptation
history. Comparing Figure 5.32 with Figure 5.25 shows that the addition of artificial viscosity
has significantly improved the behavior of the error estimate. The addition of artificial
viscosity eliminates the Gibbs phenomena in the fine level solution estimate uf;, allowing
the fine level residual estimate Ry, (u}}{) in equation (5.2.10) to recover a decreasing trend as
hp-adaptation is applied. Therefore artificial viscosity is a suitable regularization technique
for the fine level solution estimate uf;, allowing for accurate error estimation.

Figure 5.33(a) depicts the computed lift coefficient versus the wall clock time, which
clearly shows that hp-adaptation generates more accurate lift coefficient values at a reduced
cost compared to higher-order shock capturing with piecewise constant artificial viscosity.
However, the most efficient method involves combining the piecewise constant artificial vis-
cosity with hp-adaptation employing a minimum discretization order of p = 1. This combi-
nation produces a grid converged functional in the least amount of computational time as
shown in Figure 5.33(a). Furthermore, hp-adaptation has remedied the poor functional con-
vergence observed for the piecewise constant artificial viscosity with uniform p-enrichment

computations.
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Figure 5.33: Comparison of the computed lift versus wall clock time for inviscid flow over a
NACAOQ0012 airfoil using using piecewise constant artificial viscosity with uniform p-enrichment
and hp-adaptation.

The combination of piecewise constant artificial viscosity and hp-adaptation has proven
to be more robust than either of these methods in isolation. Employing hp-adaptation
without artificial viscosity requires that the shock wave not enter a high-order element during
the solution process. However, the combination of hp-adaptation and piecewise constant
artificial viscosity allows this constraint to be relaxed because if a shock wave were to move
into a higher-order element during the flow solution process, the artificial viscosity will
become active and stabilize the element. Therefore, when considering the robustness of
combining hp-adaptation and artificial viscosity, no special care must be taken to avoid shock
waves entering high-order elements. However, the results indicate that additional accuracy
is achieved if h-refinement is employed in the vicinity of the shock wave. Therefore when
the combination of hp-adaptation and piecewise constant artificial viscosity is employed, the
decision between h-refinement and p-enrichment in equation (5.3.3) should be made such that
elements with non-zero artificial viscosity values are targeted with h-refinement. This can
be accomplished if the resolution indicator of equation (2.7.2) is used as the hp-adaptation

1

smoothness indicator and % in equation (5.3.3) is set as & = so — &, which will target all

elements with non-zero artificial viscosity using h-refinement.
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While the hp-adaptive approach is not the most elegant shock capturing method for DG
discretizations, hp-adaptation has some significant advantages; hp-adaptation gives robust
and fast iterative convergence, and with each refinement the functional accuracy improves
and eventually grid converge of the functional is achieved. The results indicate that the
piecewise constant artificial viscosity should be combined with at least h-refinement at a
minimum discretization order of p = 1, in order to achieve grid converged functional values.
In particular, this work has shown hp-adaptation to be a very effective choice when used
in combination with artificial viscosity. Based on these results, the recommended strategy
for shock capturing is to combine hp-adaptation with artificial viscosity and to maintain the

discretization order at p = 1 in the vicinity of the shock wave.

5.4.4 Supersonic Viscous Cylinder: Surface Heating Based Adap-

tation

The fourth and final test case considers supersonic viscous flow over a half cylinder geometry.
The flow conditions are M., = 3.0, a = 270°, and Re = 10,000. The initial mesh consists
of N = 1,711 quadrilateral elements and is initialized to a uniform discretization order of
p = 1, which results in 6,844 DoF's. Since the end goal of this work is to develop a robust and
accurate high-order flow solver, this case is designed to test the hp-adaptation strategy for
viscous shocked flows. In this case the piecewise constant artificial viscosity of Section 2.7.1
is employed as the shock capturing method. As previous test cases have shown, using high
discretization order(p) combined with piecewise constant artificial viscosity has proven to
be ineffective at reducing functional error. Hence adjoint based hp-adaptation is employed
to simultaneously increase solver robustness and accuracy. In this case the target of the
adjoint-based adaptation is the surface heating coefficient Cy defined as:

VT, -7
Cp=2210 0

1 3
Pr 5Us (5.4.1)
Us = VU2, + v%
where P, = .72 is the Prandtl number, u, is the viscosity at the surface, T}, is the surface

temperature, 7 is the surface normal vector, p, is the surface density, u, is the free-stream
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u-velocity, and v, is the free-stream v-velocity. Furthermore, p = 3 is set as the maximum

allowable discretization order for this case.
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(b) Initial mesh: temperature contours

Figure 5.34: Initial mesh and temperature contours for supersonic viscous flow over a half cylinder
using a uniform discretization order of p = 1.

Figure 5.34(a) through Figure 5.35(b) depict the meshes and temperature distributions
at the initial and final stages of the hp-adaptive process, which show that a substantially more
resolved shock wave is obtained on the final hp-adapted mesh. The surface heating objective
has targeted only a portion of the shock wave, which is refined using h-refinement as shown
in Figure 5.35(a). Similarly, a portion of the region behind the shock wave, known as the
shock layer, is targeted for refinement using p-enrichment due to the smooth flow features
in this region. Lastly, the boundary layer along the surface of the cylinder is also targeted

using p-enrichment since this is also a smooth flow feature. The portion of the shock wave
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(b) Final mesh: temperature contours

Figure 5.35: Final mesh and temperature contours for supersonic viscous flow over a half cylinder,
the discretization order varies from p =1 to p = 3.

that is relevant to surface heating is captured very sharply and robustly by hp-adaptation.
Figure 5.37 depicts the temperature extracted along the stagnation streamline on the intial
and final hp-adapted meshes and shows that hp-adaptation has increased the resolution of
the shock wave significantly on the final mesh. Figure 5.36(a) depicts the artificial viscosity
distribution on the initial mesh and Figure 5.36(b) depicts the artificial viscosity distribution
on the final mesh. On the initial mesh the artificial viscosity targeted only elements in the
vicinity of the shock wave and vanished in regions of smooth flow features. Figure 5.36(b)
shows that on the final adapted mesh the artificial viscosity has been activated in the vicinity
of the shock wave as well as in the shock layer near the y = 0 lines. Comparing Figure 5.36(a)

and Figure 5.36(b) illustrates that as h-refinement is applied in the vicinity of the x = 0
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Figure 5.36: Artificial viscosity on initial and final meshes for supersonic viscous flow over a half
cylinder.

line, the artificial viscosity is confined to a thinner region than on the initial mesh.

Figure 5.38(a) depicts the integrated surface heating over the adaptation history, which
becomes grid converged after 5 adaptive cycles. The corrected coarse level surface heating
given by equation (5.2.13) correctly predicts the fine level surface heating for all but the
first two adaptive cycles. Furthermore, the application of hp-adaptation has substantially
reduced the adjoint error estimate over the adaptation process as shown in Figure 5.38(b).
Figure 5.38(b) depicts the computed functional error estimate versus Np,r(i.e. h?). The
convergence rate of the function error versus h = /Np,r is 6.2 and is very close to the
optimal value of 6.0. This combination of hp-adaptation and piecewise-constant artificial

viscosity is both robust and accurate and clearly demonstrates the advantages of using high-
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Figure 5.37: Temperature profile extracted along the stagnation streamline on the initial and final
hp-adapted meshes.
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Figure 5.38: Computed surface heating and adjoint error estimate of computed surface over the
hp-adaptation history.

order methods in this fashion, where as one achieves the desired functional error convergence

properties without using high-order elements in the vicinity of the shock wave.
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5.5 Summary

An hp-adaptive high-order discontinuous Galerkin solver for the Navier-Stokes equations has
been developed and applied to four test cases. The adaptive method presented is driven by
a goal-oriented approach which makes use of adjoint-based error estimation and is capable
of adapting both the grid and discretization order locally. The solver adapts the grid non-
conformally to allow for hA-refinement of mixed-element meshes such as those shown in the
numerical results. The use of hp-adaptation has demonstrated high efficiency by computing
high accuracy functionals using fewer degrees of freedom than the reference solution or
uniform refinement solutions. Furthermore, applications of hp-adaptation to transonic and
supersonic flows has demonstrated the robustness of this method for shock capturing. The
use of hp-adaptation is essential for obtaining grid convergence of functionals for flows with
shock waves when the piecewise constant artificial viscosity method is employed.

While hp-adaptation alone is a form of limitation, the best overall results are shown when
both hp-adaptation and piecewise constant artificial viscosity are combined. A supersonic
test case demonstrates that high accuracy surface heating can be obtained with shock waves
captured using p = 1 elements. While these results employ the piecewise constant artificial
viscosity, the remainder of this work employs the PDE-based artificial viscosity of Section
2.7.2. The PDE-based artificial viscosity is considered for the remainder of this work because
it has proven to be more robust for Mach numbers higher than M., = 3. The PDE-based
method is more robust because this method spreads the artificial viscosity distribution over
a wider region than the piecewise constant method and also results in a smooth artificial
viscosity distribution. Numerical experiments have shown that a smooth artificial viscosity

distribution is critical to robust shock capturing as also pointed out in references [37,69].
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Chapter 6

Application of DG to Turbulent Flows
using the RANS Equations

In this work, a robust discontinuous Galerkin (DG) solver for turbulent aerodynamic flows
using the turbulence model of Spalart and Allmaras(SA) [41] is developed. The SA tur-
bulence model equation, which governs the so-called turbulence model working variable v,
is given in equation (2.1.2). Initial attempts to solve the SA turbulence model equation
using a high-order DG discretization resulted in solver failure due to robustness issues. The
most pressing robustness issue is related to an artificial sharp interface or discontinuity in
the turbulence model working variable. As such, this work focused on improving the ro-
bustness and efficiency of the discontinuous Galerkin solver for turbulent flows governed by
the Reynolds Averaged Navier-Stokes(RANS) equations coupled to the one equation tur-
bulence model of Spalart and Allmaras. Herein a first-order finite-volume discretization
is implemented for the turbulence model convection term, which is a standard practice in
the finite-volume methods context. Section 2.6 describes the finite-volume discretization
of the SA turbulence model equation. Computational results will show that, despite the
first-order discretization of the turbulence model convection term, there is still benefit to
employing high-order DG discretizations for the mean flow equations, and, at the very least,
high-order accurate discontinuous Galerkin(DG) solutions to the RANS equations are ob-

tained robustly. The combination of a high-order DG discretization for the RANS (mean
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flow) equations and the first-order finite-volume discretization of the SA turbulence model
equation will be denoted as a hybrid discretization in this work. The hybrid discretization
is applied to realistic aerodynamic flows including a subsonic turbulent airfoil flow and two

different high-lift multi-element airfoil configurations at high angles of attack.

6.1 Issues Facing RANS and High-order Methods

Non-smooth solutions present a significant challenge to discontinuous Galerkin discretiza-
tions. The most pressing source of non-smooth behavior is associated with the turbulence
models used to close the Reynolds Averaged Navier-Stokes (RANS) equations. Recent work
has shown that higher than first-order accurate discretizations of the convection term of the
turbulence model of Spalart and Allmaras(SA)(equation (2.1.2)) produce a non-smooth be-
havior or a discontinuity in the turbulence model working variable 7. The working variable
discontinuity is located near the edge of boundary layers and wakes. This same phenomena
has also been observed by Oliver and Darmofal in references [20, 46, 74]. The discontinu-
ity results in oscillations of the high-order solution of the turbulence model equation, which
leads to negative values of the working variable that can easily cause the presented DG solver
to fail (i.e diverge). Numerical experiments with the presented DG solver have shown that
some flows are more susceptible to solver failure than others. For example, solver failure is
more likely to occur to for high-lift configurations, where the negative values of the working
variable have particularly high magnitudes than for simple flat-plat boundary layer flows. In
general, the higher the magnitude of the negative working variable values, the more likely the
solver is to fail due to the turbulence model working variable discontinuity. However, results
from the ATAA drag prediction workshops have shown that discretization error negatively
impacts the state-of-the-art of second-order finite-volume CFD solvers [13,14]. However, it
is well known that one of the most effective methods for removing discretization error is to
increase the order of accuracy [17,20,29,47,56,96]. Therefore competing interests exist for
the computation of turbulent flows. On one hand additional accuracy is required and on

the other hand the turbulence model equations have so far proven difficult to solve robustly
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using higher than a first-order discretization of the convection term. Hence the primary goal
of this work is to examine whether increasing the mean flow discretization order, while main-
taining a first-order discretization for the turbulence model equation, constitutes a viable
strategy. Additionally, the robustness of the current solver will be demonstrated by applying
the solver to challenging test cases that are relevant to aerodynamics. The DG solver in this
work is capable of discretizing the SA model equation using both a finite-volume discretiza-
tion with a first-order accurate convection term discretization and an arbitrarily high-order
DG discretization, enabling comparisons between these two discretizations. The first-order
finite-volume discretization is described in Section 2.6 and the DG discretization, which is
also applied to the mean flow equations is described in Section 2.2.

While there are a several examples of successful high-order DG RANS solutions [15,20,
42,43, 70], significant robustness issues remain. For example, the flow over a flat-plate can
be computed successfully using a high-order DG discretization of the SA turbulence model
equation as in Section 6.2.1. However, the present DG solver has never been able to solve
the flow over a high-lift multi-element airfoil configuration, such as the three-element airfoil
configuration considered in Section 6.5.2, using a high-order DG discretization of the SA
turbulence model equation. Furthermore, the current solver using a DG discretization of the
SA turbulence model equation is able to replicate nearly all the results of references [15,20,42,
43,70]. However, high-order DG discretizations of the SA turbulence model equation are not
robust enough for high-lift calculations on arbitrary grids. Many production level solvers such
as, CFL3D [66], FUN3D [65], and NSU3D [64] employ finite-volume discretizations of the
turbulence model equations with first-order accurate convection terms for all implemented
turbulence models. Furthermore, Spalart and Allmaras employ a first-order convection term
discretization of the SA turbulence model equation in reference [41]. Borrowing from this
idea, the presented DG solver is modified to use the same discretization of the turbulence
model equation as references [5,64]. High-order DG discretizations are implemented for the
mean flow equations in order to remove as much discretization error from the mean flow
equations as possible.

There have been a few attempts to stabilize high-order solutions of the SA turbulence
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model equations [15,46,70]. Unfortunately, these stabilization methods have proven unsat-
isfactory in one way or another: either the stabilization method allows for negative values
of the turbulence model working variable 7 or it adversely impacts the solution accuracy of
turbulence model. In particular, one effect is the under-production of the turbulence model
working variable, which results in eddy viscosity values that are too low to utilize in the
Boussinesq approximation, which is hereby referred to as inadequately modeling turbulent
flow physics. Numerical experiments using the present DG solver and the turbulence model
stabilization methods of references [15,46,70] have shown that these stabilization methods
suffer from the effects described above.

In order to determine whether the discontinuity in the the SA working variable is a purely
numerical artifact resulting from DG discretizations, tests using a finite-volume solver are
conducted in order to determine whether a higher than first-order accurate discretization of
the turbulence model may be employed in the finite-volume context. Using the finite-volume
solver as a base-line, the turbulence model discretization options and the manner in which
these options affect the possibility of discretizing the SA turbulence model equation with
high-order DG methods are discussed. Specifically, the choice of the convective numerical flux
discretization is analyzed in detail to determine the most appropriate convective numerical
flux for the hybrid discretization.

Just as perplexing is the determination of the optimum strategy for the coupling of the
turbulence model and mean flow equations. If the turbulence model is solved using a de-
coupled flow Jacobian, there are some techniques [41] that can be used to help with the SA
working variable discontinuity. However, using a decoupled flow Jacobian may prevent the
solver from being able to fully converge the discrete equations as seen in this work and refer-
ence [97]. Fully converging the discrete equations is a very important issue for higher-order
discretizations because the discrete equations must be converged to tight tolerances(usually
9 or more orders of magnitude), in order to ensure that the solver outputs such as computed
lift coefficient are computed to the desired error tolerances. For example, the first AIAA
international high-order methods workshop has specified an error tolerance of .01 counts

(1.067%) in the computed lift, drag, or moment coefficients for most test cases.
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6.2 DG Discretizations of the Mean Flow and Turbu-
lence Model

Although solving the turbulence model equation using high-order DG discretization is very
difficult due to the presence of the turbulence model working variable non-smooth behavior,
it is possible to obtain a solution in isolated incidences. In particular, it is possible to
obtain high-order DG solutions to the turbulence model equation for simple flows such as a
flat plate or an airfoil at low angles of attack. Numerical experience with computing high-
order discretization turbulence model solutions has shown that, as the angle of attack, Mach
number and Reynolds number are increased, the turbulence model discontinuity becomes
stronger, resulting in higher magnitude negative values of the working variable. Higher
magnitude negative values of the turbulence model working variable more readily cause solver
failure. This section details the preliminary results of applying high-order DG discretizations
of the mean flow and turbulence model equations to flow problems where a solution can be
obtained. Additionally, the local-order reduction technique of Section 4.6 is applied to asses
the merits of using this technique to enhance the robustness of the DG discretization of the
turbulence model equation. The results presented are computed such that the turbulence
model and mean flow equations all have the same discretization order, as well as the same
convective numerical flux function for an element. This is the most rigorous option for

discretizing the total RANS-SA system.

6.2.1 Turbulent Flat-Plate

The first test case consists of the the incompressible zero pressure gradient turbulent flow
over a semi-infinite flat plate at M, = .1, a = 0°, and Re = 10,000, 000. In this case the
RANS equations are coupled to the one-equation turbulence model of Spalart and Allmaras
(SA model). The computational mesh is made up of N = 540 quadrilateral elements, as
shown in Figure 6.1 and employs discretization orders p = 1 to p = 4. The computed results
are compared with experimental data [98], which represents a verification of the RANS

implementation for discretization orders p =1 to p = 4. The MGPC-GMRES solver is used
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to solve the discrete flow equations.
The u™-velocity profiles versus y* for all discretization orders are plotted along with
the experimental ut-velocity data from reference [98] in Figure 6.2(a). The non-dimensional

velocity ut and the non-dimensional coordinate perpendicular to the wall y™ are given by:

(6.2.1)

wall

where the term w, is the so-called friction velocity defined via the total wall shear stress.
Additionally, the computed skin friction coefficient as well as experimental skin friction
coefficient data versus z/c are plotted in Figure 6.2(b). The results show that good agreement
between computed and experimental results is obtained for both the u™-velocity profile at
the mid-chord of the plate /¢ = .5 and the skin friction coefficient along the plate length
(i.e. versus x/c). Figure 6.3 shows the turbulence model working variable plotted versus
y/c at the mid-chord of the plate z/c = .5 for discretization orders p = 1 and p = 4. Note
the oscillations at the boundary layer edge, indicating the presence of non-smooth behavior,
with more oscillatory behavior for the p = 4 result. References [20, 74] have also noted
that high-order discretizations of the SA turbulence model equation yield oscillations at the
boundary layer edge.

The convergence history for a discretization order of p = 2 is depicted in Figure 6.4. The
MGPC-GMRES solver achieves convergence in under 80 Newton iterations for both the flow
and turbulence model equations. Note the very sharp rise in the turbulence model residual
around the 50" Newton iteration. This is the point in the solution convergence history
when the model begins to develop negative working variable values and the source term
modifications given in Section B.1 become active. If not properly damped, this secondary
transient will cause solver failure. Despite employing the modifications to the source terms in

Section B.1, negative working variable values are still present in the final converged solution.
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Furthermore, the secondary transient has proven difficult to overcome for more complex flow

problems.

0.8

0.6~

Figure 6.1: Computation mesh used for computing turbulent flow over a flat plate with the Spalart-
Allmaras turbulence model consisting of N = 540 quadrilaterals.
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Figure 6.2: Comparison of computed solution using a DG discretization with the Spalart-Allmaras
turbulence model for a flat plate boundary layer compared with experimental data using p = 1 up
to p =4.
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Figure 6.4: Convergence history of the density and turbulence model variable for turbulent flow
over a flat plate using the Spalart-Allmaras turbulence model for a p = 2 DG discretization using

MGPC-GMRES solver.

6.2.2 Turbulent NACAQ0012 Airfoil

The second test case consists of the turbulent flow over a NACAO0012 airfoil using the Spalart-
Allmaras turbulence model. The flow conditions are M, = .25, o = 0°, and Re = 1,685,000

and discretization orders p = 1 to p = 3 are employed on a mesh with N = 3,579 elements
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(1,302 quadrilaterals and 2,277 triangles). The maximum aspect ratio of any element in
the mesh is 4650:1. The mesh for this test case is shown in Figure 6.5(a). The solution is
converged using the MGPC-GMRES solver and each higher p solution is initialized with a
fully converged solution of order p—1. This flow is significantly more challenging to solve than
the flow over the flat-plate as the magnitude of the negative values of the turbulence model
working variable become substantially larger. As with the flat plate, this case demonstrates
the oscillations in the turbulence model working variable at the edges of boundary layers.
Additionally, this flow demonstrates that the edge of the wake contains the same oscillations,
which are more severe than at the edge of the boundary layer and generate higher magnitude
negative working variable values. This test case also demonstrates a need for additional
smoothness and/or limiting of the turbulence model solution to increase the robustness of
the DG discretization.

The convergence history for the p = 3 solution is depicted in Figure 6.5(b), which clearly
shows that the convergence rate is slower than that of both laminar cases in Chapters 4 and 5
and the flat-plate case previously presented. The slow convergence rate in the initial part of
the convergence history is due to transients induced by the model source terms. However, the
slow convergence rate during the later portion of the convergence history is due to Newton
damping requirements imposed by the presence of negative turbulence model variable values.
In fact for the p = 3 DG discretization of this test case, the maximum CFL number was set
to C'F Lyyq. = 1000, which is at least 4 orders of magnitude lower than any other presented
test case in this work. Figures 6.6(a) and 6.6(b) show the computed Mach number and
turbulent viscosity contours for a p = 3 discretization. Figure 6.8 illustrates the surface
pressure distribution for orders p = 1 to p = 3. Figure 6.8 clearly shows an increase in
solution quality and smoothness as the discretization order is increased. Figure 6.7 depicts
the v contours in the negative value regime, which demonstrates that the negative v increase
in magnitude in the wake region of the domain.

As a preliminary attempt at increasing robustness of the DG RANS discretization the
local-order reduction technique of Section 4.6 is applied to the p = 2 solution of this problem.

In order to apply local-order reduction, the indicator given in equation (2.7.2) was used with
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the turbulence model working variable as the quantity of interest. While the quantity used
to trigger local-order reduction is based on the turbulence model working variable 7, the
discretization order p is reduced for all equations in an element that is flagged for local-order
reduction. Figure 6.9(a) shows the cells in which the discretization order p is reduced, which
are all at the edge of the boundary and wake, (i.e. turbulent and non-turbulent interfaces)
confirming that this region exhibits non-smooth behavior. Although the application of local-
order reduction increased the robustness of the solver, local-order reduction also degraded
the quality of the solution. Figure 6.9(b) shows the surface pressure distributions for this
test case employing a discretization order of p = 2 with and without local-order reduction.
The p = 2 solution with local-order reduction results in a surface pressure profile that is
significantly less smooth than the p = 2 without local-order reduction. In fact, comparison
of Figure 6.8 and Figure 6.9(b) shows that the local-order reduction surface pressure result
more closely resembles the p = 1 surface pressure result than the p = 2 result without
local-order reduction. By using p = 1 elements at the edge of the boundary layer, the
pressure (which is approximately constant through the boundary layer) at airfoil surface has
been compromised, indicating that the accuracy of quantities such as lift and drag can be
degraded using this approach. Applying local-order reduction to all the equations has shown
that the resolution and smoothness requirements of the mean flow and SA turbulence model
equations are at odds with one another. Clearly, a robustness enhancement technique that
isolates the turbulence model equation from the mean flow equations is required in order to
yield the requisite smoothness of the model variable, while simultaneously avoiding adverse
effects on the mean flow equations, since the mean flow equations are not the cause of solver
failure. Furthermore, this case demonstrates that the mean flow resolution requirements are
at odds with the SA turbulence model resolution requirements. Regions where the mean
flow equations can benefit from high p discretization order cannot be discretized with high

p discretization order due to turbulence model equation robustness problems.
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Figure 6.5: Mesh and convergence history for turbulent flow over a NACA0012 airfoil with a DG
discretization of both RANS and the Spalart-Allmaras turbulence model equations.

6.3 hp-Adaptation with High-order DG Discretization
of the Spalart Allmaras Turbulence Model

The results of applying local-order reduction have shown that there is a discrepancy in the
type of resolution required by the turbulence model compared to the type of resolution re-
quired by the mean flow. Thus hp-adaptation is performed to enhance the robustness of solv-
ing turbulent flows using high-order DG by accounting for this resolution discrepancy. The
idea is simple; anywhere the turbulence model working variable is non-smooth h-refinement
is applied, while p-enrichment is applied otherwise. Since a uniform second-order accurate
discretization is required globally, this results in some turbulence model working variable neg-
ative values. However, provided the initial solution is attainable then hp-adaptation should
be able to increase turbulent flow resolution and accuracy, enabling high-order methods to

attain grid converged functionals and exhibit more robust behavior.
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Figure 6.6: Computed Mach number and turbulent viscosity contours for turbulent flow over a
NACAO0012 airfoil with a DG discretization of both RANS and the Spalart-Allmaras turbulence
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Figure 6.8: Computed surface pressure coefficient of a NACA0012 using RANS coupled to the
Spalart-Allmaras turbulence model with orders p =1 to p = 3.

6.3.1 Turbulence Model Grid Resolution Requirements

In order to improve the computational efficiency of the solver, the hp-adaptation algorithm
detailed in Section 5.3 will be applied using both high-order DG and first-order finite-volume
discretizations of the SA turbulence model equation. When applying hp-adaptation to high-
order DG discretizations, the hp-adaptation algorithm chooses between h-refinement or p-
enrichment by examining the smoothness of the solution within a cell. Applying this method
to turbulent flows requires examining both the smoothness of the pressure and the turbu-
lence model working variable . However, experiments applying the smoothness detector of
equation (5.3.2) to the turbulence model working variable for turbulent flows have shown
that the turbulence model is non-smooth in a very large portion of the domain including
at the wall and at the edges of boundary layers and wakes. Figures 6.10(a) and 6.10(b),
which are from the computation of a turbulent flat-plate flow at the same flow conditions
used in Section 6.4.1, show the smoothness indicator values of equation (5.3.2) for the mean
flow and turbulence model respectively, where the cells that have color are deemed as non-
smooth. Notice, that while the mean flow is sufficiently resolved in the region adjacent to
the wall, the smoothness detector has determined that the turbulence model working vari-

able is non-smooth in this region. While the non-smooth behavior at the edges of boundary
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Figure 6.9: Results of applying local-order reduction to the DG discretization of RANS equations
for turbulent flow over a NACAO0012 airfoil using the Spalart-Allmaras turbulence model.

layers and wakes is be expected, based on the results in this work as well as the results of
references [15,20,46,70,74], the detection of non-smooth behavior at the wall is unexpected.
The results shown in Figure 6.10(a) and Figure 6.10(b) indicate that the SA model requires
higher grid resolution at the wall than the mean flow equations.

Unfortunately the region adjacent to the wall is an area where the mean flow equations
would benefit form high-order polynomial representation, in order to resolve the smooth high
gradient mean flow field in this region. In order to isolate the region adjacent to the wall from

the smoothness detection required for the non-smooth behavior at the edge of the boundary
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Figure 6.10: Close-up of near wall cells smoothness indicator for the turbulent flow over a flat-plate
at My, = .1, Re = 10,000, 000. White cells are detected as smooth and colored cells as non-smooth.
DG discretization is employed for the turbulence model with Roe approximate Riemann solver for
the convective numerical flux

layer, various indicator quantities for turbulence model smoothness were examined. This
work was unable to find an indicator quantity that was able to simultaneously avoid the
region adjacent to the wall and also detect the edge of the boundary layer. Furthermore,
a search of the literature found that only two references [46,70] have considered turbulence
model smoothness detection and neither of the detection strategies in these references was
able to overcome this problem.

This work also makes use of a hybrid discretization approach where the mean flow
equations are discretized using a high-order DG discretization and the turbulence model is
discretized using a first-order finite-volume discretization. Since this discretization removes
the non-smooth behavior of the turbulence model, turbulence model smoothness becomes a
non-issue for this hybrid discretization approach. However, use of a first-order finite-volume
discretization of the turbulence model means that increasing the discretization order p does
not increase the resolution of the turbulence model. In order to effectively utilize the hp-
adaptation strategy, modifications to the decision process that chooses between p-enrichment

and h-refinement are required. Rather than basing the decision between p-enrichment and
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h-refinement based on turbulence model solution smoothness alone, the contribution from
the turbulence model equation to the functional error estimate for a given element (equation
(5.2.11)) is quantified, and used as a metric to determine if an element should be refined
via h-refinement or p-enrichment. If the contribution of turbulence model equation to the
functional error estimate is large enough relative to the total functional error estimate for
a given cell, h-refinement is chosen for that cell, which allows for increased resolution of
the turbulence model. The smoothness of the pressure is still used to detect non-smooth
cells for the mean flow equations. In practice, the smoothness of the mean flow equations
is determined for each element and then the contribution from the turbulence model to the
output functional error estimate is determined and used to override the mean flow smoothness
detector in elements where this contribution is high enough. For this work, if the turbulence
model contributes more than 50% to the functional error estimate in a given cell, then the

cell is refined via h-refinement, regardless of the smoothness of the mean flow field.

6.3.2 Flat-plate: hp-adaptation

The first hp-adaptation test case consists of the turbulent flow over a semi-infinite flat-plate
at M = .1, a = 0.0°, and Re = 10,000,000. For this test case, the turbulence model is
discretized using a DG discretization with the same discretization order as the mean flow
equations. Adjoint based hp-adaptation is performed with drag as the objective. Due to the
discontinuity of the turbulence model working variable, the functional convergence is not
guaranteed to be regular. Figure 6.11(a) shows a close up of the initial mesh, which contains
N = 540 elements and employs a discretization order of p = 1.

Three cycles of hp-adaptation using computed drag coefficient as the objective are per-
formed, at which point the computed drag coefficient is deemed grid converged. The final
hp-adapted mesh is shown in Figure 6.11(b) which has N = 1,116 elements employing vari-
able discretization orders of p = 1 to p = 4. Figure 6.12(a) shows the computed drag
coefficient values over the adaptive history. Clearly the drag becomes grid converged over
the adaptive history since on the last refinement step the drag value changes by less than

5%. Figure 6.12(b) shows the adjoint error estimate of drag over the adaptation history.
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Figure 6.11: Initial and final meshes for drag driven hp-adaptation of the turbulent flow over a
flat-plate. Note the expanded y-axis scale for clarity.

In this case, the drag error estimate continues to drop over the entire adaptation history
and reaches a value .03 counts (3.0e-6) at the final adaptation step, indicating that grid
convergence of drag comes at very low error levels at least for the viscous drag component,
which is the only drag component present in this flow. Furthermore, the average slope of the
drag error estimate versus h(h = \/Npor) over the adaptation history is 8. Figure 6.13(a)
shows the computed skin friction distribution on the plate for the initial and final meshes,
illustrating a significant increase in skin friction at all points along the plate. Since the drag
has become grid converged, it is interesting to examine the distribution of pr at the bound-
ary layer edge as shown in Figure 6.13(b). Figure 6.13(b) shows that, despite the significant
increase in resolution, the profile of pr at the edge of the boundary layer has not become
smooth. While the final hp-adapted mesh shows a drop in negative value magnitude, the
overall behavior is still oscillatory and the model equation is still producing negative values
of pv. The fact that the boundary layer edge has not become smooth leads one to question
whether this artifact will vanish with increasing mesh resolution. This subject will be the
consideration of future work as the goal of the present work to determine if turbulent flows

can be solved on reasonable meshes i.e. meshes that are not designed around turbulence
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Figure 6.12: Computed drag and drag error estimate vs. Np,r for the hp-adaptation of turbulent
flow over a flat-plate.

i Initial Mesh 0.03 : = Initial Mesh
0.005 Final Mesh i i Final Mesh
0.0045 - 00251 ﬁ
X
| r
0.004 0.02|- |
3] > i
0.0035 00151
0.003 i
0.01 -
0.0025 i
C L1 - T - T - | 0.005=, | | T - T - T - T -
0.2 04 06 0.8 1 20 10 0 10 20
X P/,
(a) Skin fiction coefficient (b) Boundary layer edge close-up

Figure 6.13: Computed Skin friction coefficient on initial and final mesh and close up of boundary
layer edge working variable at x = .5.
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model discontinuities.

6.3.3 NACAO0012 Airfoil: hAp-adaptation

The second hp-adaptation test case consists of the turbulent flow over a NACA0012 airfoil.
This test case investigates the robustness enhancement properties of hp-adaptation for a
more challenging test case with larger magnitude negative turbulence model working variable
values. Furthermore, this test case also investigates the the grid convergence of lift, which is a
more challenging functional due to the strong dependence of lift on inviscid flow phenomena.

The flow conditions for this test case are M, = .25, a = 2.0°, and Re = 1,685, 000.
Six cycles of hp-adaptation are performed with lift as the objective and p = 4 is set as
the maximum allowable discretization order. The turbulence model equation is discretized
to the same order as the mean flow equations using a high-order DG discretization. The
approximate Riemann solver of Roe is used for the convective numerical flux of both the
mean flow and turbulence model equations. Additionally, the flow is solved using a fully
coupled flow Jacobian with the GMRES method preconditioned by the CGS algorithm. The
initial mesh shown in Figure 6.14(a) contains N = 5,082 elements at a discretization order
p = 1, yielding 18,706 DoFs.

Figure 6.14(b) shows the final hp-adapted mesh after 6 cycles of hp-adaptation with
the computed lift coefficient as the objective. Note the highly refined wake and boundary
layer regions. The edge of the wake where the turbulence model is non-smooth is targeted
exclusively with h-refinement while the core of the wake is targeted with p-enrichment. Fur-
thermore, p-enrichment is applied upstream and around the airfoil outside of the boundary
layer where the turbulence model is smooth and has little influence on the solution. The only
reason that h-refinement is applied is due to turbulence model non-smoothness or because
an element has been p-enriched to the maximum allowable discretization order, which for
this case is set to a discretization order of p = 4.

Figure 6.15(a) through Figure 6.16(b) show the computed Mach number and eddy vis-
cosity contours on the intial and final meshes. Notice that the wake is significantly more

resolved on the final mesh, as is the inviscid flow region above and below the airfoil. Figure
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Figure 6.14: Initial and final meshes for lift-driven adjoint-based hp-adaptation of turbulent flow
over a NACAO0012 airfoil.

6.17(a) and Figure 6.17(b) depict the pressure and skin friction distributions on the final
hp-adapted mesh respectively. Smooth pressure and skin friction distributions are obtained
at the final adaptive step.

Figure 6.18(a) shows the computed lift coefficient versus Np,r over the adaptation
history. Examination of this figure shows that the computed lift coefficient does not become
grid converged despite using over 600, 000 DoF's for this relatively simple flow. Furthermore,
Figure 6.18(a) shows that the coarse level corrected lift coefficient does not match the fine
level computed lift coefficient it is designed to predict at any point during the hp-adaptation
history. The poor correction of the coarse level lift coefficient is not surprising based on

the adjoint error estimate behavior shown in Figure 6.18(b). Figure 6.18(b) shows that the
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(b) Final mesh: Mach number contours

Figure 6.15: Computed Mach number contours on the initial and final meshes of the hp-adaptation
of turbulent flow over a NACA0012 airfoil.

adjoint error estimate is not reduced by performing hp-adaptation. The error estimate is
not converging to zero because of an effect similar to the one discussed in Section 5.4.3.
However, for this test case, it is not the mean flow equations that are corrupting the fine
level residual estimate but rather the turbulence model equation due to the discontinuity of
the turbulence model working variable and the dual inconsistency discussed in Chapter 3.
The discontinuity in the turbulence model working variable causes Gibbs phenomena, which
as discussed in Section 5.4.3 impacts the fine level residual estimate Ry, (uf;) used to obtain
the computable error €. in equation (5.2.10).

These results lead to several questions: why is the error estimate so poor? What is

affecting the functional convergence? Why was this not the case with the flat-plate? The
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Figure 6.16: Computed eddy viscosity contours on the initial and final meshes resulting from the
hp-adaptation of turbulent flow over a NACAO0012 airfoil.

answer to all of these questions is related to the turbulence model working variable discon-
tinuity. The turbulence model working variable discontinuity adversely impacts functional
converge, due to significant changes in the turbulence model working variable, which do not
converge to fixed values as adaptation is performed. The turbulence model working variable
discontinuity causes inaccurate error estimation in the same fashion as a p = 0 discretization
at the shock wave does in the hp-adaptation case presented in Section 5.4.3. Essentially, the
fine level residual estimate is corrupted due to the Gibbs phenomena that result from the
turbulence model working variable discontinuity. In the case of the transonic flow in Section
5.4.3, artificial viscosity is able to regularize fine level solution estimate u’; and hence correct

the Gibbs phenomena.
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Figure 6.17: Computed coefficient of friction and surface pressure coefficient on the final mesh for
the hp-adaptation of the turbulent flow over a NACAO0012 airfoil.
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Figure 6.18: Computed lift coefficient and lift coefficient error estimate over the hp-adaptation
history for turbulent flow over a NACA0012 airfoil.

Artificial viscosity was also added in both piecewise constant and PDE-based forms to
the turbulence model equation in order remove the Gibbs phenomena. However, applica-
tion of the artificial viscosity resulted in failure either through causing solver failure (lack

of robustness) or by altering the eddy viscosity profile so that the eddy viscosity was no
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longer sufficient to model the turbulent mixing. Furthermore, the dual inconsistency of the
turbulence model discretization can contribute to inaccurate error estimation. Attempts to
remedy the dual inconsistency were made, and as mentioned in Chapter 3, these dual incon-
sistency remedies were also ineffective. The dual consistency modifications employed for the
turbulence model increased the computational time by a factor of two and also adversely
impacted the robustness of the solver (see Chapter 3 for details).

Finally corrupt error estimates were not obtained in the flat-plate case because the
functional in that case did not depend on the turbulence model solution in the discontinuous
regions. Recall that the flat-plate was adapted based on drag. In that case, viscous drag is
the only component of the drag that is non-zero. Viscous drag accuracy is influenced by the
region of the boundary layer very close to the wall where the SA model equation is relatively
well behaved. In contrast, the airfoil lift has a strong dependence on flow curvature, which
generates pressure based forces. These pressure based forces are primarily responsible for
generating lift in this fully attached flow. Flow curvature is a largely inviscid phenomena,
but there is a strong influence from the edge of the boundary layer on the computed lift
coefficient. The obvious nature of this statement is seen in the final hp-adapted mesh shown
in Figure 6.14(b) where the edges of the boundary and wake regions as well as the outer
region of the flow have been very heavily refined.

In conclusion, the presence of the SA turbulence model working variable discontinu-
ity in the actual solution has caused poor functional convergence while the presence of the
discontinuity in the fine level solution estimate causes inaccurate error estimation. If left
unchecked, this discontinuity will continue to plague turbulent flow solutions, adversely im-
pacting robustness, functional convergence, and functional error estimation. Since artificial
viscosity has proven to be successful as a shock capturing method, attempts were made to
utilize artificial viscosity for the turbulence model working variable discontinuity, but ar-
tificial viscosity was unable to remove the Gibbs phenomena without adversely impacting
turbulence model solution accuracy. In fact, Section 6.4.1 will show that employing a limiter
for the second-order discretization of the turbulence model equation convection term does

not perform in a satisfactory manner. Section 6.4.1 will also show that only a first-order dis-
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cretization employing the upwind convective numerical flux alleviates the Gibbs phenomena

effectively at least for the solution of the turbulence model equation.

6.4 Effects of Numerical Methods on the Spalart All-
maras Turbulence Model Solution

In this section, the effects of numerical methods on the turbulence model solution are ex-
amined. In particular, the choice of convective numerical flux as well as the coupling of the
mean flow and turbulence model equations are discussed. For simplicity the discussion of
these effects is restricted to a single numerical example, which is the turbulent flow over
a flat-plate at M, = .1 and Re = 10,000,000. The discussion of the effects of numerical
methods on the turbulence model solution is restricted to this simple test case in order to

avoid unsteady flow solutions in the presence of low eddy viscosity values.

6.4.1 Convective Flux Discretization

Through numerical experimentation, it has been found that the SA turbulence model is
sensitive to the amount of artificial diffusion introduced by the convective flux discretization.
This sensitivity is demonstrated by either the generation of negative values of the turbulence
model working variable or low eddy viscosity production, which causes low eddy viscosity
values that are insufficient to model turbulent flow physics. On the one hand, high artificial
diffusion values cause the eddy viscosity values to become inappropriately low. Artificially
low values of eddy viscosity result in an inadequate model of the turbulent physics. On the
other hand, low artificial diffusion values result in the generation of negative turbulence model
working variable o values. The negative values of 7 the result of the aforementioned non-
smooth behavior or discontinuity in the turbulence model working variable. The presence of
negative values of o often result in solver failure.

Consider the turbulent flow over a semi-infinite flat-plate at the aforementioned flow
conditions. Two basic discretizations are compared for this flow. The first discretization

is a p = 1 DG discretization that employs the approximate Riemann solver of Roe [52] for

197



0.11

01F

—4A— SAVar
—+—— SAVar
—=~4L—— SAVar

- 1st Order Roe
- 2nd Order Roe
- 1st Order Upwind

300

{250

0.09 -
0.08 |-

0.07 -

4]
3
| E =
F =
0.06 - o
0.05
z7 U - 1st Order Roe
0.04 F U - 2nd Order Roe
F U - 1st Order Upwing
0.03
0.02 Lorol Lol Ll Lo Ll Ll Ll I 7
' 10" 10° 10° 10" 10° 10°
Y Y

(a) u-velocity versus y/c (b) pU/ o versus y/c

Figure 6.19: Mid-chord profiles of u-velocity and working variable versus y/c for flow over flat-
plate with M., = .1, Re = 10,000, 000, and p = 1 using a DG solver for the mean flow and various
discretizations and convective numerical flux formulations for the turbulence model .

the convection terms of both the turbulence model equation and the mean flow equations.
The second discretization is a p = 1 DG discretization for the mean flow combined with
a finite-volume discretization employing first-order accurate convection terms, for the tur-
bulence model, which is described in Section 2.6. Two convective numerical fluxes for the
first-order discretization of the turbulence model are examined: an upwind flux derived for
the turbulence model alone (Section 2.6), where the artificial diffusion has no acoustic com-
ponent, and a Roe approximate Riemann solver which fully couples the artificial diffusion
for the mean flow and turbulence model equations and therefore contains an acoustic compo-
nent in the turbulence model convective numerical flux. Essentially, the upwind flux treats
the model equation