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High-Fidelity Simulations 

In computational aerodynamics, high fidelity simulations are 
generally required for meaningful results 

 

 

 

 

 

 

Optimization methods with minimal flow solutions are desirable 

*Kirby, A., Yang, Z., and Mavriplis, D., “Visualization and Data Analytics Challenges of Large-Scale 

High-Fidelity Numerical Simulations of Wind Energy Applications,” 2018 AIAA Aerospace Sciences 

Meeting, CP18-1171, 2018. 

*Kirby et al. (2018) 
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Gradient-Based Optimization 

Gradient optimization is generally suitable for 
aerodynamic/aero-structural applications, where the objective is 
a smooth function of many design variables 

 

 

 

 

 

 

How to find the gradient? 

initial guess 

local minimum 

gradient line local maximum 

Objective = 𝐿 𝐷𝑖 , 𝑈𝑗 𝐷𝑖  
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Gradient-Based Optimization 

Objective gradient can be approximated with finite 
difference: 

1. Solve for the flow/system response and find the 
objective 

2. Perturb a design variable by a small increment 

3. Re-solve and find the new objective, approximate 
derivative from the difference of two states 

Drawbacks: does not give exact gradients, requires 
solution for every design variable 

5 



Gradient-Based Optimization 

Objective gradient can be obtained by solving the 
tangent problem: 

𝑑𝐿

𝑑𝐷𝑖
=

𝜕𝐿

𝜕𝐷𝑖
+

𝜕𝐿

𝜕𝑈𝑗

𝜕𝑅𝑗

𝜕𝑈𝑘

−1
𝜕𝑅𝑘
𝜕𝐷𝑖

 

 

For every design variable 𝐷𝑖, solve 

 
𝜕𝑅𝑘
𝜕𝑈𝑗

𝜕𝑈𝑗

𝜕𝐷𝑖
=

𝜕𝑅𝑘
𝜕𝐷𝑖
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Gradient-Based Optimization 

Objective gradient can be obtained by solving the 
tangent problem: 
 

Then evaluate the objective sensitivity as 

 
𝑑𝐿

𝑑𝐷𝑖
=

𝜕𝐿

𝜕𝐷𝑖
+

𝜕𝐿

𝜕𝑈𝑗

𝜕𝑈𝑗

𝜕𝐷𝑖
 

 

Gives exact gradients, requires solution for every design 
variable 
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Gradient-Based Optimization 

Alternatively, objective gradient can be obtained using 
the adjoint: 

𝑑𝐿

𝑑𝐷𝑖
=

𝜕𝐿

𝜕𝐷𝑖
+

𝜕𝐿

𝜕𝑈𝑗

𝜕𝑅𝑗

𝜕𝑈𝑘

−1
𝜕𝑅𝑘
𝜕𝐷𝑖

 

 

First compute the adjoint, as 

 
𝜕𝑅𝑘
𝜕𝑈𝑗

{Λ𝑘} =
𝜕𝐿

𝜕𝑈𝑗
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Gradient-Based Optimization 

Alternatively, objective gradient can be obtained using 
the adjoint: 
 

Then calculate the objective sensitivity for each design variable as 

 
𝑑𝐿

𝑑𝐷𝑖
=

𝜕𝐿

𝜕𝐷𝑖
+ Λ𝑘

𝜕𝑅𝑘
𝜕𝐷𝑖

 

Gives exact gradients, requires only one solution for all 
design variables 
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UW CFD Lab 
At the University of Wyoming, the CFD lab has done 
years of work in general CFD applications 

*Marviplis, D., Fabiano, E., and Anderson, E., “Recent Advances in High-Fidelity Multidisciplinary Adjoint-Based 

Optimization with the NSU3D Flow Solver Framework,” 55th AIAA Aerospace Sciences Meeting, CP17-1669, 

2017. 
**Kirby, A., Yang, Z., and Mavriplis, D., “Visualization and Data Analytics Challenges of Large-Scale High-Fidelity 

Numerical Simulations of Wind Energy Applications,” 2018 AIAA Aerospace Sciences Meeting, CP18-1171, 

2018. 

Aeroelastic response of 

helicopter rotor in forward 

flight* 

High-fidelity aero-structural 

model of HIRENASD wind 

tunnel section* 

High-fidelity modeling and 

visualization of wind turbine 

wakes using high-order 

discontinuous Galerkin 

methods** 
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UW CFD Lab 
For design and optimization of flexible aeroelastic structures, it is 
important to account for the coupled fluid-structural response 

 

 

 

 

 

 

In the past many simulations have employed low-fidelity 
structural models.  For true response and structural objectives, 
high fidelity structural modeling is needed. 
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AStrO: Adjoint-Based Structural Optimizer 

AStrO has been developed as an open source FORTRAN package 
for high-fidelity 3D structural finite element modeling and 
sensitivity analysis  

– Static and dynamic elastic and thermal modeling 

– Linear and nonlinear geometry 

– Processing input files for mesh and geometry generated by 
Abaqus 

– Defining structural design variables (material properties, nodal 
coordinates, section properties) 

– Obtaining exact sensitivities of user-defined objectives using the 
adjoint 
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AStrO: Fundamental Formulations 

Formulation of governing equations for thermal heat conduction 
and elasticity: 

                                                      
𝜕𝑞𝑖
𝜕𝑥𝑖

+ 𝜌𝐶𝑝𝑇 − 𝑄 = 0 

                                               
𝜕𝜎𝑖𝑗

𝜕𝑥𝑗
 − 𝜉𝑢 𝑖 − 𝜌𝑢 𝑖 + 𝑓𝑖 = 0   

 

 

(PDEs) 
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AStrO: Fundamental Formulations 

Formulation of governing equations for thermal heat conduction 
and elasticity: 

                                                      
𝜕𝑞𝑖
𝜕𝑥𝑖

+ 𝜌𝐶𝑝𝑇 − 𝑄 = 0 

                                               
𝜕𝜎𝑖𝑗

𝜕𝑥𝑗
 − 𝜉𝑢 𝑖 − 𝜌𝑢 𝑖 + 𝑓𝑖 = 0 

 

 

    −𝑞𝑖𝛿
𝜕𝑇

𝜕𝑥𝑖
𝑑Ω

Ω

+ 𝜌𝐶𝑝𝑇 𝛿𝑇𝑑Ω
Ω

− 𝑄𝛿𝑇𝑑Ω
Ω

+ 𝑞𝑖𝑛𝑖𝛿𝑇𝑑𝑆
𝑆

= 0 

 𝜎𝑖𝛿𝜖𝑖𝑑Ω
Ω

+ 𝜉𝑢 𝑖𝛿𝑢𝑖𝑑Ω
Ω

+ 𝜌𝑢 𝑖𝛿𝑢𝑖𝑑Ω
Ω

=  𝑓𝑖𝛿𝑢𝑖𝑑Ω
Ω

+ 𝑡𝑖𝛿𝑢𝑖𝑑S
S

 

 

(PDEs) 

(Variational 

    Form) 
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AStrO: Fundamental Formulations 

Discretized governing equations assuming finite element 
solution: 
                                                       

𝑅𝑗
𝑢 =  𝜎𝑖

𝜕𝜖𝑖
𝜕𝑈𝑗

𝑑Ω
Ω

+ 𝜉𝑢 𝑖𝑁𝑖𝑗𝑑Ω
Ω

+ 𝜌𝑢 𝑖𝑁𝑖𝑗𝑑Ω
Ω

− 𝑓𝑖𝑁𝑖𝑗𝑑Ω
Ω

− 𝑡𝑖𝑁𝑖𝑗𝑑S
S

= 0 

𝑅𝑗
𝜙
=  −𝑞𝑖

𝜕𝑁𝑗

𝜕𝑥𝑖
𝑑Ω

Ω

+ 𝜌𝐶𝑝𝑇 𝑁𝑗𝑑Ω
Ω

− 𝑄𝑁𝑗𝑑Ω
Ω

+ 𝑞𝑖𝑛𝑖𝑁𝑗𝑑𝑆
𝑆

= 0 

𝑢𝑖 = 𝑁𝑖𝑘𝑈𝑘 

𝑇 = 𝑁𝑘𝜙𝑘 
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AStrO: Fundamental Formulations 

Discretized governing equations assuming finite element 
solution: 
                                                       

𝜎𝑖 = 𝐶𝑖𝑘𝜖𝑘
𝑠𝑡𝑟𝑒𝑠𝑠 = 𝐶𝑖𝑘 𝜖𝑘

𝑡𝑜𝑡𝑎𝑙 − 𝜖𝑘
𝑡ℎ𝑒𝑟𝑚 = 𝐶𝑖𝑘 𝜖𝑘

𝑡𝑜𝑡𝑎𝑙 − Δ𝑇𝛼𝑘
𝑇𝐸  

𝑅𝑗
𝑢 =  𝐶𝑖𝑘𝜖𝑘

 𝜕𝜖𝑖
𝜕𝑈𝑗

𝑑Ω
Ω

+ 𝜉𝑢 𝑖𝑁𝑖𝑗𝑑Ω
Ω

+ 𝜌𝑢 𝑖𝑁𝑖𝑗𝑑Ω
Ω

− 𝑓𝑖𝑁𝑖𝑗𝑑Ω
Ω

− 𝑡𝑖𝑁𝑖𝑗𝑑S
S

−  Δ𝑇𝐶𝑖𝑘𝛼𝑘
𝑇𝐸 𝜕𝜖𝑖

𝜕𝑈𝑗
𝑑Ω

Ω

= 0 

 

Thermoelastic coupling: 
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AStrO: Fundamental Formulations 

Discretized governing equations assuming finite element 
solution: 
                                                       

Implicit dynamic time integration, Newmark Beta expansion: 

𝑢𝑖 𝑡 + Δ𝑡 = 𝑢𝑖 𝑡 + Δ𝑡𝑢 𝑖 𝑡 +
1

2
Δ𝑡2 1 − 2𝛽 𝑢 𝑖 𝑡 + 2𝛽𝑢 𝑖 𝑡 + Δ𝑡  

𝑢 𝑖 𝑡 + Δ𝑡 =  𝑢 𝑖 𝑡 + Δ𝑡 1 − 𝛾 𝑢 𝑖 𝑡 + 𝛾𝑢 𝑖 𝑡 + Δ𝑡  

𝑇 𝑡 + Δ𝑡 = 𝑇 𝑡 + Δ𝑡 1 − 𝛾 𝑇 𝑡 + 𝛾𝑇 𝑡 + Δ𝑡  

0 < 𝛾 ≤ 1 

0 < 𝛽 ≤
1

2
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AStrO: Fundamental Formulations 

Element library supports solid continuum, shell, and 
beam elements 

Solid 

Elements: 

Shell 

Elements: 

(Incompatible 

modes) 

Beam 

Elements: 
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AStrO: Fundamental Formulations 

Solid continuum elements: 

(Incompatible 

modes) 

𝑢𝑖 = 𝑁𝑖𝑘𝑈𝑘 

𝜖𝑖𝑝 =
1

2

𝜕𝑢𝑖
𝜕𝑥𝑝

+
𝜕𝑢𝑝
𝜕𝑥𝑖

+
𝜕𝑢𝑞
𝜕𝑥𝑖

𝜕𝑢𝑞
𝜕𝑥𝑝

 

Green-Lagrange strain definition: 

Nonlinear term 

Elastic solution completely defined by nodal displacements: 
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AStrO: Fundamental Formulations 

Shell elements, derived from Kirchhoff plate theory: 

𝑢1 = 𝑢1
𝑚 + 𝑥3𝜃2 

𝑢2 = 𝑢2
𝑚 − 𝑥3𝜃1 

𝑢3 = 𝑢3
𝑚 

𝑢𝑖
𝑚 = 𝑈𝑖𝑗𝑁𝑗 

𝜃𝑖 = 𝜃𝑖𝑗𝑁𝑗 

Nodal displacements and rotations 

defined at midplane: 
3D displacement field: 

𝜖𝑖𝑝 =
1

2

𝜕𝑢𝑖
𝜕𝑥𝑝

+
𝜕𝑢𝑝
𝜕𝑥𝑖

 

Strain definition: 

(Coordinate transformation 

for nonlinear geometry) 

𝑥1 

𝑥2 
𝑥3 
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AStrO: Fundamental Formulations 

Beam elements, Bernoulli beam theory: 

𝑢𝑖
𝑚 = 𝑈𝑖𝑗𝑁𝑗 

𝜃𝑖 = 𝜃𝑖𝑗𝑁𝑗 

Nodal displacements and rotations 

defined at midplane: 
3D displacement field: 

𝑢1 = 𝑢1
𝑚 + 𝑥3𝜃2 − 𝑥2𝜃3 

𝑢2 = 𝑢2
𝑚 

𝑢3 = 𝑢3
𝑚 

(Principle of virtual work formulated in terms of normal strain, 

curvature twist using A, E, I, G, J)   

𝑥1 

𝑥2 
𝑥3 
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AStrO: Adjoint-Based Sensitivities 

Recall the general procedure for adjoint-based 
sensitivities: 

1  𝑠𝑜𝑙𝑣𝑒    
𝜕𝑹 

𝜕𝑼 

𝑇

{𝚲} =
𝜕𝐿

𝜕𝑼
 

𝑑𝐿

𝑑𝐷𝑖
=

𝜕𝐿

𝜕𝐷𝑖
+ 𝚲𝑇

𝜕𝑹

𝜕𝐷𝑖
 

2  𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑑𝑒𝑠𝑖𝑔𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒, 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 
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AStrO: Adjoint-Based Sensitivities 

Recall the general procedure for adjoint-based 
sensitivities: 

1  𝑠𝑜𝑙𝑣𝑒    
𝜕𝑹 

𝜕𝑼 

𝑇

{𝚲} =
𝜕𝐿

𝜕𝑼
 

𝑑𝐿

𝑑𝐷𝑖
=

𝜕𝐿

𝜕𝐷𝑖
+ 𝚲𝑇

𝜕𝑹

𝜕𝐷𝑖
 

2  𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑑𝑒𝑠𝑖𝑔𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒, 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 

Critical components 

for any discipline 
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AStrO: Adjoint-Based Sensitivities 

Categories of design variables supported by AStrO: 

1)   Elastic properties (Young’s modulus, Poisson’s ratio, etc.) 

2)   Mass density 

3)   Thermal conductivity 

4)   Coefficient of thermal expansion 

5)   Specific heat capacity 

6)   Local material orientation 

7)   Cross-sectional properties (for shells and beams only) 

8)   Nodal coordinates 

9)   Applied mechanical load (body force and tractions) 

10)  Applied thermal load (internal heat generation and surface flux) 

(May be defined in separate input file) 
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AStrO: Adjoint-Based Sensitivities 

Summary of thermoelastic governing equations: 
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AStrO: Adjoint-Based Sensitivities 

For static analysis: 

(Adjoint has components for both displacement 𝑼 and temperature 𝝓.  

Either discipline can be omitted for single-disciplinary analysis.) 
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AStrO: Adjoint-Based Sensitivities 

For dynamic analysis: 
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AStrO: Adjoint-Based Sensitivities 

For dynamic analysis: 

28 



AStrO: Adjoint-Based Sensitivities 

  

(Diagonal block 

lower-triangular 

for solution, 

upper triangular 

for adjoint.) 
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AStrO: Adjoint-Based Sensitivities 

 Sensitivities of governing equations obtained through 
linearization of the original analysis code: 
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• Outer loop over physical time steps 

– Coupling iterations per time step : 

• Fluid Mesh: 
– Line implicit multigrid 

• Flow: 
– Implicit BDF2 Newton iterations (GMRES) 

– Linear agglomeration multi-grid 

• FSI (Fluid to structure) 
– Explicit assignment 

• Structure: 
– Solve via designated method (direct, iterative, MUMPS, etc.) 

• FSI (Structure to fluid) 
– Explicit assignment 

Fluid-Structure Interface 
AStrO couples with NSU3D CFD code through fluid-structure 
interface 

31 

{𝐹}𝐶𝑆𝐷= 𝑇 𝐹 𝐶𝐹𝐷 

{𝑈}𝐶𝐹𝐷= 𝑇 𝑇 𝑈 𝐶𝑆𝐷 



Fluid-Structure Interface 

FSI coupling iteration process continues until the solution 
converges   

Initial deflection (1st coupling) = 4.5m 

Final deflection (last coupling) = 2.9m 
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Demonstrations and Validations 
Static thermoelastic response of solid cube: 

Internal heat 

generation: 

Surface flux: 

𝐶𝑖𝑗 = Elastic 

stiffness matrix 

 

𝛼𝑇𝐸= Coefficient of 

thermal expansion 

 

𝑘= Thermal 

conductivity 
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Demonstrations and Validations 

Static thermoelastic response of solid cube: 

Temperature solution: 

Displacement solution: Strain solution: 
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Demonstrations and Validations 
Temperature and displacement response for (a) eight-node 
hexahedral elements (b) four-node tetrahedral elements: 
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Demonstrations and Validations 
Mesh convergence of thermoelastic solution of solid cube: 
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Demonstrations and Validations 
Sensitivities of normal strain at center of cube: 

Hex elements: 

Hex elements with incompatible modes: 

Tet elements: 
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Demonstrations and Validations 
NACA 0012 section in free vibration: 

𝑢2 = cosh 𝛽𝑥3 − cos 𝛽𝑥3  − 𝛼 sinh 𝛽𝑥3 − sin 𝛽𝑥3 (1 − cos 𝜔𝑡 ) 

𝑥2 

𝑥3 

Distributed loading 
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Demonstrations and Validations 
NACA 0012 section in free vibration: 

𝑥2 

𝑥3 

Distributed loading 
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Demonstrations and Validations 
Sensitivities of cumulative tip deflection of NACA 0012 section: 

Adjoint Tangent Complex 

Modulus -2.28662547511174E+01 -2.28662547511176E+01 -2.28662547511172E+01 

Density 6.80909337379652E+00 6.80909337379656E+00 6.80909337379659E+00 

Thickness -6.87938499499907E-02 -6.87938499499919E-02 -6.87938499499910E-02 

X3 7.11201895842075E+01 7.11201895843516E+01 7.11201895847536E+01 

Adjoint Tangent Complex 

Modulus -2.34316797685626E+01 -2.34316797685609E+01 -2.34316797685665E+01 

Density 6.93622330325826E+00 6.93622330325728E+00 6.93622330325849E+00 

X3 7.69163259198577E+01 7.69163259198956E+01 7.69163259198118E+01 

Shell model: 

Solid model: 
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Demonstrations and Validations 

Demonstration: 1st mode free vibration test of HIRENASD* wing, 
clamped at root.  Response computed with Newmark Beta-HHT 
alpha implicit time integration. 

*Reimer, L., Boucke, A., Ballmann, J., and Behr, M. “Computational Analysis of High-Reynolds 

Number Aero-Structural Dynamics HIRENASD,” International Forum of Aeroelasticity and Structural 

Dynamics CP2009-130, 2009 
41 

First mode vibration displacement 

contour on deformed HIRENASD 

wing 

Current Model Published 

Natural 
Frequency 

26.55 Hz 26.53 Hz 

Tip displacement history of 

HIRENASD wing in free vibration  



Demonstrations and Validations 

Demonstration:  Coupled aero-structural simulation of 
HIRENASD wing model computed lift coefficient of 0.3304 
compares well with published value 
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Case Study: Fatigue Stress Minimization on 
SWiFT Wind Turbine Blade 

• Longevity of wind turbines is 
critical for economic viability. 

• Fatigue damage is a major 
contributor to failure in 
turbines. 

• Extension of work by Bhuiyan et 
al.* was performed to minimize 
fatigue-driving stress under 
simulated loading. 

 SWiFT wind blade model** 

*Bhuiyan, Faisal Hasan, Mavriplis, Dimitri and Fertig, Ray S., “Predicting Composite Fatigue Life of Wind Turbine 

Blades Using Constituent-Level Physics and Realistic Aerodynamic Load,” 57th AIAA/ASCE/AHS/ASC 

Structures, Structural Dynamics, and Materials Conference, CP988, 2016. 

**Resor, B. R. and LeBlanc, B., “An Aeroelastic Reference Model for the SWiFT Turbines,” Sandia National 

Laboratories, Rept. SAND2014-19136, Albuquerque, NM, Oct. 2014. 

43 



Case Study: Fatigue Stress Minimization on 
SWiFT Wind Turbine Blade 

Fatigue damage in polymers has been shown to be well-
modeled using the kinetic theory of fracture: 

 

 

 

 

 

 

In fiber-reinforced composites, the challenge lies in the 
identification of the effective scalar stress criterion 𝜎𝑒𝑓𝑓. 

𝑛 = damage parameter 

between 0 and 1. 

𝜆, 𝛾, 𝑈 = material dependent 

constants. 

ℎ = Planck’s constant 

𝑘 = Boltzmann’s constant 

𝑇 = Absolute temperature 
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Case Study: Fatigue Stress Minimization on 
SWiFT Wind Turbine Blade 

Effective off-axis matrix stress in fiber-reinforced composites 
developed by Fertig et al.*: 

(𝐴𝑡 and 𝐴𝑠 derived 

from static failure 

tests) 

*Jensen, E. M. and Fertig, R. S., "Physics-Based Multiscale Creep Strain and Creep Rupture Modeling for 

Composite Materials," AIAA Journal, Vol. 54, No. 2, 2015, pp. 703-711 
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Case Study: Fatigue Stress Minimization on 
SWiFT Wind Turbine Blade 

The goal was set to minimize the effective off-axis matrix 
stress derived by Fertig in the SWiFT wind blade model under 
five loading conditions: 

1) Centrifugal loading (static, assuming angular velocity 43 rpm) 

2) Gravitational loading (dynamic) 

3) Aerodynamic (static, loads generated by NSU3D, inflow = 12 m/s) 

4) Combined loading (static, with blade in horizontal position) 

5) Combined loading (dynamic, through 3 revolutions) 
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Case Study: Fatigue Stress Minimization on 
SWiFT Wind Turbine Blade 

Objective function defined as fourth-power p-norm of 
effective off-axis matrix stress: 

 

 

 

 

A power of four has been observed to target areas of 
maximum stress, while keeping objective smooth and 
reasonably well behaved*. 

*Duysinx, P. and Sigmund, O., “New Developments in Handling Stress Constraints in Optimal Material 

Distribution.” Proceedings of the 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and 

Optimization, Vol. 1, 1998 
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Case Study: Fatigue Stress Minimization on 
SWiFT Wind Turbine Blade 

Design variables: in-plane fiber angle with respect to blade’s 
longitudinal axis assuming single-ply panels.  One set with a 
variable defining angle for each section, and one set with a 
variable for each individual element of the structure. 

(blade 

sections) 
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Case Study: Fatigue Stress Minimization on 
SWiFT Wind Turbine Blade 

Chang in max stress and deflection for all 5 load cases: 
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Case Study: Fatigue Stress Minimization on 
SWiFT Wind Turbine Blade 

Experimental correlation* between effective off-axis matrix 
stress amplitude and fatigue life: 
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Case Study: Fatigue Stress Minimization on 
SWiFT Wind Turbine Blade 

Optimization history for combined dynamic loading: 
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Case Study: Fatigue Stress Minimization on 
SWiFT Wind Turbine Blade 

Fiber angle change for combined dynamic loading: 

Section design variables 

Element design variables 
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Case Study: Fatigue Stress Minimization on 
SWiFT Wind Turbine Blade 

Stress reduction for combined dynamic loading: 

Before optimization 

After, section design variables 

After, element design variables 
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Case Study: Buckling Constraints on a 
Truss-Braced Wing 

• Current push in aviation toward fuel efficiency through high-
aspect ratio wing designs. 

• Increased importance to consider buckling in design analysis. 
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Case Study: Buckling Constraints on a 
Truss-Braced Wing 

Two main common approaches to structural buckling analysis: 

 

 

 

 

 

 

A generally applicable and affordable approach suitable for 
gradient-based optimization would be valuable. 

1) Approximate structures as collection of simplified members such as 

beams or flat plates and apply analytical solutions.  Computationally 

inexpensive but generally inaccurate, and can be cumbersome to 

implement. 

2) Generalized eigenmode analysis on nonlinear structural stiffness 

matrix.  Expensive, can be problematic with duplicate eigenvalues, 

appropriate number of eigenpairs not always intuitive.  
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Case Study: Buckling Constraints on a 
Truss-Braced Wing 

Elastic structures subject to conservative forces behave in such a 
way to minimize total potential energy: 

 

 

 

If displacement is a function of a set of discrete parameters,  

𝑢𝑖 = 𝑁𝑖𝑗𝑈𝑗, then state of equilibrium defined by 

𝑉 = strain 

energy density 
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Case Study: Buckling Constraints on a 
Truss-Braced Wing 

If there exists a mode of displacement 𝛿𝑼 in which continued 
deformation from equilibrium results in accelerated decrease of 
total potential energy, the system is in unstable equilibrium.  The 
second-order Taylor series expansion of total potential energy is 
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Case Study: Buckling Constraints on a 
Truss-Braced Wing 

If there exists a mode of displacement 𝛿𝑼 in which continued 
deformation from equilibrium results in accelerated decrease of 
total potential energy, the system is in unstable equilibrium.  The 
second-order Taylor series expansion of total potential energy is 

zero at equilibrium 
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Case Study: Buckling Constraints on a 
Truss-Braced Wing 

The matrix of second-order derivatives of potential energy is 

 

 

Or, with the partial derivatives of strain energy density 
represented as stress and stiffness, 

 

 

Conclusion: A structure is in a stable, buckling-safe state if the 
nonlinear stiffness matrix is positive definite. 

Nonlinear 

stiffness 

matrix 
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Case Study: Buckling Constraints on a 
Truss-Braced Wing 

Proposed approach: 

1) Perform 𝐿 𝑑 [𝐿𝑇] factorization on the nonlinear structural stiffness 
matrix at a given state. 

2) Find a perturbation vector 𝛿𝑼  with back-substitution such that 

 

 

 

3) Let the constraint for structural stability be defined by  

 
𝜹𝑼𝑇 𝐾 𝜹𝑼 = 0 
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Case Study: Buckling Constraints on a 
Truss-Braced Wing 

Drawback: No cost-effective way of computing the sensitivity of the matrix 
factorization. Sensitivity of the scalar buckling criterion must be approximated 

 

 

 

 

Advantage: Only one matrix factorization and a differentiation of 𝐾 is 
required at each design state.  Eigenvalue-based approach requires similar 
operation for each eigenpair at each design state. 

 

Goal: Investigate the proposed method, compared to standard eigenvalue-
based analysis and assess its feasibility. 
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Case Study: Buckling Constraints on a 
Truss-Braced Wing 

• Buckling analysis was 
performed on a flat plate using 
both LDL buckling criterion and 
eigenvalue-based criterion. 

• Thickness of each of four square 
sections defined as design 
variables 

• The load 𝑃 and material 
properties chosen so that 
critical buckling thickness = 0.05 
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Case Study: Buckling Constraints on a 
Truss-Braced Wing 

Objective set to minimize total volume of the flat plate while 
ensuring structural stability: 

 

 

 

 

 

 

 

 

 

 

(LDL criterion) 

(Eigenvalue-based criterion) 
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Case Study: Buckling Constraints on a 
Truss-Braced Wing 

Sensitivities for LDL criterion at thicknesses below critical: 

 

 

 

 

 

 

In this case sensitivity direction is correct, but magnitude off 
by factor of three (not generally true). 

 

 

 

 

 

 

 

 

 

 

64 



Case Study: Buckling Constraints on a 
Truss-Braced Wing 

Optimization results: 

 

 

 

 

 

 

 

LDL criterion tends to cause abrupt behavior at point of 
instability. 
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Case Study: Buckling Constraints on a 
Truss-Braced Wing 

Truss-Braced wing model: 

Airfoil:  CRM.65* 

 

≈ 12,000  four-

node shell 

elements 

 

Thickness of 

each panel, rib 

and spar section 

defined as 

design variables 

*Vassberg, J.C., DeHaan, M.A., Rivers, S.M., and Wahls, R.A., “Development of a Common Research Model for 

Applied CFD Validation Studies,” 26th AIAA Applied Aerodynamics Conference, CP2008-6919, 2008. 
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Case Study: Buckling Constraints on a 
Truss-Braced Wing 

Spanwise elliptic load distribution: 
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Case Study: Buckling Constraints on a 
Truss-Braced Wing 

Objective set to minimize mass subject to structural stability 
and mises stress below yield strength for aluminum (using 
Kreisselmeier–Steinhauser aggregation*): 

(LDL criterion) 

(Eigenvalue 

criterion) 

68 
*Kreisselmeier G., Steinhauser R., “Systematic Control Design by Optimizing a Vector Performance Indicator,”  

Symposium on Computer-Aided Design of Control Systems, IFAC, Zurich, Switzerland, 1979 pp. 113–117. 



Case Study: Buckling Constraints on a 
Truss-Braced Wing 

Sensitivities for LDL criterion: 

 

 

 

 

 

 

 

Angle of difference = 8.68𝑜 
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Case Study: Buckling Constraints on a 
Truss-Braced Wing 

Optimization results: 

 

 

 

 

 

 

 

Again abrupt convergence is seen at the point of constraint 
violation, especially for LDL criterion. 
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Case Study: Buckling Constraints on a 
Truss-Braced Wing 

Final panel thickness distribution: 

 

 

 

 

 

 

 LDL criterion, final mass 4300 kg 

Eigenvalue criterion, final mass 3400 kg 

Initial mass = 8500 kg 
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Conclusions 

• AStrO has been developed and validated as a reliable tool for 
structural thermoelastic modeling and sensitivity analysis. 

• Highly specialized and novel investigations have been made 
possible by the open-source nature of the package. 

• There may be great potential to improve fatigue life in 
composite structures through fiber angle optimization, but 
results are highly dependent on loading and fully coupled 
aeroelastic optimization should yield the best results. 

• The proposed LDL criterion for buckling constraints is an 
effective and computationally efficient metric for enforcing 
structural stability.  Further investigations required to 
understand limitations and the best implementation. 
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Future Work 

• Completion of all tools for fully coupled aeroelastic 
optimization would make it possible to conduct further 
meaningful studies to enrich what has been done. 

• Parallelization of AStrO would enable more in-depth 
studies of generalized buckling analysis and other topics. 

• Continue studies with more sophisticated optimizers. 

• Extension of AStrO’s tools to account for nonlinearity in 
thermal material properties for investigations in hypersonic 
applications. 

• Possible applications in high-speed ballistic dynamics may 
require alternative time-integration schemes. 
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AStrO: Adjoint-Based Structural Optimizer 

Demonstration:  Nonlinear deflection of clamped bar subject to 
constant moment, forming a circular ring. 

M 

M 

Coarse Mesh Medium Mesh Fine Mesh 

RMS(error) 1.26655 0.623806 0.334779 
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AStrO: Adjoint-Based Structural Optimizer 

Demonstration:  Critical buckling load of square flat plate subject 
to uniform bi-axial loading 

Analytical 
Coarse 
Mesh 

Medium 
Mesh 

Fine 
Mesh 

Critical 
Load 1.66155 1.72342 1.67157 1.65547 

% Error   3.7236% 0.6031% 0.3659% 
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Eigenpair-based objectives 
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Eigenpair-based objectives 
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Eigenpair-based objectives 
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