A Residual Smoothing Strategy for Accelerating Newton Method Continuation

Dimitri Mavriplis
University of Wyoming
Motivation

• Newton-Krylov methods have become popular for solving difficult/stiff CFD problems
 – Krylov methods provide robust linear system convergence
 – Newton method provides quadratic convergence enabling convergence to low residual tolerances
• Newton methods require continuation for most problems
• Most of the time spent for solving CFD problems is spent in the continuation process
• Continuation methods can stall due to local effects
 – “Unbalanced nonlinearities”
 – Attempts made to break up into smaller nonlinear problems
 • ASPIN, RASPIN
Newton Method

• To solve: $R(w) = 0$
• Linearize to get Jacobian $\frac{dR}{dw}$
• Take Newton steps as:

$$\left[\frac{dR(w^n)}{dw^n}\right] \Delta w^n = - R(w^n)$$
$$w^{n+1} = w^n + \alpha \Delta w^n$$

with $0 < \alpha < 1$ as determined by (backtracking) line search to minimize $\|R(w^{n+1})\|_2$
Pseudo-Transient Continuation Newton Method

• Introduce pseudo-time term and solve

 \[[M (w^{n+1} - w^n) / \Delta \tau + R(w^{n+1}) = R_t(w^{n+1}) = 0 \]

• Take Newton steps as:

 \[[M/\Delta \tau + dR(w^n)/dw^n] \Delta w^n = - R(w^n) \]

 \[w^{n+1} = w^n + \alpha \Delta w^n \]

with \(0 < \alpha < 1 \) as determined by (backtracking) line search to minimize \(\| R_t(w^{n+1}) \|_2 \)

\(M \) is a suitable mass matrix
\(\Delta \tau \) is the pseudo time step (local time step = CFL \(\Delta \tau_{\text{explicit}} \))
Pseudo-Transient Continuation Newton Method

• Introduce pseudo-time term and solve

\[\frac{M (w^{n+1} - w^n)}{\Delta \tau} + R(w^{n+1}) = R_t(w^{n+1}) = 0 \]

• Take Newton steps as:

\[\frac{M}{\Delta \tau} + \frac{dR(w^n)}{dw^n} \] \[\Delta w^n = - R(w^n) \]

\[w^{n+1} = w^n + \alpha \Delta w^n \]

with \(0 < \alpha < 1 \) as determined by (backtracking) line search to minimize \(\| R_t(w^{n+1}) \|_2 \)

Note: \(R(w^n) = R_t(w^n) \) but \(R(w^{n+1}) \neq R_t(w^{n+1}) \)
Pseudo-Transient Continuation Newton Method

• Introduce pseudo-time term and solve
 \[
 \frac{M (w^{n+1} - w^n)}{\Delta \tau} + R(w^{n+1}) = R_t(w^{n+1}) = 0
 \]

• Take Newton steps as:
 \[
 \left[\frac{M}{\Delta \tau} + \frac{dR(w^n)}{dw^n}\right] \Delta w^n = -R(w^n)
 \]
 \[
 w^{n+1} = w^n + \alpha \Delta w^n
 \]

with $0 < \alpha < 1$ as determined by (backtracking) line search to minimize $||R_t(w^{n+1})||_2$

Δw is guaranteed to be a descent direction for $||R_t||_2$

provided $[M/\Delta \tau + dR/dw]$ is an exact linearization of R_t
Pseudo-Transient Continuation Newton Method

\[\frac{M}{\Delta \tau} + \frac{dR(w^n)}{dw^n} \Delta w^n = - R(w^n) \]

- Limit as \(\Delta t \gg 1 \): Recover Newton scheme
 \[\frac{dR(w^n)}{dw^n} \Delta w^n = - R(w^n) \]

- Limit as \(\Delta \tau \ll 1 \): Recover point explicit scheme
 \[\frac{M}{\Delta \tau} \Delta w^n = - R(w^n) \text{ or } \Delta w^n = - \Delta \tau \ R(w^n) \]

\(M \) is simply cell volume for finite-volume scheme and is absorbed in \(\Delta \tau \) above for simplicity
Pseudo-Transient Controller

• Magnitude of $\Delta \tau$ (or CFL) controlled by success/failure of line search
 – Initial CFL ~ 1
 – Line search result: $\alpha = 1$ \quad CFL = CFL * 1.5
 – Line search result: $\alpha < 0.1$ \quad CFL = CFL / 10
 – Otherwise \quad CFL = constant

 – Common failure mode: CFL \to 0
 \[\Delta w^n = - \Delta \tau \ R(w^n) \] also \to 0

• Observation:
 – Common local nonlinear smoothers (block Jacobi, line Jacobi, Gauss-Seidel) have no difficulties reducing residuals in cases where PTC fails in above mode
 – Explicit scheme is poor choice for anisotropic problems (line smoothers preferred)
Desired Behavior

• In the limit \(\text{CFL} << 1 \)
 \[
 \Delta w^n = - D^{-1} R(w^n)
 \]
 – where \(D \) is some preconditioner/smoothen
 • possibly nonlinear
 • Independent of CFL or \(\Delta \tau \)

• Possible formulation:

\[
\begin{bmatrix}
\alpha(\Delta \tau) D + \beta(\Delta \tau) \frac{\partial R}{\partial w}
\end{bmatrix} \Delta w^n = -R(w^n)
\]

with, for example:

\[
\alpha(\Delta \tau) = \frac{1}{1+\Delta \tau} \quad \beta(\Delta \tau) = \frac{\Delta \tau}{1+\Delta \tau}
\]

Still recovers Newton scheme for \(\Delta \tau >> 1 \)
Disadvantages

\[
\begin{align*}
\alpha(\Delta \tau) D + \beta(\Delta \tau) \frac{\partial R}{\partial w} \Delta w^n &= -R(w^n)
\end{align*}
\]

• Left-hand side matrix is modified
 – May require modification of linear solver techniques especially for intermediate values of \(\Delta \tau \)

• Left-hand side matrix is no longer exact linearization of RHS
 – Descent direction for line search not guaranteed
Alternate Approach

- Leave LHS (Jacobian) unchanged
- Modify RHS as:

\[
\left[\frac{M}{\Delta \tau} + \frac{\partial R}{\partial w} \right] \Delta w^n = -R(w^n) - D^{-1} \frac{M}{\Delta \tau} R(w^n)
\]

- For $\Delta \tau \ll 1$:

\[
\frac{M}{\Delta \tau} \Delta w^n = -D^{-1} \frac{M}{\Delta \tau} R(w^n)
\]

- For $\Delta \tau \gg 1$:

\[
\frac{\partial R}{\partial w} \Delta w^n = -R(w^n)
\]
Alternate Approach

• Leave LHS (Jacobian) unchanged
• Modify RHS as:

$$\left[\frac{M}{\Delta \tau} + \frac{\partial R}{\partial w} \right] \Delta w^n = -R(w^n) - D^{-1} \frac{M}{\Delta \tau} R(w^n)$$

 - For $\Delta \tau << 1$:
 $$\frac{M}{\Delta \tau} \Delta w^n = -D^{-1} \frac{M}{\Delta \tau} R(w^n)$$

 - For $\Delta \tau >> 1$:
 $$\frac{\partial R}{\partial w} \Delta w^n = -R(w^n)$$
Residual Smoothing Interpretation

\[
\begin{bmatrix}
 \frac{M}{\Delta \tau} + \frac{\partial R}{\partial w}
\end{bmatrix} \Delta w^n = -R(w^n) - D^{-1} \frac{M}{\Delta \tau} R(w^n)
\]

- \(D^{-1}M/\Delta \tau \) is a non-dimensional operator with a non-trivial stencil (due to \(D^{-1} \))
- RHS may be interpreted as a smoothed residual vector

\[
\begin{bmatrix}
 \frac{M}{\Delta \tau} + \frac{\partial R}{\partial w}
\end{bmatrix} \Delta w^n = -\begin{bmatrix}
 I + D^{-1} \frac{M}{\Delta \tau}
\end{bmatrix} R(w^n) = R_{sm}(w^n)
\]

smoothing operator
Residual Smoothing Advantages

\[
\begin{bmatrix}
\frac{M}{\Delta \tau} + \frac{\partial R}{\partial w} \\
\end{bmatrix} \Delta w^n = -\begin{bmatrix}
I + D^{-1} \frac{M}{\Delta \tau} \\
\end{bmatrix} R(w^n) = R_{sm}(w^n)
\]

– Simple to implement:

 • Add precomputed correction \(\Delta w = -D^{-1}R(w) \) to RHS and scale by \(M/\Delta \tau \)

– LHS Jacobian is unchanged from original scheme

 • Make use of existing linear solvers

– LHS Jacobian is exact linearization of RHS

 • Line search descent direction is guaranteed

\[
R_{sm}(w^{n+1}) = \frac{M}{\Delta \tau} (w^{n+1} - w^n) + R(w^{n+1}) + D^{-1} \frac{M}{\Delta \tau} R(w^n)
\]
Residual Smoothing Advantages

• Line search minimizes $\| R_{sm} \|_2$ instead of $\| R_t \|_2$
• For $\Delta\tau >> 1$ these are the same
• For $\Delta\tau << 1$ Line search usually takes full update since we have:

$$R_{sm}(w^{n+1}) \sim \frac{M}{\Delta\tau}(\Delta w^n) + R(w^{n+1}) + D^{-1} \frac{M}{\Delta\tau} R(w^n)$$

small wrt to other terms

and the solution $\Delta w^n = -D^{-1}R(w^n)$ implies

$$R_{sm}(w^n + \Delta w^n) \sim 0$$
Generalization and Implementation

\[
\left[\frac{M}{\Delta \tau} + \frac{\partial R}{\partial w} \right] \Delta w^n = -R(w^n) - D^{-1} \frac{M}{\Delta \tau} R(w^n)
\]

– Implement by adding precomputed update as source term on RHS: \(\Delta w^{sm} = -D^{-1} R(w^n) \)
 – and rescale by \(M/\Delta \tau \)

– In practice \(\Delta w^{sm} \) can be the result of any sequence of nonlinear smoothing operations
 • Multistage Runge-Kutta designed for smoothing (Jameson 1981)
 • Any number of nonlinear (FAS) multigrid cycles
Results

- Implemented in unstructured mesh CFD code NSU3D
 - Highly anisotropic meshes in near wall region
 - Extract line structures for implicit line solve
- Nonlinear solver:
 - 3 stage line-implicit Runge-Kutta
 - Used as solver, or smoother for agglomeration Multigrid
- Newton-Krylov Solver
 - Pseudo-transient continuation with line search and CFL controller
 - Linear system solved by linear MG: Linear residual reduction = 0.01
 - Original version (unsmoothed)
 - Smoothed version: 5 cycles of 3-stage line RK to compute smoothing term
Results: Test Case 1

- Transonic flow over wing-body configuration
- Solution of Reynolds-Averaged Navier-Stokes Equations (RANS):
 - 2nd order finite-volume
 - Mach=0.75, Incidence=0\degree, Re=3 million, Spalart-Allmaras Turbulence model
 - 1.2 million point mesh (mixed tets, prisms)
 - Highly anisotropic (1:10,000) near wall
Convergence of Nonlinear Solvers

- 3 stage line-implicit Runge Kutta smoother

- Relatively monotone convergence in both cases
- As expected, multigrid solver 10X faster
Convergence of PTC Newton-Krylov Original (Unsmoothed)

- 80 nonlinear cycles, 2063 total Krylov vectors
- Achieves quadratic convergence at end
Convergence of PTC Newton-Krylov Original (Unsmoothed)

- Some linear systems at startup (low CFL) are difficult to solve!
- CFL only climbs rapidly after ~50 nonlinear cycles (out of 80)
Convergence of PTC Smoothed Newton-Krylov

- All settings identical to previous case
- Smoothing constructed using 5 nonlinear cycles of 3-stage line-RK
 - Requires 10% of overall solution time
- Nonlinear cycles reduced from 80 to 43
- Cumulative Krylov vectors reduces from 2068 to 888
Convergence of PTC Smoothed Newton-Krylov

- Near monotonic rise of CFL in continuation process
- No difficult linear systems (as determined by number of Krylov vectors)
Is it Smoothing or Solving?

- Multigrid and single grid smoothing produce similar overall convergence
- Supporting evidence that smoothing is effective mechanism
 - Recall: FAS MG 10X faster than single grid nonlinear solver
Is it Smoothing or Solving?

- Multigrid and single grid smoothing produce similar overall convergence
- Supporting evidence that smoothing is effective mechanism
 - Recall: FAS MG 10X faster than single grid nonlinear solver
Test Case 2: Time-Dependent 4-Bladed Rotor

- RANS equations with SA turbulence model
- 2 million point mesh with highly anisotropic prisms near blade surfaces
- BDF2 time discretization: 1 degree time step
- Rotor started impulsively in freestream flow (tip Mach number ~ 0.9)

- FAS Multigrid converges initial and subsequent time steps at similar rates
Time-Dependent Test Case

- Newton-Krylov method requires lengthy continuation to converge first time step: 120 nonlinear cycles
 - Impulsively started rotor
- Subsequent time steps converge rapidly: < 10 nonlinear cycles
 - Good initial guess from previous time step
Original (unsmoothed) Newton-Krylov

- First time step
 - 120 nonlinear steps, 1600 Krylov vectors
- Third time step
 - 9 nonlinear steps, 150 Krylov vectors
Smoothed Newton-Krylov

- Smoothing constructed using 5 cycles of 3-stage line RK
- First time step solution reduced from
 - 120 to 20 nonlinear cycles
 - 1600 to 220 Krylov vectors
- Subsequent time steps similar to unsmoothed case
- Convergence of all time steps is more consistent
Original (unsmoothed) Newton-Krylov

- First time step generates
 - Difficult linear systems
 - Slow CFL growth
Smoothed Newton-Krylov

- Smoothed solver produces monotonic CFL growth
- More similar convergence for all time steps
Conclusions

• Continuation for Newton methods in CFD are often problematic
 – Majority of solver time spent far from domain of quadratic convergence
 – Pseudo-transient continuation can lead to ill-conditioned systems generated by “bad” solution states

• Addition of source term based on nonlinear smoothing can accelerate PTC-Newton schemes
 – Empirical evidence points to smoothing (vs. solving) as dominant mechanism

• Formulation prevents stalling due to small CFL values
 – Reverts to local nonlinear smoother in limit CFL << 1

• Difficulties may still occur if strong nonlinearities arise in intermediate regions 1 << CFL << ∞
 – Future work...
Acknowledgements

- Sandia National Laboratory Contract 1852733
- NASA Grant NNX15AU23A under the Transformational Tools and Technologies (T³) project
- University of Wyoming Advanced Research Computing Center (ARCC)