Unstructured Grid Technology for CFD: Flow Solver Perspectives

Dimitri Mavriplis
University of Wyoming
Overview

• Unstructured mesh technology has come of age (finally)
 – Evidence from Drag Prediction Workshops
• Efficient solvers required for steady-state and time-implicit problems
 – (similar to structured meshes)
• Grid resolution and convergence
• AMR
• Sensitivity Analysis
• Higher-Order Methods
Unstructured Mesh Technology

• Current evidence suggests
 – USG accuracy comparable to structured grid accuracy on grid of similar resolution
• Current best practice:
 – Prismatic elements in boundary layer regions
 – Tetrahedral elements in inviscid regions
 – Shock alignment for hypersonics may require hexahedral elements (Candler, Gnoffo)
 – Cell vs. Node schemes
 » Tradeoffs still not fully understood
Unstructured Mesh Technology

• Current evidence suggests
 – USG efficiency similar to structured meshes
 • Factor 2 to 3 more costly per iteration
 • Better scalability: Homogeneous data-structures
 • Assuming similarly capable solution strategies
 – Implicit, Multigrid
 – Becomes more critical for finer meshes
 » Steady-state
 » Low reduced frequency problems (aeroelastics)
NSU3D Solver

• Governing Equations: Reynolds Averaged Navier-Stokes Equations
 – Conservation of Mass, Momentum and Energy
 – Turbulence models
 • Spalart-Allmaras 1 equation model
 • K-omega 2 equation model

• Vertex-Based Discretization
 – 2nd order upwind finite-volume scheme
 – 6 or 7 variables per grid point
 – Flow equations fully coupled (5x5)
 – Turbulence equation uncoupled (1 or 2X2)
Spatial Discretization

- Mixed Element Meshes
 - Tetrahedra, Prisms, Pyramids, Hexahedra
- Control Volume Based on Median Duals
 - Fluxes based on edges

\[F_{ik} = f(u_{\text{left}}, u_{\text{right}}) \]
\[u_{\text{left}} = u_i, u_{\text{right}} = u_k: 1\text{st order accurate} \]
\[u_{\text{left}} = u_i + \frac{1}{2} \nabla u_i \cdot r_{ik} \]
\[u_{\text{right}} = u_k + \frac{1}{2} \nabla u_k \cdot r_{ki}: 2\text{nd order accurate} \]
\[\nabla u_i \text{ evaluated as contour integral around } \text{CV} \]

- Various reconstruction options
 - Least squares, Green-Gauss,
 - biharmonic differences (matrix artificial dissipation)
Mixed-Element Discretizations

- Edge-based data structure
 - Building block for all element types
 - Reduces memory requirements
 - Minimizes indirect addressing / gather-scatter
 - Graph of grid = Discretization stencil
 - Implications for solvers, Partitioners
Solution Methodology

• To solve $R(w) = 0$ (steady or unsteady residual)

 – Newton’s method:

 $$
 \begin{bmatrix}
 \frac{\partial R}{\partial w}
 \end{bmatrix}
 \Delta w^{n+1} = -R(w^n)
 $$

 – Requires storage/inversion of Jacobian

 $$
 \begin{bmatrix}
 \frac{\partial R}{\partial w}
 \end{bmatrix}
 $$

 (too big for 2nd order scheme)

 – Replace with 1st order Jacobian

 • Stored as block Diagonals $[D]$ (for each vertex)

 and off-diagonals $[O]$ (2 for each edge)

 – Use block Jacobi or Gauss-Seidel to invert Jacobian at each Newton

 iteration using subiteration k:

 $$
 [D]\Delta w^{k+1} = -R(w^n) - [O]\Delta w^k
 $$
Solution Methodology

- Corresponds to linear Jacobi/Gauss-Seidel in many unstructured mesh solvers

\[
[D] \Delta w^{k+1} = -R(w^n) - [O] \Delta w^k
\]

- Alternately, replace Jacobian simply by [D] (i.e. drop [O] terms) (Point implicit)

\[
[D] \Delta w^{n+1} = -R(w^n)
\]

 - Non-linear residual must now be updated at every iteration (no subiterations)
 - Corresponds to non-linear Jacobi/Gauss-Seidel
 - Converges at same rate as linear scheme (in index k) in the absence of strong non-linearities
 - Non-linear scheme requires \(\sim 150 \) words /cv
 - Linear schemes require \(\sim 500 \) words/cv : \([O] \sim 350 \) words/cv
 - But non-linear scheme requires more cpu time because of more non-linear evaluations
 - NSU3D production code employs non-linear solver
Anisotropy Induced Stiffness

- Convergence rates for RANS (viscous) problems much slower than inviscid flows
 - Mainly due to grid stretching
 - Thin boundary and wake regions
 - Mixed element (prism-tet) grids

- Use directional solver to relieve stiffness
 - Line solver in anisotropic regions
Method of Solution

• Line-implicit solver

\[
[D]\Delta w^{n+1} = -R(w^n)
\]

– \([D]\) now represents point Jacobians plus off-diagonals corresponding to edges in lines (~25 extra words/cv)**

– Invert \([D]\) using block tridiagonal algorithm**

– Analogous approach possible for linear sub-iterative solver

– Gauss-Seidel extensions

– **: Non-linear line Jacobi used in production code
Method of Solution

- Line Jacobi/Gauss-Seidel solver effective for time-dependent problems with small time step
 - Convergence rates independent of grid anisotropy

- For large time steps or steady-state problems require more global solver

- Use line solver as driver on each level of agglomeration multigrid algorithm
Agglomeration Multigrid

- Agglomeration Multigrid solvers for unstructured meshes
 - Coarse level meshes constructed by agglomerating fine grid cells/equations
Agglomeration Multigrid

• Automated Graph-Based Coarsening Algorithm
• Coarse Levels are Graphs
• Coarse Level Operator by Galerkin Projection
• Grid independent convergence rates (order of magnitude improvement)
Agglomeration Multigrid

- Automated Graph-Based Coarsening Algorithm
- Coarse Levels are Graphs
- Coarse Level Operator by Galerkin Projection
- Grid independent convergence rates (order of magnitude improvement)
Agglomeration Multigrid

- Automated Graph-Based Coarsening Algorithm
- Coarse Levels are Graphs
- Coarse Level Operator by Galerkin Projection
- Grid independent convergence rates (order of magnitude improvement)
Agglomeration Multigrid

- Automated Graph-Based Coarsening Algorithm
- Coarse Levels are Graphs
- Coarse Level Operator by Galerkin Projection
- Grid independent convergence rates (order of magnitude improvement)
Line solver convergence insensitive to grid stretching

Multigrid convergence insensitive to grid resolution
NSU3D TEST CASE

- Wing-Body Configuration
- 3 to 72 million grid points
- Transonic Flow
- Mach=0.75, Incidence = 0 degrees, Reynolds number=3,000,000
(Multigrid) Preconditioned Newton Krylov

- Mesh independent property of Multigrid
- GMRES effective (in asymptotic range) but requires extra memory
Parallelization through Domain Decomposition

- Intersected edges resolved by ghost vertices
- Generates communication between original and ghost vertex
 - Handled using MPI and/or OpenMP (Hybrid implementation)
 - Local reordering within partition for cache-locality
Partitioning

- (Block) Tridiagonal Lines solver inherently sequential
- Contract graph along implicit lines
- Weight edges and vertices

- Partition contracted graph
- Decontract graph
 - Guaranteed lines never broken
 - Possible small increase in imbalance/cut edges
Partitioning Example

• 32-way partition of 30,562 point 2D grid

• Unweighted partition: 2.6% edges cut, 2.7% lines cut
• Weighted partition: 3.2% edges cut, 0% lines cut
Partitioning Example

- 32-way partition of 30,562 point 2D grid

- Unweighted partition: 2.6% edges cut, 2.7% lines cut
- Weighted partition: 3.2% edges cut, 0% lines cut
Scalability

- Near ideal speedup for 72M pt grid on 2008 cpus of NASA Columbia Machine
 - Homogeneous Data-Structure
 - Near perfect load balancing
 - Near Optimal Partitioners
Mesh Motion

• Developed for MDO and Aeroelasticity Problems

• Emphasis on Robustness
 – Spring Analogy
 – Truss Analogy, Beam Analogy
 – Linear Elasticity: Variable Modulus
 • Regions of stiff E displace as solid body (no deformation)

• Emphasis on Efficiency
 – Edge based formulation
 – Gauss Seidel Line Solver with Agglomeration Multigrid
Mesh Deformation

• Mesh motion code tested for sample configurations
 – Bend until failure of mesh motion code
 • Spring analogy: Less robust, simpler
 • Linear elasticity analogy: More robust, more costly (x2)
 – Solved by multigrid in all cases
Mesh Motion Formulations

- Linear elasticity approach preserves mesh orthogonality near surface (displaces mesh as solid body in regions of high E)

- Line solver displaces boundary layer mesh region rapidly in response to surface deflections
Fast MG Solution of Mesh Motion Eqns

• Line solver + MG4, first 10 iterations

Viscous mesh, linear elasticity with variable E
Fast MG Solution of Mesh Motion Eqns

- Line solver + MG4, first 10 iterations

Viscous mesh, linear elasticity with variable E
Fast MG Solution of Mesh Motion Eqns

- Line solver + MG4, first 10 iterations

Viscous mesh, linear elasticity with variable E
Fast MG Solution of Mesh Motion Eqns

- Line solver + MG4, first 10 iterations

Viscous mesh, linear elasticity with variable E
Fast MG Solution of Mesh Motion Eqns

• Line solver + MG4, first 10 iterations

Viscous mesh, linear elasticity with variable E
Fast MG Solution of Mesh Motion Eqns

- Line solver + MG4, first 10 iterations

Viscous mesh, linear elasticity with variable E
Fast MG Solution of Mesh Motion Eqns

- Line solver + MG4, first 10 iterations

Viscous mesh, linear elasticity with variable E
Fast MG Solution of Mesh Motion Eqns

• Line solver + MG4, first 10 iterations

Viscous mesh, linear elasticity with variable E
Fast MG Solution of Mesh Motion Eqns

- Line solver + MG4, first 10 iterations

Viscous mesh, linear elasticity with variable E
Fast MG Solution of Mesh Motion Eqns

- Line solver + MG4, first 10 iterations

Viscous mesh, linear elasticity with variable E
Fast MG Solution of Mesh Motion Eqns

- Line solver + MG4, first 10 iterations

Viscous mesh, linear elasticity with variable E
Grid Convergence – All Solutions

F6 Wing-Body w/wo FX2, MACH = 0.75
Re = 5 Million, Fixed CL=0.50
Unstructured vs Structured (Transonics)

• Considerable scatter in both cases

• No clear advantage of one method over the other in terms of accuracy

• DPW3 Observation:
 – Core set of codes which:
 • Agree remarkably well with each other
 • Span all types of grids
 – Structured, Overset, Unstructured
 • Have been developed and used extensively for transonic aerodynamics
DPW3 Wing1-Wing2 Cases
W1-W2 Grid Convergence Study (NSU3D)

- Apparently uniform grid convergence (attached flow cases)
- Separated flow cases more demanding and often contradictory experiences
Grid Resolution Effects (DPW-3)
AIAA Paper 2008-0930

- **SOB Separation increases with grid resolution**
 - Boeing: Overset
 - Boeing: Unstructured
 - DLR: Unstructured

- **SOB Separation remains constant with grid res.**
 - Boeing: Block Structured
 - JAXA: Block Structured, Unstructured

- **Trailing edge separation grows with grid res:**
 - UW: Unstructured (NSU3D)

- **Trailing edge separation constant with grid res:**
 - JAXA: Structured, Unstructured
 - Boeing: Overset
VGRID Node Centered (NASA)
VGRID Node Centered (NASA)
VGRID Node Centered (NASA)
Grid Resolution

• Experimentation with much finer grids still required to understand behavior
 – Current largest grids ~ 100M pts
 – One more refinement ~ 10^9 pts
 – Implications for off-design conditions
 • Full flight envelope simulations
 • Stability and control

• AMR is obvious path for achieving higher resolution at manageable cost
 – Refinement criterion is roadblock
 • A-posteriori error estimation
Adaptive Meshing Through Element Subdivision

- Standalone (sequential) code
- Flag Cells with Large Errors
- Subdivide these Cells (1:8)
- Adjust Cells in Transition Regions between Refined and Non-Refined Regions
 - (anisotropically refined cells)
Subdivision Types for Tetrahedra

1:2

1:4

1:8
Subdivision Types for Prisms
Adaptive Tetrahedral Mesh by Subdivision
Adaptive Hexahedral Mesh by Subdivision
Adjoint-Based Error Estimation

• Complex simulations have multiple error sources
• Engineering simulations concerned with specific output objectives
• Adjoint methods / Goal Oriented Approach
 – Methodical approach for constructing discrete adjoint
 – Use for a posteriori error estimation
 • Spatial error
 • Temporal error
 • Other error sources
 – Use to drive adaptive process
Spatial Error Sensitivity

Fine level Taylor expansion of functional objective L:

$$L_h(U_h) = L_h(U_h^H) + \left[\frac{\partial L}{\partial U} \right] (U_h - U_h^H)$$

$h = \text{fine grid (solution not available)}$
$H = \text{coarse grid (solution available)}$
Spatial Error Sensitivity

Fine level flow residual Taylor expansion

\[R_h(U_h) = R_h(U_h^H) + \left[\frac{\partial R}{\partial U} \right]_{U_h^H} (U_h - U_h^H) = 0 \]

\[U_h - U_h^H = -\left[\frac{\partial R}{\partial U} \right]^{-1} R_h(U_h^H) \]
Spatial Error Sensitivity

Fine level Taylor expansion of functional objective L:

$$L_h(U_h) = L_h(U^H_h) - \left[\frac{\partial L}{\partial U} \right] \left[\frac{\partial R}{\partial U} \right]^{-1} R_h(U^H_h)$$

$$L_h(U_h) - L_h(U^H_h) = -\Lambda^T . R_h(U^H_h)$$

$$\left[\frac{\partial R}{\partial U} \right]^T \Lambda = -\left[\frac{\partial L}{\partial U} \right]^T$$

Adjacent problem

$h = \text{fine grid (solution not available)}$

$H = \text{coarse grid (solution available)}$
Spatial Error Sensitivity

\[L_h(U_h) - L_h(U^H_h) = -\Lambda^T R_h(U^H_h) \]

- Compute objective on current grid
- Compute adjoint on current grid
- Project solution on to finer grid, evaluate residual (non-zero)
- Change in Objective on fine grid is inner product of adjoint with residual on fine grid
 - Cost: 1 flow solve, 1 adjoint solve on coarse grid
 - Gain: Prediction of objective on fine grid (8 times more grid points)
 - Use to certify sensitivity of solution to finer grid
 - Use to drive adaptive meshing (for specific objective)
Goal-Oriented Spatial Adaptivity (steady-state)

Adaptivity based on Drag

See also: Venditti and Darmofal; AIAA-2001
Giles et al; AIAA-2001
Park, M. AIAA-2002
Goal-Oriented Spatial Adaptivity (steady-state)

Adaptivity based on Drag

See also: Venditti and Darmofal; AIAA-2001
Giles et al; AIAA-2001
Park, M. AIAA-2002
Error Estimation for Time Dependent Problems

Test Case Description

Sinusoidally pitching airfoil
Functional scalar is Lift after 1 period

Easily extended to estimate error in time-integrated Lift history
Summary of Temporal Resolution Error Evaluation

• Compute unsteady flow solution on coarse time domain

• Compute adjoint variables on coarse time domain
 – Integrating backward in time

• Project adjoint variables, flow solution and mesh solution onto fine time domain

• Temporal resolution error is then inner product of adjoint with corresponding non-zero residual on fine time domain
 – Distribution in time is used to drive adaptation
Validation

<table>
<thead>
<tr>
<th>Description</th>
<th>Functional value</th>
<th>% Error vs. Target</th>
<th>% Predicted Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target functional - exact at 32 steps (fully converged)</td>
<td>-0.309957065250867</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fully converged flow and mesh at 16 steps</td>
<td>-0.285768366164898</td>
<td>+7.804</td>
<td>+7.463</td>
</tr>
<tr>
<td>Corrected for resolution from 16 to 32 steps</td>
<td>-0.3089006774509025</td>
<td>+0.341</td>
<td>-</td>
</tr>
</tbody>
</table>
High Order Methods

- Higher order methods such as Discontinuous Galerkin best suited to meet high accuracy requirements
 - Asymptotic properties
- HOMs reduce grid generation requirements
- HOMs reduce grid handling infrastructure
 - Dynamic load balancing
- Compact data representation (data compression)
 - Smaller number of modal coefficients versus large number of point-wise values
- HOMs scale very well on massively parallel architectures
4-Element Airfoil (Euler Solution)

$P = 3$
Single Grid Steady-State Implicit Solver

- Steady state
 \[R_p(U_p) = S_p \]
- Newton iteration
 \[
 \begin{bmatrix}
 \frac{\partial R_p}{\partial U_p}
 \end{bmatrix}^n \Delta U_p^{n+1} = S_p - R_p(U_p^n)
 \]
- Non-linear update
 \[U_p^{n+1} = U_p^n + \Delta U_p^{n+1} \]
- [D] is Jacobian approximation
- Non-linear element-Jacobi (NEJ)
 \[
 \Delta U_p^{n+1} = \left[D_p^n\right]^{-1}(S_p - R_p(U_p^n))
 \]

<table>
<thead>
<tr>
<th>p</th>
<th>Size of [D]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5 x 5</td>
</tr>
<tr>
<td>2</td>
<td>20 x 20</td>
</tr>
<tr>
<td>3</td>
<td>50 x 50</td>
</tr>
<tr>
<td>4</td>
<td>100 x 100</td>
</tr>
<tr>
<td>5</td>
<td>280 x 280</td>
</tr>
<tr>
<td>6</td>
<td>420 x 420</td>
</tr>
</tbody>
</table>
3D High-Order DG Results (Inviscid)
Parallel Performance: Speedup (1 MG-cycle)

185K pt mesh
- $p=0$ does not scale
- $p=1$ scales up to 500 proc.
- $p>1$ scales almost optimal

2.5M pt mesh
- $p=0$ does not scale
- $p=1$ scales up to 1000 proc.
- $p>1$ ideal scalability
Conclusions

• Current unstructured mesh solver technology is close to structured mesh solver capabilities
• All methods suffer from poorly quantified error sources
 – Particularly spatial discretization error
• Path forward will require new technology rooted in applied math
 – Sensitivity analysis techniques
 – Higher-order methods