
ADAPTIVE MESHING TECHNIQUES

FOR VISCOUS FLOW CALCULATIONS

ON MIXED ELEMENT UNSTRUCTURED MESHES

D. J. Mavriplis

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center

Hampton, VA 23681-0001

Abstract

An adaptive re�nement strategy based on hierarchical element subdivision is formulated
and implemented for meshes containing arbitrary mixtures of tetrahedra, hexahedra, prisms
and pyramids. Special attention is given to keeping memory overheads as low as possible.
This procedure is coupled with an algebraic multigrid 
ow solver which operates on mixed-
element meshes. Inviscid 
ows as well as viscous 
ows are computed on adaptively re�ned
tetrahedral, hexahedral, and hybrid meshes. The e�ciency of the method is demonstrated
by generating an adapted hexahedral mesh containing 3 million vertices on a relatively
inexpensive workstation.

This research was supported by the National Aeronautics and Space Administration under NASA Con-

tract No. NAS1-19480 while the author was in residence at the Institute for Computer Applications in

Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681-0001.

i



1 Introduction

The ability to easily incorporate adaptive meshing techniques represents one of the major
advantages of unstructured grid solution strategies. For tetrahedral meshes, these may be
incorporated in a rather straight-forward manner either through Delaunay point insertion
methods [1], subdivision with local reconnection methods [2, 3, 4], or hierarchical-based
element subdivision approaches [5, 6, 7, 8, 9].

Recently, there has been renewed interest in hybrid structured-unstructured grids, or
mixed element unstructured grids, which contain elements other than simplices (i.e. tetra-
hedra). Such grids o�er the advantages of reduced complexity and possibly increased accu-
racy compared with equivalent fully tetrahedral meshes. This is due partly to the reduced
connectivity of elements such as hexahedra over simplicial elements, and the more regular
tessalation of three-dimensional space which they a�ord. Particularly for viscous 
ow cal-
culations, the use of prismatic elements in the boundary layer regions and tetrahedra in
the inviscid 
ow regions has been demonstrated as a viable technique for reducing compu-
tational overheads. Additionally, mixed-element mesh solvers provide added 
exibility by
enabling the use of a single 
ow solver on meshes of almost any construction, including
block-structured meshes.

A viscous 
ow solver for mixed-element meshes has been previously described in [10]
by the author. By using a single edge-based data-structure, and an algebraic multigrid
technique, a uni�ed discretization and solution strategy for meshes of arbitrary element types
was demonstrated. This paper represents a continuation of this philosophy, by extending
adaptive meshing techniques for unstructured simplicial meshes to meshes of mixed-element
types, and computing the 
ow on these adapted meshes with the previously developed solver.
In order to retain the 
exibility and simplicity of the approach, we require that the adaptation
process introduce no new complexities such as \hanging nodes", which would subsequently
require modi�cations to the 
ow solver and post-processing modules.

Unstructured mesh computations are currently memory limited. The incorporation of
adaptive meshing represents but one of several techniques employed to overcome the large
overheads incurred by such computations. It is therefore imperative that the adaptive mesh-
ing module incur memory overheads which are no larger than that required by the 
ow solver
alone, otherwise the technique would be self-defeating. Adaptive meshing requires additional
data-structures which are not present in the 
ow solver. The implementation must therefore
be executed with care to avoid excessive overheads.

2 Adaptive Meshing Approaches

For tetrahedral meshes, various adaptive meshing techniques may be employed. New re�ne-
ment points may be created and inserted into the mesh using the Delaunay point insertion
algorithm of Bowyer [11]. Similarly, points may also be inserted using an initial forced
connectivity, and then locally optimizing the mesh through edge-face swapping techniques,
which can be used to recover the Delaunay property of the mesh [4, 12]. Alternatively, an
element subdivision procedure may be adopted, followed by a local edge-face swapping phase
where the mesh is optimized to the Delaunay or some other criterion [3]. If straight-forward

1



element subdivision is employed, without any subsequent optimization procedure, strict hi-
erarchical subdivision rules must be followed, otherwise mesh quality degrades rapidly with
each subsequent adaptation phase [5, 6].

The advantages of point insertion and optimization methods are potentially smoother
adapted mesh point distributions with higher quality connectivity, while subdivision tech-
niques bene�t from e�ciency and the ability to easily incorporate de-re�nement. For highly
stretched meshes typically employed in viscous 
ow regions, the Delaunay construction is
no longer optimal, and face-edge swapping based on some more appropriate criterion must
be employed. Although optimization based on the minimum-maximum angle has often
been advocated for such cases, it has been found to be much less reliable than the use of
a forced connectivity such as one obtains through subdivision techniques, particularly for
high stretching in the presence of curvature. Local optimization techniques and hierarchi-
cal subdivision methods are in some sense mutually exclusive, since the edge-face swapping
operation destroys the hierarchical relationship with previous grid levels.

For hexahedral meshes, adaptive meshing must be achieved through element subdivision.
Interfaces delimiting re�ned and non-re�ned regions usually require special consideration.
These regions result in \hanging nodes" if the mesh is required to contain only hexahedral
elements. For cell-centered discretizations, using a data-structure based on the faces of
the cells, these regions can be handled without any additional complications to the 
ow
solver [13]. However, for vertex-based schemes, these \hanging node" control-volumes must
be constructed in a manner which is di�erent from that of regular vertices (see [14] for
example). On the other hand, if di�erent types of elements are allowed in the mesh, these
can be used to transition the mesh from the re�ned to the unre�ned regions, and the 
ow
solver may operate on the resulting mixed element mesh without any modi�cations.

3 Adaptive Meshing by Subdivision

In the interest of developing a single strategy for adapting simplicial as well as mixed element
meshes, a hierarchical element subdivision approach has been adopted. This technique can
be applied to fully tetrahedral meshes, as well as to any hybrid mesh containing mixtures of
tetrahedra, pyramids, prisms and hexahedra. The resulting meshes can be employed by the
multigrid solver described in [10] without modi�cation.

In order to implement this technique on mixed element meshes, the various allowable
subdivision types for each element type must be de�ned. The hierarchical rules required to
prevent the degeneration of the grid quality with successive adaptation levels must also be
constructed.

For tetrahedral elements, the subdivision rules have already been well formulated in
the literature [15]. We allow only three basic subdivision types, as depicted in Figure 1:
A tetrahedron may be divided into 2 children, 4 children, or 8 children. The two former
cases result in anisotropic re�nement, while the last case produces an isotropic re�nement.
In order to prevent the degeneration of grid quality, any anisotropic children may not be
re�ned further. If any such cells require re�nement, they are removed, the parent cell is
isotropically re�ned, and the resulting isotropic children may then be further re�ned. When
limiting the possible re�nement types as described above, one must ensure that a compatible

2



re�nement pattern is obtained on all elements of the mesh if a valid re�ned mesh is to be
obtained. This is achieved by adding re�nement points along the appropriate edges on all
elements which are 
agged as having a non-valid re�nement pattern. Since the addition of
a re�nement point to an edge a�ects all elements which contain the edge, the process is
applied iteratively, until all resulting element re�nement patterns are valid and no further
points are required.

1:8

1:4

1:2

Figure 1: Permitted subdivision types for tetrahedral elements

The isotropic re�nement of a hexahedral element results in eight similar but smaller hexahe-
dral elements. However, anisotropic re�nement of a hexahedral element results in children
which may consist of hexahedra, pyramids, prisms and tetrahedra. By applying the same
hierarchical rules as described for tetrahedral meshes, we can ensure that these elements
will never be re�ned further. Instead, if further re�nement in these regions is desired, such
elements are deleted and their parents re�ned into eight smaller hexahedra. Thus, for fully
hexahedral meshes, additional element types may only appear at the boundaries between
re�ned and non-re�ned regions, or more generally, between two regions which di�er by one
re�nement level.

The task of implementing adaptive mesh subdivision for elements other than tetrahedra,
consists in de�ning the minimum number of allowable subdivision types. On the one hand,
it is desirable to limit the number of subdivision types for complexity reasons. On the other
hand, a minimum number of subdivision types must be implemented to allow for compatible
subdivision types to be attained on all elements without incurring excessive additional re-
�nement. For example, if we do not allow for hexahedra with three fully re�ned quad faces
(e.g. Type 7 in Figure 2), re�nement in concave regions cannot be made to terminate, and
propagates throughout large portions of the domain during the iterative addition of re�ne-
ment points. A total of 8 hexahedral re�nement types have been implemented. These types
are illustrated in Figure 2.

3



Type 1 Type 2

3Type 4Type 

5Type 6Type 

7Type 8Type 

Figure 2: Permitted subdivision types for hexahedral elements (internal edges omitted for
clarity)

Type 1 Type 2

Type 3 Type 4

Type 5 Type 6

4



Type 7 Type 8

Type 9

Figure 3: Permitted subdivision types for prismatic elements (internal edges omitted for
clarity)

Type 1 Type 2

Type 3 Type 4

Type 5 Type 6

Type 7 Type 8

Figure 4: Permitted subdivision types for pyramidal elements (internal edges omitted for
clarity)

5



Figure 5: Permitted subdivision types for triangular and quadrilateral faces

Hex Ref Type Hexahedra Prisms Pyramids Tetrahedra

Type 1 0 0 4 0

Type 2 0 0 2 6

Type 3 0 0 3 4

Type 4 0 0 5 4

Type 5 0 0 5 6

Type 6 0 2 6 3

Type 7 0 3 8 2

Type 8 8 0 0 0

Table 1: Resulting Children Cell Types for Various Hexahedral Re�nement Patterns

A total of 9 prismatic and 8 pyramidal re�nement types have also been implemented.
These are illustrated in Figures 3 and 4. The resulting children cell types for each re�ne-
ment pattern are documented in Table 1 for hexahedral subdivisions, Table 2 for prismatic
subdivisions, and Table 3 for pyramidal subdivisions. The required re�nement types are

6



Prism Ref Type Prisms Pyramids Tetrahedra

Type 1 0 2 1

Type 2 0 1 2

Type 3 0 1 4

Type 4 0 0 6

Type 5 0 0 7

Type 6 0 2 4

Type 7 0 4 2

Type 8 0 4 5

Type 9 8 0 0

Table 2: Resulting Children Cell Types for Various Prismatic Re�nement Patterns

7



Pyramid Ref Type Pyramids Tetrahedra

Type 1 1 2

Type 2 0 3

Type 3 0 5

Type 4 0 4

Type 5 4 0

Type 6 2 2

Type 7 0 8

Type 8 6 4

Table 3: Resulting Children Cell Types for Various Pyramidal Re�nement Patterns

determined by �rst considering the various possible re�nement patterns of a triangular and
a quadrilateral face. A triangular face may be divided into two or four triangles, while
a quadrilateral face may be divided into three or four triangles, or four quadrilaterals, as
shown in Figure 5. By considering all possible face subdivision patterns for all faces of a
given element, a list of all possible cell subdivision types can be constructed. Many of these
subdivision types are equivalent and merely correspond to a di�erent orientation of the cell.
For example, in case 1 in Figure 2, where a single edge of a hexahedral cell is re�ned, there
are 12 possible orientations, corresponding to the 12 edges of the hexahedron. In total,
when the number of orientations for each re�nement type is considered, there is a total of
90 hexahedral, 45 prismatic, and 30 pyramidal con�gurations which must be taken into ac-
count. These are implemented by coding one canonical subdivision routine for each type,
and using an orientation mask to reorder the element indices according to the orientation of
the subdivision. Isotropic subdivision of all cell types results in 8 smaller cells of the same
type as the parent cell, except in the case of pyramidal cells, were isotropic re�nement yields
6 pyramidal children, and 4 tetrahedral children.

This implementation di�ers signi�cantly from other non-tetrahedral adaptive meshing
strategies [16, 17]. For example, in [17], a limited number of subdivision types is used,
and re�nement compatibility is ensured through the use of additional points inserted at
neighboring cell centroids. Instead, we rely on the use of many possible anisotropic re�nement
patterns to generate compatible re�nement patterns. These re�nement types have been
implemented for tetrahedra and hexahedra, as well as for prisms and pyramids. However,

8



directional re�nement [16, 17, 18] has not been implemented in the present context.

4 Hanging Edges

The process of de�ning the various element subdivision types consists in constructing combi-
nations of children hexahedra, tetrahedra, prisms and pyramids which are non-overlapping,
completely �ll the volume of the parent element, and are compatible with the subdivision
patterns of the parent faces. This is achieved for all subdivision types of all elements except
for one: a hexahedral type 7 re�nement, i.e. three fully re�ned hexahedral faces.

In this case, it is not possible to �ll the interior of the hexahedron with combinations of
other elements which respect the face subdivision patterns. This type of re�nement cannot
be omitted however, since this obviates the possibility of creating convex re�ned regions on
hexahedral meshes, as described earlier. This re�nement type is constructed by subdividing
the parent hexahedron into 3 prisms, 8 pyramids and 2 tetrahedra, which results in the face
subdivision pattern shown in Figure 6. This face pattern di�ers from the desired one by
the addition of a diagonal edge on one of the children quadrilateral faces. The result is a
\hanging diagonal" edge which may not be present in the neighboring element which shares
this quadrilateral face.

b)a)

Figure 6: Hanging edge resulting from Type 7 hexahedral re�nement and two possible treat-
ments of hanging edge: a) modi�ed dual control-volume, b) insertion of extra vertex into
hexahedron with hanging edge

There are various possibilities for treating this situation. The �rst option is to allow
for hanging edges in the �nal mesh, and modify the control volumes employed by the 
ow
solver in the vicinity of these edges. The dual control-volume graph for a hexahedron with a
hanging edge is depicted in Figure 6 a). The faces of the dual-control volumes are constructed
by considering the centroids of each neighboring element, as well as the centroids of all
quadrilateral and triangular faces. This implementation corresponds to a simple modi�cation
of the edge weights in the 
ow solver.

Another possibility is to ensure compatible face patterns throughout the mesh by inserting
an additional point into cells which border on a quadrilateral face with a hanging edge. For

9



example, if the neighboring element is a hexahedron, this cell can be subdivided into six
pyramids by inserting a vertex at its centroid, and the appropriate pyramid can then be
split into two tetrahedra in order to conform to the face subdivision pattern. This is similar
to the point insertion procedure used in [17] to prevent propagation of hexahedral re�nement.

In both cases, the modi�cations to the mesh are performed at the end of the adaptation
phase prior to the 
ow solution phase. These modi�cations are not included in the hierar-
chical re�nement description of the mesh, which may allow hanging edges, and which forms
the beginning state for subsequent re�nements, since any further re�nement of a cell with a
hanging edge will result in isotropic re�nement of its parent and thus removal of the hanging
edge.

In this work, both approaches have been implemented. However, the examples shown
below have all been performed using the additional point isertion method.

5 Implementation Aspects

Throughout the re�nement procedure, new vertices are created either at the center of an edge
when an edge is split into two children edges, at the centroid of a quadrilateral face when
this face is re�ned into four smaller quadrilateral faces (c.f. Figure 5), or at the centroid of a
hexahedral cell when the hexahedron is isotropically re�ned. The creation of vertices at the
centroids of quadrilateral faces requires the storage of the quadrilateral faces of the mesh in
order to uniquely 
ag such new points, in addition to the storage of edges and cells which is
required for all element types.

Although re�nement criteria can be evaluated using only edges of the mesh, re�nement
decisions are element-based. In the initial re�nement pass, the re�nement criterion is eval-
uated along each edge of each element. When the re�nement criterion is satis�ed along any
edge of a given element, all edges of that element are 
agged for re�nement, thus creating
an isotropic re�nement pattern for that element.

An iterative procedure is subsequently employed to generate suitable re�nement patterns
for all element types in the mesh. In general a small number of iterations is required to
achieve convergence. When anisotropically re�ned elements are to be re-re�ned, they must
�rst be removed and their parents must be isotropically re�ned. Since these new children
are not present in the initial mesh, it is possible that after they are formed, they contain
edges which have been previously 
agged for re�nement, and thus subsequent re�nement
is required. Additionally, one must ensure that compatible re�nement patterns are now
obtained on these new elements. Although it is possible to predict the entire re�nement
patterns for all elements including anisotropically re�ned elements, the complexity of such
a task for mixed element meshes becomes overwhelming. Therefore, an outer iteration loop
is employed. In the �rst phase, the compatible re�nement patterns on all existing cells is
determined iteratively. The newly re�ned cells are then formed, and the process is repeated
on the new set of cells, using the same re�nement 
ags. The entire process is repeated until
no further re�nement is detected. Usually, the outer iterative loop terminates in one or two
passes.

As mentioned previously, an important aspect in the implementation of any adaptive
meshing module is that the resources required by the adaptive meshing module be no larger

10



than those required by the 
ow solver. The 
ow solver requires only a single data-structure
to compute the discretization on mixed element meshes, i.e. the edge data-structure. On the
other hand, the adaptive meshing module requires the edge data-structure as well, but also
requires the cell-to-vertex data-structure, as well as the cell-to-edge data-structures, since
re�nement is achieved by 
agging edges for re�nement, but the subdivision decisions are
performed on an element basis. In addition, all the hierarchical information must be stored.

The 
ow solver of reference [10] can operate at approximately 100 to 150 words per
vertex. For tetrahedral meshes, the cell-to-vertex and cell-to-edge data-structures alone
consume approximately 60 words per vertex. These additional data-structures thus require
a substantial amount of memory, and it is a non-trivial task to ensure that the adaptive
meshing module memory requirements do not exceed those of the 
ow solver.

Although a hierarchical storage scheme where the cells point to the faces, the faces point
to the edges, and the edges point to the vertices, simpli�es the implementation of subdivision
schemes, such implementations incur excessive memory overheads. In our implementation,
we make use of cell-to-vertex, cell-to-edge, and cell-to-quadrilateral-face information, as well
as quadrilateral face-to-edge information. Of particular importance is the need to avoid
storing the triangular faces of the mesh. For a tetrahedral mesh of N vertices, the number
of triangular faces is of the order of 12N. To identify the three forming vertices or edges for
each triangular face, as well as the two tetrahedra which share the face requires a total of
60N storage. Similarly, if one chooses to store a list of all eight \potential" children for each
element, this amounts to 48N storage locations for a tetrahedral mesh of N vertices. Instead,
we use a linked list to store the children of all elements. This can be achieved with an array
which is twice as large as the overall number of elements for mixed element meshes.

Overall memory requirements depend on the types of elements in the mesh. For tetrahe-
dral meshes, approximately 120 words per vertex are required, while for hexahedral meshes
74 words per vertex are used. Requirements for prismatic, pyramidal, and of course hy-
brid meshes fall in between these two extremes. These estimates do not include associated
boundary face and hierarchical information which can add from 10% to 25% more storage.

The adaptive re�nement procedure begins by iteratively determining a compatible re�ne-
ment pattern on all elements of the input mesh. Once this has been achieved, all children
cells of anisotropically re�ned parent cells which are to be further re�ned are deleted, as well
as all faces and edges which are only accessed by these removed cells. All corresponding lists
are then shifted to occupy contiguous space in memory. The size of the new mesh is then
predicted by looping over all cells and counting the number of children cells, faces and edges
which will result in the re�nement phase. The predicted size of the new mesh is then used
to allocate all the required memory for the re�nement operation in a single step, or to termi-
nate the program if not enough memory is available. This procedure reduces overall memory
requirements by �rst removing any memory associated with data-structure elements to be
deleted, and enables one to examine the characteristics of the re�ned mesh before actually
generating this new mesh. This should also prove useful for distributed memory applica-
tions, where it may be more e�cient to partition the unre�ned mesh based on the predicted
re�nement distribution, particularly in cases where the amount of desired re�nement local
to a given processor exceeds the memory resources of that processor.

11



6 Flow Solver Description

The Reynolds-averaged Navier-Stokes 
ow solver consists of a �nite-volume central-di�erence
discretization with added arti�cial dissipation for stability. The variables are stored at the
vertices of the mesh, and the solver is capable of operating on meshes containing any mixture
of tetrahedra, pyramids, prisms and hexahedra. On tetrahedral elements, the full Navier-
Stokes viscous terms are employed, while on other types of elements, the thin-layer version
of these terms is employed, albeit in all three coordinate directions. For viscous 
ow cases,
turbulence e�ects are accounted for using the one-equation model of Spalart and Allmaras
[19]. The code employs a single edge-based data-structure, which enables the 
uxes to be
computed over all various element types of the mesh in a single loop over the edges.

Explicit time-stepping is employed to integrate the discretized equations to steady-state,
and an algebraic or agglomeration multigrid procedure is employed to accelerate conver-
gence. The agglomeration procedure automatically constructs coarse levels for the multigrid
algorithm by fusing together or agglomerating neighboring �ne grid control volumes. These
control volumes are based on the dual of the mesh, and can be constructed using only the
edges of the mesh. The agglomeration procedure can thus be employed without modi�cation
on meshes of mixed element types. The resulting coarse meshes contain large polyhedral cells
which in general are not tetrahedral, hexahedral, pyramidal or prismatic. The edge-based
discretization routines enable the 
ow solver to operate on these coarse levels as well.

7 Results

A \conservative" adaptive re�nement strategy is adopted in the following cases. We begin
with relatively well resolved initial grids, and set the re�nement tolerances to produce \lib-
eral" amounts of re�nement, generally increasing the number of mesh points by a factor of
3 to 4 at each re�nement pass, and thus employ a small number of re�nement levels. This
is in contrast to the often advocated approach of using a large number of re�nement levels
in conjunction with a very coarse initial grid to obtain a so-called \optimal" �nal mesh.

Figure 7: Initial tetrahedral mesh about transport aircraft con�guration (number of vertices
= 106,000)

12



Our conservative approach is dictated by the lack of reliable error estimators. In the following
examples, the undivided gradient of density is used as a re�nement criterion. A threshold
value is set as an input parameter, and any cells whose values exceed the threshold are

agged for re�nement. Additional re�nement is then determined by the iterations required
to obtain compatible re�nement patterns.

Figure 8: Adaptively re�ned tetrahedral mesh about transport aircraft con�guration after
two levels of re�nement (number of vertices = 1.3 million)

Figure 9: Computed Mach contours on adaptively re�ned tetrahedral mesh for transport
aircraft con�guration (Mach = 0.768, incidence = 1.116 degrees)

The �rst example consists of the inviscid 
ow over an aircraft con�guration using a fully
tetrahedral mesh. The initial mesh is depicted in Figure 7. This mesh was generated using
the advancing-front method of Pirzadeh [20] and contains approximately 106,000 points and
576,000 cells. The mesh is adapted twice throughout the calculation, and the �nal mesh is
depicted in Figure 8. This mesh contains 1.3 million points and 8 million tetrahedra. Most
of the re�nement occurs along the wing, in particular at the leading and trailing edges and
in the vicinity of the shock for the last re�nement level. The computed Mach contours on
the �nal adapted mesh are displayed in Figure 9. The Mach number for this case is 0.768

13



and the incidence is 1.116 degrees. The adaptive meshing module as well as the 
ow solution
module were both run on a SUN ULTRA workstation with 1 Gbyte of memory. The adaptive
meshing module requires 750 Mbytes of memory and approximately 15 minutes to generate
the �nal mesh, while the 
ow solver requires 1 Gbyte of memory and 11 hours to generate
the solution displayed in Figure 9, using 100 multigrid cycles. Both codes were compiled
using 64 bit real precision and 32 bit integer precision.

In its present form, the mesh adaptation module may be applied to fully tetrahedral
meshes as well as mixed element meshes. As a subset of these cases, block structured meshes
can also be handled by treating them as a set of unstructured hexahedra.

Figure 10: Initial block structured mesh about ONERA M6 wing (number of vertices =
129,187)

Figure 11: Adapted hexahedral mesh about ONERA M6 wing (number of vertices = 3
million)

14



Figure 12: Computed Mach contours on adapted hexahedral mesh (Mach = 0.84, Incidence
= 3.06 degrees)

Figure 10 depicts a fully hexahedral block structured mesh about an ONERA M6 wing.
This grid was provided by P. Eiseman of the Program Development Corporation. It contains
129,187 points and 141 blocks. The inviscid 
ow over this con�guration has been computed
at a Mach number of 0.84 and 3.06 degrees incidence, and the mesh has been adaptively
re�ned three times. The resulting re�ned mesh is depicted in Figure 11. This mesh contains
a total of 3 million points, from which are formed approximately 3.1 million hexahedra,
300,000 tetrahedra, 500,000 prisms and 47,000 pyramids. The re�nement pattern is seen
to follow the double shock pattern which is associated with the 
ow at these conditions, as
well as the regions of rapid expansion and compression near the leading and trailing edges
of the wing. The computed Mach contours on this mesh are displayed in Figure 12. The
re�nement operation was run on a SUN ULTRA workstation and required 1.2 Gbytes of
memory (swap space was used for the memory requirements over the 1 Gbyte core memory
of the workstation) and about 45 minutes of CPU time. The 
ow solver required 1.6 Gbytes
of memory and was therefore run on the CRAY C90. While the use of 3 million grid points
to resolve the inviscid 
ow over a simple swept wing may appear excessive, it is nevertheless
useful to demonstrate the e�ciency attainable on a relatively inexpensive workstation by
the combination the low memory implementation of the adaptive meshing module, and the
use of hexahedral meshes which contain less than half the number of edges of an equivalent
tetrahedral mesh.

The �nal example involves the viscous 
ow over a partial-span 
ap wing con�guration
using a mixed element mesh. The initial mesh is depicted in Figure 13. The center sec-
tion of this mesh was constructed using the advancing-front method of Pirzadeh [20]. The
tetrahedra in the boundary layer region of this mesh were then merged into prisms using
the mesh merging algorithm described in [10]. This combined prismatic-tetrahedral center
mesh section was then extruded in both spanwise directions, resulting in a mesh containing
a mixture of hexahedra, prisms and tetrahedra. A closeup of the near wall region is depicted
in Figure 13, illustrating the hexahedral and prismatic elements in this region. The mesh
contains a total of 165,000 vertices, 228,000 tetrahedra, 184,000 prisms, and 28,000 hexa-
hedra. The viscous turbulent 
ow is computed on this mesh at a Mach number of 0.2, a
Reynolds number of 3.7 million, and 10 degrees incidence.

15



Z

X

Y

Figure 13: Initial mixed-element mesh for partial-span 
ap con�guration showing hexahedral
and prismatic cells in near wall region (number of vertices = 165,000)

Figure 14: Adaptively re�ned mixed element mesh for partial-span 
ap con�guration after
two levels of re�nement (number of vertices = 1.8 million)

16



Z

X

Y

Figure 15: Computed density contours on adapted mixed-element mesh for partial span 
ap
con�guration (Mach = 0.2, Reynolds number= 3.7 million, Incidence = 10 degrees)

The mesh is adapted twice during the solution process, resulting in the �nal mesh depicted
in Figure 14. This mesh contains a total of 1.8 million points, with approximately 2.2
million tetrahedra, 2 million prisms, 260,000 pyramids, and 312,000 hexahedra. The adaptive
meshing module was run on a SUN ULTRA workstation and required 1 Gbyte of memory
and 30 minutes of cpu time for the �nal re�nement phase. The computed density contours
on this adapted mesh are depicted in Figure 15.

8 Conclusions and Future Work

While the memory and cpu requirements of the adaptive meshing module are reasonable for
large steady-state calculations, reduced cpu requirements would be desirable for unsteady
calculations, where adaptation may be required every several time-steps. Much of the cpu
time is spent in the iterative determination of compatible re�nement patterns. This phase
can be greatly accelerated, albeit with added memory requirements, by 
agging only those
cells which receive additional re�nement at each pass, and then examining only those cells
and their neighbors at each additional iteration. Dere�nement by retracing the hierarchical
subdivision tree has been implemented for tetrahedral meshes and should also be extended
to other types of elements.

The adaptive meshing module was constructed as a separate code from the 
ow solver.
The adaptive mesher reads in a mesh �le and a solution �le generated by the 
ow solver
and outputs a re�ned mesh and interpolated solution �le which is then read in by the 
ow
solver for the next solution phase. Integrating the two modules into a single code would
require all 
ow solver and mesh re�nement data structures to be held simultaneously in core
memory, which would in turn greatly reduce the size of problems which can be handled.
In the present procedure, only the required data-structures for each module are resident in
memory and the two modules communicate through �le I/O. This procedure can easily be
automated using a scripting language, On hierarchical memory machines, such as the CRAY
C-90, further acceleration could be achieved by making use of the solid-state disk (SSD).

The use of hexahedral and mixed element meshes for transient calculations with relative

17



body motion and deforming grids remains an open area for research.

References

[1] D. J. Mavriplis. Three-dimensional multigrid for the Euler equations. AIAA J.,
30(7):1753{1761, July 1992.

[2] D. L. Marcum. Generation of unstructured grids for viscous 
ow applications. AIAA
paper 95-0212, January 1995.

[3] C. L. Bottasso, H. L. De Cougny, J. E. Flahery, C. Ozturan, Z. Rusak, and M. S. Shep-
hard. Compresible aerodynamics using a parallel adaptive time-discontinous Galerkin
least-squares �nite element method. AIAA paper 94-1888, June 1994.

[4] T. J. Barth. Aspects of unstructured grids and �nite-element volume solvers for the
Euler and Navier-Stokes equations. In von Karman Institute Lecture Series, AGARD
Pub. R-787, 1992.

[5] R. L�ohner and J. D. Baum. Adaptive H-re�nement on 3-D unstructured grids for
transient problems. Int. J. Num. Meth. Fluids, 14:1407{1419, 1992.

[6] R. D. Rausch, J. T. Batina, and H. T. Y. Yang. Spatial adaptation of unstructured
meshes for unsteady aerodynamic 
ow computations. AIAA J., 30(5):1243{1251, 1992.

[7] S. D. Connell and D. G. Holmes. A 3D unstructured adaptive multigrid scheme for the
Euler equations. AIAA J., 32(8):1626{1632, 1994.

[8] Y. Kallinderis and P. Vijayan. Adaptive re�nement-coarsening scheme for three-
dimensional unstructured meshes. AIAA J., 31(8):1440{1447, 1993.

[9] R. Biswas and R. Strawn. A dynamic mesh adaptation procedure for unstructured
hexahedral meshes. AIAA paper 96-0027, January 1996.

[10] D. J. Mavriplis and V. Venkatakrishnan. A uni�ed multigrid solver for the Navier-Stokes
equations on mixed element meshes. AIAA Paper 95-1666, June 1995.

[11] A. Bowyer. Computing Dirichlet tessalations. The Computer Journal, 24(2):162{166,
1981.

[12] D. L. Marcum and N. P. Weatherill. Unstructured grid generation using iterative point
insertion and local reconnection. AIAA paper 94-1926, June 1994.

[13] G. Spragle and W. A. Smith. Hanging node solution adaptation on hybrid grids. In
Proc. of the Fifth International Conference on Numerical Grid Generation in Computa-

tional Field Simulations, pages 1221{1230, Starkville, MS, April 1996. Mississippi State
University. eds. B. K. Soni, J. F. Thompson, J. Hauser, and P. R. Eisman.

[14] M. Aftosmis. Upwind method for simulation of viscous 
ow on adaptively re�ned
meshes. AIAA J., 32(2):268{277, 1994.

18



[15] R. Lohner. Finite-element methods in CFD: Grid generation, adaptivity and paral-
lelization. In von Karman Institute Lecture Series, AGARD Pub. R-787, 1992.

[16] V. Parthasarathy, Y. Kallinderis, and K. Nakajima. Hybrid adaptation method and
directional viscous multigrid with prismatic-tetrahedral meshes. AIAA Paper 95-0670,
1995.

[17] R. Biswas and R. Strawn. Tetrahedral and hexahedral mesh adaptation for CFD prob-
lems. Journal of Applied Numerical Mathematics, 1997. To appear.

[18] J. van der Vegt. Anisotropic grid re�nement using an unstructured discontinuous
Galerkin method for the three-dimensional Euler equations of gas dynamics. AIAA
paper 95-1657, June 1995.

[19] P. R. Spalart and S. R. Allmaras. A one-equation turbulence model for aerodynamic

ows. AIAA Paper 92-0439, January 1992.

[20] S. Pirzadeh. Viscous unstructured three-dimensional grids by the advancing-layers
method. AIAA paper 94-0417, January 1994.

19


