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Abstract 

In this study, we present strategies to improve the computational efficiency of high-order 

space-time DG. The relation between DG in time and implicit Runge-Kutta methods is discussed 

further and efficient smoothing strategies for solving the implicit systems at each time step are 

investigated. We suggest a simple IMEX multi-stage optimized RK scheme for pseudo-time 

stepping that treats the spatial residual explicitly and the temporal residual implicitly. An IMEX 

four-stage optimized RK scheme has been tested for the isentropic vortex problem at high spatial 

and temporal orders. For small physical time steps, the IMEX scheme provides an 8.7x speedup 

over the purely explicit pseudo-time stepping scheme. For large physical time steps, the IMEX 

scheme reduces to an explicit RK scheme optimized for stability in pseudo-time and provides 7.8x 

faster convergence rate than single-stage RK scheme in pseudo-time. The performance of the 

IMEX pseudo-time stepping scheme is examined for flow over a NACA0012 airfoil in 2D and 3D 

as a function of the physical time step size and variations in grid resolution, showing superior 

performance to the equivalent explicit RK scheme using either local or global minimum time 

stepping in pseudo time. 

I. Introduction 

The increasing interest in turbulence scale-resolving methods for computational aerodynamics is largely due to 

potential of these methods to more accurately predict flows with significant regions of separation. While, to date, 

many of the proposed  scale-resolving methods rely on explicit schemes in time, there are good reasons to consider 

implicit time-stepping methods for scale-resolving simulations. In particular, for industrial simulations covering a 

wide range of scales, computational meshes with wide variations in spatial resolution are the norm, and these can 

hinder the efficiency of explicit time-stepping methods, where the global time step is determined by the smallest cell 

in the mesh. However, the time-step requirements for scale-resolving simulations can be significantly different than 

those for unsteady Reynolds-averaged Navier-Stokes (RANS) methods, since one can expect smaller time steps and 

higher temporal accuracy to be required for capturing the wide range of temporal scales of the resolved eddies in 

turbulent flows. Thus, an implicit time-stepping approach for scale resolving simulations must be cost competitive 

with explicit time-stepping schemes, not only for large physical time steps, but also in the limit of small physical 

time steps, and these must remain stable and efficient on meshes of widely varying spatial resolution. 

 

Space-time discontinuous Galerkin (DG) methods are an extension into the time dimension of high-order DG 

methods in space which have been widely studied [1, 2] and proposed as a suitable approach for time-implicit scale-

resolving methods. Space-time DG methods share the attractive properties of DG in space and add more flexibility 

in the temporal dimension in terms of accuracy (p-order) and the adaptivity of p-order. A weakness of high-order 

space-time DG is expensive computational and storage costs. As the p-order increases, the additional degrees of 

freedom in the time dimension quickly make the method impractical in many engineering applications, especially 
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three-dimensional spatial problems. Recent studies have been trying to overcome the weakness by using tensor-

product formulations: tensor-product based sum factorizations and preconditioners [3–5]. 

In previous work [6], we compared DG in time (DGT) discretizations with FIRK (fully implicit Runge-Kutta) 

schemes and showed that DGT takes an analogous form to a preconditioned FIRK scheme or pFIRK. It was also 

shown that these temporal discretizations can be solved at each time step using an explicit pseudo-time stepping 

approach, which can be accelerated using a p-multigrid solver in pseudo-time 

The present work is a continuation of our efforts to improve the computational efficiency of high-order space-

time DG. The relation between DGT and FIRK is discussed further, examining the accuracy and stability properties 

of DGT with different quadrature points. Efficient smoothing strategies in pseudo-time are developed for solving the 

implicit system at each time step for these discretizations at various orders of accuracy. These are used to accelerate 

the solution of space-time systems at high spatial and temporal orders of accuracy. Techniques for further 

accelerating convergence using the proposed pseudo-time stepping methods as smoothers for a p-multigrid solver 

are also discussed. 

 

II. Space-Time Discontinuous Galerkin Discretization Using Tensor-Product Formulation 

II-A. Semi-Discrete Spatial DG Discretization 

Let us consider the multi-dimensional hyperbolic conservation laws as follows.  

 

 
𝜕𝐐(𝐱,𝑡)

𝜕𝑡
+ ∇ ∙ 𝐅(𝐐) = 0, (1) 

 

where 𝐐 is the state variable vector and 𝐅 is the flux function vector. When we multiply by a set of test functions 

𝜙(𝐱) and integrate over a space element, the weak statement for the governing equation can be expressed as: 

 

 ∫ [
𝜕𝐐(𝐱,𝑡)

𝜕𝑡
+ ∇ ∙ 𝐅(𝐐)] 𝜙(𝐱) 𝑑Ω𝐸Ω𝐸

= 0. (2) 

 

Integrating by parts and applying Green’s theorem yields: 

 

 ∫
𝜕𝐐(𝐱,𝑡)

𝜕𝑡
𝜙(𝐱)𝑑Ω𝐸Ω𝐸

− ∫ (𝐅 ∙ ∇)𝜙(𝐱)𝑑Ω𝐸Ω𝐸
+ ∫ (𝐅 ∙ 𝐧) 𝜙(𝐱) 𝑑(𝜕Ω𝐸)

∂Ω𝐸
= 0. (3) 

 

The state vector is written as an expansion in terms of the basis functions and the solution degrees of freedom in 

space as: 

𝐐 = ∑ 𝐐𝑖𝑗𝜙𝑖(𝑥)𝜙𝑗(𝑦)

𝑖𝑗

 

 

The first term is an integral of the temporal derivative, and it can be simplified as 

 

∫
𝜕𝐐(𝐱, 𝑡)

𝜕𝑡
𝜙(𝐱)𝑑Ω𝐸

Ω𝐸

= 𝐌
𝜕𝐐𝑖𝑗

𝜕𝑡
 (4) 

 

where 𝐌 is the mass matrix defined as 𝐌 = ∫ 𝜙𝑖  𝜙𝑗𝑑Ω𝐸 for two-dimensional space. The second and third term of 

Eq.(3) are volume and surface integrals, respectively. We can define a spatial residual, 𝐑𝑖𝑗(𝐐), into which the 

volume and the surface integrals are combined as follows. 

 

𝐑𝑖𝑗(𝐐) = − ∫ (𝐅 ∙ ∇)𝜙(𝐱)𝑑Ω𝐸
Ω𝐸

+ ∫ (𝐅 ∙ 𝐧) 𝜙(𝐱) 𝑑(𝜕Ω𝐸)
∂Ω𝐸

 (5) 

 

Then, we can invoke isoparametric mapping and expand the solution in order to obtain a system of algebraic 

equations to be solved. The details of the expansion and integration processes for the tensor-product form of basis 
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functions follow a standard approach and the specifics of our implementation are explained in [7]. Substituting Eqs. 

(4) and (5) into Eq. (3) and omitting the 𝑖𝑗-index for simplicity, a semi-discrete formulation can be written as: 

 

𝐌
𝜕𝐐

𝜕𝑡
+ 𝐑(𝐐) = 0 (6) 

 

In the present paper, we focus on formulations in two-dimensional space for simplicity. Nevertheless, the derived 

formulations can be extended to three-dimensional space in a straight-forward manner.  

 

II-B. Unsteady Residual for Space-Time DG Formulation 

In order to introduce the differences in the formulations between space DG and space-time DG, rather than a 

compact way described in [8], we derive the space-time DG formulation by multiplying the space DG formulation 

given as Eq. (3) by an additional basis function for the time dimension 𝜓(𝑡) and integrating it over a time interval 

𝐼𝑛 = [𝑡𝑛, 𝑡𝑛+1], where  𝑡𝑛+1 = 𝑡𝑛 + ∆𝑡.        

 

∫ [∫
𝜕𝐐(𝐱, 𝑡)

𝜕𝑡
𝜙(𝐱)𝑑Ω𝐸

Ω𝐸

− ∫ (𝐅 ∙ ∇)𝜙(𝐱)𝑑Ω𝐸
Ω𝐸

+ ∫ (𝐅 ∙ 𝐧) 𝜙(𝐱) 𝑑(𝜕Ω𝐸)
∂Ω𝐸

] 𝜓(𝑡)𝑑𝑡
𝐼𝑛

= 0 (7) 

 

Applying Eq.(5) yields 

 

∫ ∫
𝜕𝐐(𝐱, 𝑡)

𝜕𝑡
𝜙(𝐱)𝜓(𝑡)𝑑Ω𝐸𝑑𝑡

Ω𝐸𝐼𝑛
+ ∫ 𝐑(𝐐)𝜓(𝑡)𝑑𝑡

𝐼𝑛
= 0. (8) 

 

The first term can be written as: 

 

∫ ∫
𝜕𝐐(𝐱, 𝑡)

𝜕𝑡
𝜙(𝐱, 𝑡)𝑑Ω𝐸𝑑𝑡

Ω𝐸𝐼𝑛

 = ∫ ∫
𝜕(𝐐𝜙)

𝜕𝑡
𝑑Ω𝐸𝑑𝑡

Ω𝐸𝐼𝑛

− ∫ ∫ 𝐐
𝜕𝜙

𝜕𝑡
𝑑Ω𝐸𝑑𝑡

Ω𝐸𝐼𝑛

 (9) 

 = ∫ [𝐐(𝐱, 𝑡−
𝑛+1)𝜙(𝑡−

𝑛+1) − 𝐐(𝐱, 𝑡−
𝑛)𝜙(𝑡+

𝑛)]
Ω𝐸

𝑑Ω𝐸 − ∫ ∫ 𝐐
𝜕𝜙

𝜕𝑡
𝑑Ω𝐸𝑑𝑡

Ω𝐸𝐼𝑛

 (10) 

 

where 𝜙(𝐱, 𝑡) = 𝜙(𝐱)𝜓(𝑡). Previously in [6], the temporal basis function was assumed to be of the same form as the 

spatial basis function: 𝜓(𝑡) = 𝜙(𝑡)  with Gauss-Legendre quadrature points. However, it is found that the 

characteristics of the temporal DG scheme (DGT) may vary according to the choice of temporal basis function 

(quadrature points, more specifically). Here, we keep the general form of the temporal basis function 𝜓(𝑡). Details 

will be discussed with the relation between DGT and FIRK in the next sub-section.      

Herein, let us define the left-hand-side of the Eq.(8) as an unsteady residual that includes the temporal 

discretization as well as spatial discretization. Considering the semi-discrete formulation Eq.(6), the additional 

integration over a time interval 𝐼𝑛 needs to be normalized by dividing ∆𝑡 for a consistent definition of the unsteady 

residual. Then, the unsteady residual 𝐋(𝐐) for space-time DG can be defined as follows. 

 

DG in time: 𝐋(𝐐𝑛+1) =
1

∆𝑡
[∫ [𝐐(𝐱, 𝑡−

𝑛+1)𝜓(𝑡−
𝑛+1) − 𝐐(𝐱, 𝑡−

𝑛)𝜓(𝑡+
𝑛)]

Ω𝐸

𝑑Ω𝐸 − ∫ ∫ 𝐐𝑛+1
𝜕𝜓

𝜕𝑡
𝑑Ω𝐸𝑑𝑡

Ω𝐸𝐼𝑛
] 

(11) 

      +
1

∆𝑡
∫ 𝐑(𝐐𝑛+1)𝜓(𝑡)𝑑𝑡

𝐼𝑛
 

 

We define a sub-vector that consists of quadrature point values for spatial DG as 𝐪 = 𝑄𝑖𝑗, then the quadrature point 

values in a space-time element can also be expressed as 𝐪𝑘 = 𝑄𝑖𝑗𝑘. When this is expanded out, a matrix form of 

𝐋(𝐐) for the case of 𝑝𝑡 = 1 (where pt corresponds to the temporal polynomial order) is given as: 
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DG in time: 𝐋(𝐐𝑛+1) =
𝐌

∆𝑡
{(𝚽𝑛+1 − 𝑫𝝎) [

𝐪1
𝑛+1

𝐪2
𝑛+1] − 𝚿̂𝑛 [

𝐪̂𝑛

𝐪̂𝑛]} +
𝛀

2
[
𝐫1

𝑛+1

𝐫2
𝑛+1] (12) 

where 𝚽𝑛+1, 𝑫𝝎, 𝚿̂𝑛 and 𝛀 are matrices calculated using temporal basis function 𝜓(𝑡). The definitions and details 

of derivation process are given in [6].   

 

II-C. Relation Between DGT and FIRK 

 

The general form of an implicit Runge-Kutta scheme for solving the equation 

 
𝑑𝑞

𝑑𝑡
= 𝑓(𝑡, 𝑞)  

is given as 

 𝑞𝑖 = 𝑞𝑛 + ∆𝑡 ∑ 𝑎𝑖𝑗

𝑠

𝑗=1

𝑓(𝑡𝑛 + 𝑐𝑗∆𝑡, 𝑞𝑗)      𝑖 = 1,2, … 𝑠  

 
𝑞𝑛+1 = 𝑞𝑛 + ∆𝑡 ∑ 𝑏𝑖

𝑠

𝑖=1

𝑓(𝑡𝑛 + 𝑐𝑖∆𝑡, 𝑞𝑖) 
 

Here the first equation represents the calculation of the qi stage values, while the second equation computes the 

value qn+1 at the end of the time interval given the stage values. The coefficients of the scheme are defined in the 

Butcher tableau as 

 

 

 

Using an IRK scheme to compute the time evolution of Eq.(6) results in a similar space-time residual as the 

DGT scheme, corresponding the equations which must be solved to obtain the IRK stage values. For a 2-stage IRK 

scheme, these equations can be written as: 

 𝐋(𝐐𝑛+1) =
𝐌

∆𝑡
{[

𝐪1
𝑛+1

𝐪2
𝑛+1] − [

𝐪̂𝑛

𝐪̂𝑛]} + 𝑨 [
𝐫1

𝑛+1

𝐫𝟐
𝑛+1] (13) 

where the entries of the matrix A correspond to the 𝑎𝑖𝑗  coefficients in the Butcher tableau of the IRK scheme. In 

reference [9] and [6], a preconditioned form of the IRK scheme was considered, which is obtained by multiplying 

through by A-1, resulting in the preconditioned space-time residual: 

 𝐋(𝐐𝑛+1) =
𝐌

∆𝑡
{𝑨−1 [

𝐪1
𝑛+1

𝐪2
𝑛+1] − 𝑨−1 [

𝐪̂𝑛

𝐪̂𝑛]} + [
𝐫1

𝑛+1

𝐫𝟐
𝑛+1] (14) 

 The preconditioned form of the IRK scheme given above has obvious similarities to the DG-in-time formulation 

given in equation (12). In reference [10], a proof is given which shows that a discontinuous Galerkin-in-time 

discretization using right Radau quadrature rules corresponds to the well-known Radau IIA implicit Runge-Kutta 

scheme. In fact, it is relatively simple to show that equation (12) above reduces to the above expression for a 2-stage 

Radau IIA IRK scheme when the (t) basis functions are taken as the right Radau polynomials and the quadrature is 

performed using the corresponding right Radau points. Reference [19] extends the proofs of reference [10] to further 

derive a complete class of IRK-DG schemes based on the particular quadrature rules used in the DG scheme. Using 

Gauss quadrature in time, which matches the current quadrature used in the spatial dimensions, produces a so-called 
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DG-Gauss IRK method, which is different from the Gauss IRK method found in the literature.  From the IRK 

literature [8, 11-12], for non-stiff problems s-stage Gauss IRK schemes are known to deliver 2s=2pt+2 accuracy and 

to be A-stable but not L-stable. On the other hand, the Radau IIA schemes achieve one order of accuracy lower than 

their Gauss counterparts, i.e. 2s-1=2pt+1, but are both A-stable and L-stable. In reference [19] it is shown that all 

DG-IRK schemes are both A-stable and L-stable and achieve 2s-1=2pt+1 accuracy, similar to the Radau IIA IRK 

scheme. 

Numerical tests performed in this work have confirmed the expected design accuracy of the various IRK 

schemes and DG-in-time schemes for the canonical test case of an isentropic vortex convection problem [13–15], 

which is shown in section IV in detail. As discussed therein, our preferred temporal scheme remains the IRK Radau 

IIA scheme, due to its favorable stability and stiff-order reduction properties [18]. 

 

 

III. Pseudo-Time Stepping 

In the above section, we only considered the accuracy and stability of the various temporal schemes and assumed 

the implicit system arising at each time step was solved to machine precision. In the following sections we focus on 

the techniques for solving the implicit systems generated by these discretizations at each time step. 

Once we have formulated 𝐋(𝐐𝑛+1) for any space-time discretization, we are interested in solving 𝐋(𝐐𝑛+1) = 0 

at every time step to advance in time. In order to solve this non-linear set of equations, pseudo-time stepping, also 

known as dual-time stepping, is an often used approach which seeks to mimic the physical time evolution of the 

solution by adding a pseudo-time term 𝐌
𝜕𝐐

𝜕𝜏
 as [16]: 

  𝐌
𝜕𝐐

𝜕𝜏
+ 𝐋(𝐐𝑛+1) = 0 (15) 

and integrating in pseudo-time 𝜏 until steady-state in pseudo time is achieved. This nonlinear system can be solved 

in pseudo-time using simple explicit time-stepping methods, which in turn may be accelerated using multigrid 

methods. A simple approach is the explicit single-stage RK (or the 1st order accurate forward Euler scheme) time 

stepping in pseudo-time, which gives  

 
𝐌

∆𝜏
(𝐐𝑘+1 − 𝐐𝑘) + 𝐋(𝐐𝑛+1) = 0 (16) 

Here, 𝐐𝑘 is the pseudo-time level and 𝐐𝑛 is the physical-time level such that  

 𝐐𝑘+1 ≈ 𝐐𝑘 →  𝐐𝑛+1 as 𝑘 → ∞ and 𝐋(𝐐𝑘) → 0  (17) 

 

Thus, we can write Eq. (16) as: 

 𝐐𝑘+1 = 𝐐𝑘 − ∆𝜏𝐌−𝟏𝐋(𝐐𝑘) (18) 

This gives an explicit equation to be solved for 𝐐𝑘+1.  

 

III-A. Explicit Multi-Stage Optimized RK in Pseudo-Time 

The explicit single-stage RK scheme can be easily extended to explicit multi-stage schemes in pseudo-time. A 

general s-stage explicit RK scheme can be represented by the Butcher tableau [13]. Vermeire et al. [17] optimized 

RK schemes for pseudo-time stepping for high-order spatial discretizations. Since the temporal accuracy of pseudo-

time stepping is not a consideration, they maximized the stability region while trading off the accuracy as 1st order 

accurate. The methods are optimal in that they allow the largest possible pseudo time step ∆𝜏 to be taken for a given 

number of RK stages. As a result, they observed speedup factors of 1.8x for a flux-reconstruction DG spatial 

discretization with their optimized 4-stage RK scheme in terms of maximum effective time step size.  

Butcher tableau coefficients for the optimized RK schemes are provided online as Electronic Supplementary 

Material with the article in reference [17]. The optimized 4-stage RK scheme for FRDG (𝑝𝑠 = 5), for example, has 

the coefficients as follows:  
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The actual performance of the optimized 4-stage RK schemes for numerical tests will be discussed in section IV. 

 

III-B. IMEX Multi-Stage Optimized RK Schemes 

In ewference [17], the maximum stable pseudo-time step ∆𝜏 was obtained empirically and assumed to be related 

to the explicit stability limit due to the spatial residual term. However, the unsteady residual 𝐋(𝐐) consists of 

temporal and spatial components. In our previous work [6], we considered the effect of the temporal component, 

which can become more restrictive particularly for small physical time steps. 

For illustration purposes, we consider the case where a BDF1 temporal discretization is employed (i.e. 

corresponding to 𝑝𝑡 = 0 DG-in-time). In this case, the explicit pseudo-time stepping scheme becomes: 

 

 
𝐐𝑘+1 = 𝐐𝒌 −

∆𝜏

∆𝑡
[𝐐𝑘 − 𝐐𝒏] − ∆𝜏𝐌−𝟏𝐑(𝐐𝑘) (19) 

As can be seen from this simple example, for small ∆𝑡, the second term of the right-hand side becomes large and 

may require a smaller pseudo-time step to guarantee stability. An alternative approach which enables the use of a 

constant pseudo-time step regardless of the size of the physical time step is to treat this term implicitly in pseudo-

time as: 

 [1 +
∆𝜏

∆𝑡
] 𝐐𝑘+1 = 𝐐𝑘 +

∆𝜏

∆𝑡
𝐐𝑛 − ∆𝜏𝐌−𝟏𝐑(𝐐𝑘) (20) 

noting that the second term of the right-hand side of Eq.(20) is a constant source term, involving the known values 

of 𝐐 at the beginning of the time interval. In previous work [6], we extended this to DG-in-time and IRK temporal 

discretizations as: 

 

 [1 +
∆𝜏

∆𝑡
𝑨−𝟏] 𝐐𝑘+1 = 𝐐𝑘 +

∆𝜏

∆𝑡
𝑨−𝟏𝐐𝑛 − ∆𝜏𝐌−𝟏𝐑(𝐐𝑘) (21) 

where A represents the matrix of IRK coefficients, and 𝐐 represents the vector of stage values for the corresponding 

IRK scheme (with the analogous representation for DGT schemes). Although this approach was shown to work well 

for DG-in-time and IRK temporal schemes up to high order, it was only applied for cases using RK1 (simple 

forward Euler explicit) pseudo-time stepping. In order to extend this approach for multi-stage explicit pseudo-time 

stepping, which is necessary for the use of the optimized pseudo-time stepping schemes discussed in the previous 

section, a more general approach must be devised. In this work, we have used the idea of implicit-explicit (also 

known as IMEX) schemes [11] for extending the implicit treatment of the temporal component of the unsteady 

residual 𝐋(𝐐) to multi-stage optimized RK pseudo-time stepping schemes. We proceed by dividing the unsteady 

residual into temporal and spatial components denoted as 𝐋(𝐐) = 𝐌 {𝐓(𝐐) + 𝐒(𝐐)}. An IMEX scheme that treats 

the temporal part implicitly and the spatial part explicitly can then be written as:  

Stage values: 𝑸𝑘,𝑖 = 𝑸𝑛 − ∆𝜏 ∑ 𝑎𝑖𝑗

𝑖

𝑗=1

𝑻(𝑸𝑘,𝑗) − ∆𝜏 ∑ 𝑎̂𝑖𝑗

𝑖−1

𝑗=1

𝑺(𝑸𝑘,𝑗) (22) 

Final new time value: 𝑸𝑛+1 = 𝑸𝑛 − ∆𝜏 ∑ 𝑏𝑖

𝑠

𝑖=1

𝑻(𝑸𝑘,𝑖) − ∆𝜏 ∑ 𝑏̂𝑖

𝑠

𝑖=1

𝑺(𝑸𝑘,𝑖) (23) 
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The 𝑎̂, 𝑏̂ coefficients determine the explicit scheme, while the corresponding 𝑎, 𝑏 coefficients determine the implicit 

scheme. Here, superscript 𝑘 indicates the pseudo-time level and 𝑖 and 𝑗 indicate the stage level of the RK scheme. 

For example, when BDF1 is used as a physical time discretization, we have 

BDF1: 

𝑻(𝐐𝑘,𝑖 ) =
1

∆𝑡
(𝐐𝑘,𝑖 − 𝐐𝑛), 

𝑺(𝐐𝑘,𝑖) = 𝑴−𝟏𝑹(𝐐𝑘,𝑖) 
 

Similarly, we have the following for the preconditioned IRK Radau2A scheme: 

pFIRK Radau2A: 

          𝑻(𝐐𝑘,𝑖) =
1

∆𝑡
𝑨−𝟏(𝐐𝑘,𝑖 −  𝐐𝑛), 

𝑺(𝐐𝑘,𝑖) = 𝑴−𝟏𝑹(𝐐𝑘,𝑖) 

 

In order to devise our IMEX scheme, we recall that we are not interested in pseudo-time accuracy, but only 

stability for these optimized schemes. Since we already have an explicit multi-stage scheme optimized for stability 

which operates on the spatial residual, the task is to find a corresponding multi-stage implicit scheme to build the 

complete IMEX scheme. The simplest approach is to construct a diagonally implicit RK scheme with a single 

diagonal coefficient at each stage. For this, we assume that the 𝑎𝑖𝑗  coefficients are all zero except for the diagonal 

terms: 𝑎𝑖𝑖 = 𝑐𝑖 , as required by the consistency condition for RK schemes [18]. Here, we use the optimized RK41 

scheme to define the explicit scheme. Then, we have: 

Stage values: [𝑸𝑘,𝑖 + ∆𝜏𝑐𝑖𝑻(𝑸𝑘,𝑖)] = 𝑸𝑛 − ∆𝜏 ∑ 𝑎̂𝑖𝑗

𝑖−1

𝑗=1

𝑺(𝑸𝑘,𝑗) (24) 

Final new time value: [𝑸𝒌+𝟏 + ∆𝝉𝑻(𝑸𝒌+𝟏)] = 𝑸𝒏 − ∆𝝉 ∑ 𝒃̂𝒊

𝒔

𝒊=𝟏

𝑺(𝑸𝒌,𝒊) (25) 

We note that this formulation corresponds to the application of a BDF1 scheme for obtaining the stage values of the 

implicit component of the IMEX scheme. Since the explicit component is stable by design, the combination of both 

schemes in this IMEX scheme is guaranteed to be stable for the calculation of the stage values. For the final new 

time value, the spatial component contribution is assembled using the 𝑏𝑖̂  coefficients of the underlying explicit 

scheme, whereas the temporal component is treated implicitly as another stage value. This can be interpreted as an 

extra stage that produces the value of Q at the end of the time interval. Furthermore, for large physical time step 

values, the implicit terms become negligible and the explicit multi-stage scheme in pseudo-time is recovered. 

In order to solve the left-hand side of Eq. (24) and (25), we need to perform a matrix inversion operation. For 

practical ranges of 𝑡ℎ𝑒 𝑝𝑡 order, however, the left-hand side of Eq. (24) and (25) consist of very small size matrices. 

For example, when we use sub-vector for the spatial part, the matrix to be inverted is 𝑁 × 𝑁 where 𝑁 = 𝑝𝑡 + 1. Up 

to 𝑝𝑡 = 4 (9th order accurate) temporal discretizations have been implemented, and the additional cost for the IMEX 

schemes has been found to be less than 2% of overall computing cost.    

 

 

IV. Numerical Results 

IV-A. Convection of An Isentropic Vortex  

An isentropic vortex convection problem [19, 23, 24] is considered to assess temporal accuracy. As an initial 

condition, an isentropic vortex is superposed to the mean flow field. Initial mean flow and perturbation values for 

the isentropic vortex are given by 

𝑢∞ = 0.5, 𝑣∞ = 0, 𝑝∞ = 𝜌∞ = 𝑇∞ = 1, (𝛿𝑢, 𝛿𝑣) =
𝛽

2𝜋
𝑒(1−𝑟2)/2(−𝑦̄, 𝑥̄), 𝛿𝑇 = −

(𝛾−1)𝛽2

8𝛾𝜋2 𝑒1−𝑟2
,  
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where β is the vortex intensity set to 4 and 𝛾 = 1.4. Here, (𝑥̄, 𝑦̄) = (𝑥 − 𝑥𝑣0, 𝑦 − 𝑦𝑣0), where 𝑥𝑣0  and 𝑦𝑣0  are 

coordinates of the center of initial vortex :(𝑥𝑣0, 𝑦𝑣0) = (0,0), and 𝑟2 = 𝑥̄2 + 𝑦̄2. The entire flow field is required to 

be isentropic so, for a perfect gas, 𝑝 𝜌𝛾⁄ = 1. 

From the relations, 𝜌 = 𝜌∞ + 𝛿𝜌 , 𝑢 = 𝑢∞ + 𝛿𝑢 , 𝑣 = 𝑣∞ + 𝛿𝑣 , 𝑇 = 𝑇∞ + 𝛿𝑇 , and the isentropic relation, the 

resulting conservative variables are given by 

𝜌 = 𝑇1/(𝛾−1) = (𝑇∞ + 𝛿𝑇)1/(𝛾−1) = [1 −
(𝛾−1)𝛽2

8𝛾𝜋2 𝑒1−𝑟2
]

1/(𝛾−1)

, 𝜌𝑢 = 𝜌(𝑢∞ + 𝛿𝑢) = 𝜌 [1 −
𝛽

2𝜋
𝑒(1−𝑟2)/2𝑦̄] 

𝜌𝑣 = 𝜌(𝑣∞ + 𝛿𝑣) = 𝜌 [1 +
𝛽

2𝜋
𝑒(1−𝑟2)/2𝑥̄], 𝑝 = 𝜌𝛾, 𝑒 =

𝑝

𝛾−1
+

1

2
𝜌(𝑢2 + 𝑣2). 

The computational domain is set to −10 ≤ 𝑥 ≤ 10 and −10 ≤ 𝑦 ≤ 10. Periodic boundary conditions are used in 

the x- and y-directions. The vortex convects to the right with the freestream velocity (𝑢∞ = 0.5) and due to the 

periodic boundary conditions, goes back to the initial location every non-dimensional time interval 𝛥𝑡 = 40.  
 

1) Temporal accuracy study for DGT and FIRK 

Since the flowfield is inviscid, the exact solution is just a passive advection of the initial vortex with a mean 

velocity. The overall error, however, includes both spatial and temporal errors. In order to eliminate the spatial error 

and to isolate the temporal error, a reference solution for each temporal p-order discretization is obtained first using 

a small time-step of ∆t=0.01. Then, the temporal error is computed as the L2 norm of the difference of the density 

field between the reference solution and a corresponding computed solution. 

Table 1 examines the temporal error convergence observed for the 2-stage Gauss FIRK scheme compared with 

the 𝑝𝑡 = 1 DGT scheme using Gauss points and the 2-stage Radau FIRK scheme. As seen in the table, the 2-stage 

Gauss FIRK scheme achieves the design accuracy of 2𝑠 = 2𝑝𝑡 + 2, (i.e. 4th order accurate in this case), while the 

accuracy of the Gauss DGT scheme is one order lower, and equivalent to the 2-stage Radau IIA FIRK scheme, as 

expected. 

Table 2 examines the same temporal error convergence of the 𝑝𝑡 = 4 DGT scheme using Gauss points and the 5-

stage FIRK Radau IIA scheme using 𝑝𝑠 = 12 in the spatial dimensions to minimize spatial error. Here as well, the 

DGT Gauss scheme and the FIRK Radau schemes both achieve equivalent temporal accuracy orders of 2𝑠 − 1 =
2𝑝𝑡 + 1, (i.e. approximately 9th order accuracy is observed on average) as expected. Note that the DGT scheme 

using right Radau quadrature points was also run and produced results identical to the FIRK Radau IIA scheme in all 

cases. 

Although the DG-in-time scheme using Gauss quadrature points produces results very close to those obtained 

using right Radau quadrature points, only the latter implementation recovers the exact IRK scheme with its proven 

accuracy and stability properties. Properties of the DG-in-time scheme using Gauss points are discussed in reference 

[19] and include A and L stability, similarly to the IRK Radau schemes. However, the use of right-Radau quadrature 

points obviates the need to compute the projection of the temporal solution from the quadrature (or stage) values to 

the end of the time interval (using the IRK 𝑏𝑗 coefficients), since the last Radau point coincides with the end of the 

time step interval. Apart from the computational savings afforded by the omission of this last step, this may also lead 

to better control on the error at the end of the time interval, particularly when only partial convergence of the 

temporal system is performed, as is most often the case [9]. 

 

Table 1 Observed temporal accuracy for convecting vortex problem: ps=5 and pt=1 (2-stage) 

 ∆t L1 error  L1 order L2 error L2 order L∞ error L∞ order 

2-stage FIRK 

Gauss 

1.000 1.2295E-05 
 

7.3265E-05 
 

1.2441E-03 
 

0.500 7.2081E-07 4.09 3.4346E-06 4.41 4.4038E-05 4.82 

0.250 5.3668E-08 3.75 2.5884E-07 3.73 3.8282E-06 3.52 

0.125 3.6222E-09 3.89 1.7224E-08 3.91 2.6195E-07 3.87 

Avg. 
 

3.91 
 

4.02 
 

4.07 

DGT with Gauss 

quadrature points  

(𝑝𝑡 = 1, 2-stage) 

1.000 4.6267E-05 
 

2.4704E-04 
 

4.7856E-03 
 

0.500 7.5068E-06 2.62 3.9115E-05 2.66 7.6858E-04 2.64 

0.250 1.0173E-06 2.88 4.9508E-06 2.98 9.2563E-05 3.05 

0.125 1.3278E-07 2.94 6.3772E-07 2.96 1.1358E-05 3.03 

Avg. 
 

2.81 
 

2.87 
 

2.91 

2-stage FIRK 1.000 3.7273E-05   1.9873E-04   3.7876E-03   
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Radau 2A 0.500 5.6780E-06 2.71 3.1314E-05 2.67 6.2362E-04 2.60 

0.250 7.4971E-07 2.92 3.9743E-06 2.98 8.0173E-05 2.96 

0.125 9.5939E-08 2.97 5.0059E-07 2.99 9.9944E-06 3.00 

Avg.   2.87   2.88   2.86 

 

Table 2 Observed temporal accuracy for convecting vortex problem: ps=12 and pt=4 (5-stage)  

 ∆t L1 error  L1 order L2 error L2 order L∞ error L∞ order 

DGT with 

Gauss 

quadrature 

points 

 (pt=4, 5 

Stage)  

1.000 2.4144E-08  1.1703E-07  2.4559E-06  

0.750 1.9170E-09 8.81 9.8927E-09 8.59 1.8823E-07 8.93 

0.500 4.7182E-11 9.14 2.3433E-10 9.23 3.9927E-09 9.50 

0.250 2.0948E-13 7.82 5.8940E-13 8.64 1.0000E-11 8.64 

Avg.  8.59  8.82  9.02 

5-stage FIRK 

Radau2A 

1.000 1.1182E-08  5.2406E-08  1.1918E-06  

0.750 8.9425E-10 8.78 4.4761E-09 8.55 8.2910E-08 9.27 

0.500 2.1331E-11 9.21 1.0363E-10 9.29 1.7976E-09 9.45 

0.250 1.0938E-13 7.61 4.1460E-13 7.97 7.8826E-12 7.83 

Avg.  8.53  8.60  8.85 

 

For these reasons, in the following sections of this paper, we focus on the use of the Radau IIA IRK scheme, 

which is identical to the DG-in-time scheme using right Radau quadrature points, although all results have also been 

reproduced using the DG-in-time Radau scheme. 

 

2) Convergence performance for explicit multi-stage optimized RK 

In this section, the convergence performance of the explicit multi-stage optimized RK scheme in pseudo time is 

investigated. The isentropic vortex convection problem used in the previous section also serves as the time-

dependent flow problem. Tests were performed using a fixed spatial discretization (𝑝𝑠 = 5) on the domain size of 

−10 ≤ 𝑥 ≤ 10 and −10 ≤ 𝑦 ≤ 10. 

The convergence performance is compared in terms of the number of explicit pseudo-time steps required to drive 

the L2-norm of the space-time residual to less than 10-12. The convergence histories are examined for the solution of 

a single physical implicit time step at the early time evolution of the vortex test problem. In all cases, it was verified 

that the convergence behavior was similar at subsequent physical time steps in order to ensure that the observed 

trends are representative of the general time-dependent solution. 

As expected, the solution efficiency depends on the physical time step size, as well as the largest pseudo-time 

step size that can be used in the iterative scheme without provoking instabilities. The CFL number is an important 

parameter in this respect. We define a CFL number CFLt based on the physical time step, as well as a CFL number 

denoted as CFL based on the pseudo-time step. For time-accurate solutions, the physical-time step is held constant, 

and the physical-time CFL number is variable, driven principally by the difference cell sizes in the mesh. For 

pseudo-time stepping, we generally employ local time stepping for convergence acceleration, whereby the pseudo-

time CFL number if fixed, resulting in a variable pseudo-time step which depends principally on cell size. A 

standard definition for the CFL number for a cartesian mesh in two dimensions is given as: 

𝐶𝐹𝐿𝑡 = (|𝑢| + 𝑐)
Δ𝑡

𝑚𝑖𝑛(𝑑𝑥, 𝑑𝑦)
 

 

where u and c are the local fluid velocity and speed of sound, respectively, and dx, dy represent the cell size in two 

dimensions. In order to account for the effect of high-order spatial discretizations, where the explicit time step limit 

becomes more restrictive, we define a modified CFL number as: 

 

CFLt
∗  =  (|u|  +  c) 

Δt

min(dx, dy)
 (p + 1)1.8 

Here p denotes the polynomial order of the spatial discretization. This definition has been derived by empirical 

numerical evidence [7,20] in an attempt to obtain values of  CFL𝑡
∗  ~1 in the vicinity of the explicit time-step limit for 

higher order discretizations. For p>0 (i.e. higher than first-order accuracy) a specific value of  CFL𝑡
∗  corresponds to a 

smaller time step than that defined by the same value of CFLt, or conversely, for a given time step size, CFL*
t is 
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larger than CFLt. For example, when 𝑝𝑠 = 5, CFL𝑡
∗  is about 25 times larger than CFL𝑡.  CFL𝜏

∗  for the pseudo-time 

step is defined in a similar manner. In this work, we employ CFL𝑡
∗  and CFL𝜏

∗  as parameters for comparison purposes. 

Table 3 shows the maximum stable pseudo-time CFL number ( CFL𝜏
∗ ) (obtained empirically) and the 

corresponding number of pseudo-time iterations (ντ) to solve the unsteady residual of the DGT/Radau scheme for 

the isentropic vortex convection problem to a space-time residual tolerance of 10-12. The notation RKsp indicates an 

s-stage scheme with p-order of temporal accuracy. RK11, RK44 and RK41 correspond to single-stage RK, 4-stage 

standard RK (4th order accurate in 𝜏) and 4-stage optimized RK (1st order accurate in 𝜏), respectively. The number of 

stages (s) is used to normalize CFL ∗τ and ντ for comparison purposes between single- and multi-stage schemes in 

the table. In order to assess the effect of the physical-time step size ∆t on convergence performance of the optimized 

RK schemes, the physical-time steps of ∆t=0.26 and 2.6, which correspond to CFL𝑡
∗ = 25 and 250 respectively 

(based on a uniform mesh cell size and freestream conditions), are used for comparison. Results are given for DGT 

physical temporal discretizations ranging from pt=1 to pt=5, corresponding to the IRK Radau scheme using from 2 

to 6 stages. The number of cycles to convergence multipled by the number of stages (i.e. residual evaluations) is 

directly related to the maximum stable CFL/s value. The small physical time step problems all converge faster than 

the larger time-step problems, as expected. Interestingly, relatively similar convergence rates are observed overall 

for increasing orders of temporal accuracy or pt values. The relative speedups obtained by the RK44 and RK41 

schemes are obtained from the results in Table 3 and displayed in Table 4. Compared to RK11, RK44 shows 

0.61x~1.6x and 2.5x~4.3x speed-up factors for ∆t=0.26 and 2.6, respectively. The speed-up factors increase for 

higher-order pt values of the temporal discretization. RK41 shows a 1.8x speed-up factor compared to RK44 as 

predicted and verified in reference [17]. The overall speedup going from the simple RK11 scheme to the optimized 

RK41 scheme for the larger physical time step problem is in the range of 7x to 8x for all temporal accuracy orders 

above pt=1 or IRK Radau schemes with 3 to 6 stages. 

 

Table 3 Comparison of pseudo-time CFL number and corresponding number of residual evaluations (i.e. 

pseudo-time iterations multiplied by number of stages) to solve unsteady residual of DGT/Radau implicit 

time stepping to a residual level of 1.e-12 for physical time step of 0.26 and 2.6 

∆t=0.26 ∆t=2.6 
 RK11 RK44 RK41 RK11 RK44 RK41 

𝑝𝑡  CFL𝜏
∗ /s ντ*s CFL𝜏

∗ /s ντ*s CFL𝜏
∗ /s ντ*s CFL𝜏

∗ /s ντ*s CFL𝜏
∗ /s ντ*s CFL𝜏

∗ /s ντ*s 

1.0 1.2 80 0.75 132 1.38 72 0.29 3296 0.70 1332 1.28 736 

2.0 1 128 0.88 132 1.58 76 0.18 6501 0.78 1452 1.45 776 

3.0 1.1 133 1.18 120 2.15 64 0.29 4762 1.08 1248 1.98 680 

4.0 1.1 156 1.48 108 2.45 64 0.29 5374 1.23 1240 2.25 676 

5.0 1.2 177 1.7 108 2.68 64 0.36 4830 1.50 1136 2.75 616 

 

Table 4 Comparison of speed-up factors for physical time step of 0.26 and 2.6 

 ∆t=0.26 ∆t=2.6 

𝑝𝑡  RK11/RK44 RK44/RK41 RK11/RK41 RK11/RK44 RK44/RK41 RK11/RK41 

1.0 0.61 1.83 1.11 2.47 1.81 4.48 

2.0 0.97 1.74 1.68 4.48 1.87 8.38 

3.0 1.11 1.88 2.08 3.82 1.84 7.00 

4.0 1.44 1.69 2.44 4.33 1.83 7.95 

5.0 1.64 1.69 2.77 4.25 1.84 7.84 

 

 

3) Convergence performance for IMEX multi-stage optimized RK 

In this section we assess the convergence performance of the IMEX multi-stage optimized RK scheme in pseudo 

time for the isentropic vortex convection problem. In the previous section, the physical time steps were chosen to be 

large enough that the IMEX scheme was not required for good convergence behavior. In this section, we focus on a 

range of physical time steps that extends into the region of small time steps where the IMEX scheme should prove to 

be beneficial. 
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Figure 1 shows the convergence histories of IMEX-RK41 for the DGT/IRK Radau temporal discretization with 

∆t=2x10-4, which corresponds to a physical CFL number of CFL𝑡
∗ = 0.02, based on a uniform mesh cell size and 

freestream conditions. Temporal orders of accuracy up to  𝑝𝑡 = 4 were tested, corresponding to 5 stages in the 

physical time IRK Radau scheme. Green and blue lines indicate the best convergence rate cases for the explicit 

RK41 and IMEX-RK41 schemes, respectively. For this small physical time step, the explicit RK41 scheme requires 

a very small CFL
*. The largest stable value of CFL

*= 0.1 is seen to converge slowly in the pt=1 case, in Figure 

1(a).  Conversely, the IMEX-RK41 scheme converges much faster using this same CFL*
 value. However, using a 

lower value of CFL*
= 0.06 produces the fastest convergence for the explicit RK41 scheme in pseudo time. On the  

other hand, for very small physical time steps, the physical temporal term dominates and the IMEX scheme becomes 

fully implicit in pseudo time, enabling the use of very large CFL*
 values, which provides a large speedup over the 

best explicit RK41 performance. The relative speedup of the best IMEX RK41 performance versus the explicit 

RK41 scheme increases as the temporal order of accuracy of the physical time discretization is raised as seen in 

Figures 1 (a) through (d). Notably at the higher temporal orders, the convergence of the IMEX scheme using CFL*
 

values that are close to the stability limit of the explicit scheme is still faster than the best convergence obtained with 

the explicit scheme. 

The best performance in terms of the number of sub-iterations for the IMEX versus explicit scheme is compared 

in Table 5. Compared to the explicit RK41 scheme, IMEX-RK41 shows 2.0x~8.7x speed-up for this small physical 

time step problem. The speed-up factors increase for higher-order cases (i.e. larger number of stages in physical 

time). Similar tests were made for larger physical time steps of ∆t=0.02 (CFL𝑡
∗ = 2) and 0.26 (CFL𝑡

∗ = 25). The 

results are presented in Table 6 and Table 7. Similarly to Table 5, the speed-up factors increase as 𝑝𝑡  increases, 

although these are more modest at 1.4x~4.3x and 1.0x~1.6x for ∆t=0.02 and 0.26, respectively. As the physical time 

step size increase, the IMEX-RK41 scheme becomes equivalent to the explicit RK41 pseudo-time stepping scheme, 

which is expected since the temporal residual term goes to zero when ∆t is large. Although convergence of the 

IMEX scheme in pseudo time can be enhanced by choosing the optimal CFL*
 value depending on the size of the 

physical time step, an important aspect of the IMEX scheme is that it remains stable for all physical time steps using 

a fixed CFL*
 value of O(1), as can be seen from the results of these tables, thus simplifying the implementation of 

pseudo-time stepping schemes for problems with variable physical time steps and mesh cells of widely varying 

resolution. 
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Figure 1: Convergence histories of IMEX-RK41 for preconditioned Radau 2A (pFIRK-R) with ∆𝒕=0.0002: (a) 

𝒑𝒕=1, (b) 𝒑𝒕=2, (c) 𝒑𝒕=3, (d) 𝒑𝒕=4 

 

Table 5: Best performance in terms of the number of sub-iterations for pFIRK-R with ∆𝒕=0.0002 

 explicit RK41 IMEX-RK41 explicit/IMEX 

speed-up factor # of stages 𝑝𝑡  CFL𝜏
∗  # of sub-iteration CFL𝜏

∗  # of sub-iteration 

2 1 0.060 6 1000 3 2.0 

3 2 0.013 12 1000 3 4.0 

4 3 0.009 19 1000 3 6.3 

5 4 0.006 26 1000 3 8.7 

 

Table 6: Best performance in terms of the number of sub-iterations for pFIRK-R with ∆𝒕=0.02 

 explicit RK41 IMEX-RK41 explicit/IMEX 

speed-up factor # of stages 𝑝𝑡  CFL𝜏
∗  # of sub-iteration CFL𝜏

∗  # of sub-iteration 

2 1 2.0 20 7.0 14 1.4 

3 2 1.1 13 30 6 2.2 

4 3 0.8 19 100 6 3.2 

5 4 0.6 26 100 6 4.3 

 

(a) 2-stage (b) 3-stage 

(c) 4-stage (d) 5-stage 
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Table 7: Best performance in terms of the number of sub-iterations for pFIRK-R with ∆𝒕=0.26 

 explicit RK41 IMEX-RK41 explicit/IMEX 

speed-up factor # of stages 𝑝𝑡  CFL𝜏
∗  # of sub-iteration CFL𝜏

∗  # of sub-iteration 

2 1 2.5 218 2.6 225 1.0 

3 2 2.4 82 3.0 65 1.3 

4 3 2.3 73 3.2 47 1.6 

5 4 2.3 64 3.3 40 1.6 

 

IV -B. Flows Around 2D/3D NACA0012 Airfoils  

Although the previous test case was instrumental in demonstrating the advantages of the optimized RK and 

IMEX schemes in pseudo time, the mesh used for the 2D vortex problem is essentially uniform in space. One of the 

principal motivations for using implicit time-stepping schemes for scale-resolving simulations is the need to 

accommodate meshes of widely varying resolution, where explicit schemes become constrained by the time-step 

restrictions determined by the smallest cells in the mesh. The use of implicit schemes with a fixed global physical 

time step on meshes of widely varying resolution can result in regions of the domain operating at very large physical 

time-step CFL numbers, well beyond the stability limit of explicit schemes in small cell regions, while large cell 

regions may operate at very low CFL numbers that may be near or below the explicit time-step limit. In this sense, 

the IMEX scheme can be expected to be instrumental in providing consistent convergence properties throughout the 

domain, while the use of local pseudo-time stepping should prove to be effective in accelerating the solution of the 

implicit system at each physical time step.  

In this section we examine the performance of these schemes for 2D and 3D flow over a NACA 0012 airfoil 

using a body fitted mesh with large variation in cell sizes. The Mach number is 0.2, the Reynolds number is 60,000 

and the angle of attack is 8°, which is the same flow condition used in [17]. Laminar separation occurs on the upper 

surface of the airfoil, forming a laminar separation bubble. The DGT and IRK temporal discretizations have been 

implemented for curved meshes in 2D and 3D. The DG4est code [7,20] has been extended to 3D unstructured 

curved element meshes, incorporating dynamic hp refinement with the p4est library. All high-order temporal 

discretizations introduced in the previous section have also been implemented in this 3D code. In the current test 

cases, DGT/Radau with 𝑝𝑡 = 1~4 is used without any hp refinement for simplicity. 𝑝𝑠 = 2 or third order spatial 

accuracy is used for these simulations. 

 

1) 2D NACA0012 airfoil 

The grid employed for the 2D NACA0012 airfoil and the u-velocity iso-surfaces for a representative 3D 

simulation on are shown in Figure 2. The grid contains a total of 9,633 curved quadratic (Q2) quadrilateral cells with 

extensive refinement in the leading edge and trailing edge regions, and extends out to 100 chord lengths in the 

farfield. In this test, the 2D flow field over the NACA0012 airfoil starts developing at 𝑡 = 0  from an initial 

freestream field (here 𝑡 indicates physical time). Then, we choose a specific physical time location 𝑡 = 𝑡𝑠 and restart 

the flow solver with a physical time step size Δ𝑡. The convergence histories at 𝑡 = 𝑡𝑠 with Δ𝑡 are compared to assess 

the convergence performance of the IMEX scheme. Two physical time locations 𝑡𝑠=2.e-3 and 10 are considered to 

see if there is any noticeable change in convergence performance as the flow develops a laminar separation bubble. 

Figure 3 shows convergence histories at 𝑡 =2.e-3 with Δ𝑡=2.e-3 (CFL𝑡
∗ = 100), i.e. at the second time step after 

startup. Convergence of the implicit system for the DGT/Radau physical temporal discretization for pt=1,2,3,4 is 

examined. Because of the large variation in cell size,  Δ𝜏𝑚𝑎𝑥/Δ𝜏𝑚𝑖𝑛 for a given CFL𝜏
∗  is of the order of 100,000 on 

this mesh. The given physical time step size of t=2.e-3 corresponds to a physical CFL number of approximately 

CFL*
t=100, for the smallest cell in the mesh, based on freestream conditions. This results in physical time CFL 

values several orders of magnitude below 1 for the larger cells in the mesh, where the temporal term in the space-

time residual becomes dominant. For the purely explicit pseudo-time stepping scheme, this requires a significant 

reduction in the pseudo-time CFL number in order to maintain stability in the large cells. For example, for the pt=1 

case, the pseudo-time CFL number must be reduced to 0.006 to maintain stability, resulting in very slow 

convergence. When the IMEX scheme is run with this same CFL value, equivalently slow convergence is observed. 

However, the IMEX scheme remains stable for pseudo-time CFL values greater than 1, for all cases, due to the 

implicit treatment of the temporal part of the space-time residual. This results in fast and consistent convergence, 

achieving full convergence (to 1.e-12) in several hundred pseudo-time steps. Additionally, the IMEX-RK41 scheme 

shows slightly faster convergence at higher temporal orders of accuracy, with the pt=4 case delivering approximately 

1.6x faster convergence than the pt=1 case.  
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Figure 2 Grid and u-velocity contour for 2D/3D NACA0012 airfoil simulations: (left) grid for 2D NACA0012 

airfoil, (right) u-velocity isosurfaces for 3D NACA0012 airfoil  

  

  

Figure 3 Convergence histories for 2D NACA0012 airfoil at the second time step after startup for t=2.e-3: (a) 

𝒑𝒕=1, (b) 𝒑𝒕=2, (c) 𝒑𝒕=3, (d) 𝒑𝒕=4 

(a) 2-stage (b) 3-stage 

(c) 4-stage (d) 5-stage 
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         (a)            (b)           (c) 

 

Figure 4 Convergence histories for 2D NACA0012 airfoil at t=10.0: (left) ∆t=2.e-3, (middle) ∆t=2.e-2, (right) 

∆t=2.e-1 corresponding to CFL*
t values for the smallest cell based on freestream values of approximately 100, 1000 

and 10,000 respectively. 

 

Figure 4 shows convergence histories at t=10.0 when a laminar separation bubble is in the process of formation. 

Here we examine the relative performance of the explicit and IMEX RK41 schemes as a function of the physical 

time step size for a pt=1 (2-stage) temporal discretization with ps=2 (third-order) spatial discretization. All cases 

represent the best performance achieved by each scheme using the highest stable pseudo-time CFL number as 

determined empirically. For the smallest time step of t=2.e-3 (corresponding to CFL*
t=100 at the smallest mesh 

cell), the convergence results are similar to those presented previously, although convergence of the IMEX scheme 

is obtained in 450 cycles, indicating that the implicit system is slightly stiffer at this later simulation time than in the 

previous case. Similarly to the previous case, the explicit RK41 scheme in pseudo time required a CFL*
 value of 

0.006 for stability. For the larger physical time step cases of t=2.e-2 and t=2.e-1, corresponding to smallest mesh-

cell physical time CFL values of 1,000 and 10,000 respectively, the maximum stable pseudo-time CFL value for the 

explicit scheme increased to 0.06 and 0.6, respectively. On the other hand, the IMEX scheme maintains the same 

optimal CFL*
= 2.0 for all physical time step sizes. However, convergence of the IMEX scheme becomes slower as 

the physical time step size increases due to the increased stiffness of the implicit system to be solved. Overall, as the 

physical time step is increased, the performances of the IMEX and explicit RK41 schemes grow closer to each other, 

as expected. 

 

 

2) 3D NACA0012 airfoil 

A set of fully three-dimensional simulations for a NACA0012 wing section of span 20% chord have been run in 

order to examine the performance of the explicit and IMEX RK41 schemes in three dimensions. The mesh contains 

a total of 73,242 quadratically curved (Q2) hexahedral elements.  The variation of cell size for this mesh is more 

moderate than that of the 2D mesh described previously, resulting in a max/min of approximately 1,000 for a 

fixed CFL*
 value. Convergence in pseudo-time is examined for two physical time step sizes applied at the physical 

simulation time of ts=10. The first time-step size is t=2.e-05, corresponding to CFL*
t=1.36 for the smallest mesh 

cell, while the second time step size is t=2.e-03, (CFL*
t=136), which is similar to the first case examined in 2D, 

previously. Figure 5 shows convergence histories for the 3D NACA0012 airfoil case with ∆t=2.e-5 (CFL𝑡
∗ = 1.36). 

This time step size results in a physical CFL value that is close to or less than 1 at all cells in the mesh. As expected, 

the explicit RK41 scheme requires a small CFL*
 value to maintain stability and converges very slowly. On the other 

hand, the IMEX scheme becomes unconditionally stable and converges in just several steps using a large CFL*
 

value of 100 or higher. This suggests that for small physical time steps, the IMEX scheme remains competitive with 

a purely explicit scheme in physical time, as is discussed further in the next section. 

Figure 6 shows the convergence histories obtained for the ∆t=2.e-3 (CFL𝑡
∗ = 136) case. Here the IMEX scheme 

remains significantly faster than the explicit RK41 scheme, although the difference between these two schemes is 

less pronounced than in the smaller physical time step case, as expected. Comparing Figure 6 to the results using the 

same time step size in the 2D case from Figure 3 shows that the performance of the IMEX and explicit RK41 

schemes are closer together in the 3D case than in the 2D case for the same physical time step size. This is due to the 
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more moderate variation of the cell sizes in the 3D grid compared to the 2D grid, which enables larger stable CFL*
 

values in the latter case. In Figure 6, the IMEX scheme is seen to converge consistently in 100 to 150 steps for all 

temporal discretizations of pt=1,2,3,4.  By comparison, our purely explicit 4-stage RK scheme in physical time 

operates at a maximum CFL value of 0.5 [7,20], which would require 270 steps to cover the equivalent time 

increment of t=2.e-03. This suggests that the IMEX scheme can be competitive with the explicit scheme in 

physical time on this mesh even for these relatively small physical time step sizes. 

 

 

 

  

  

Figure 5: Convergence histories for 3D NACA0012 airfoil with ∆t=2.e-5: (a) 𝒑𝒕=1, (b) 𝒑𝒕=2, (c) 𝒑𝒕=3, (d) 𝒑𝒕=4 

 

 

(a) 2-stage (b) 3-stage 

(c) 4-stage (d) 5-stage 
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Figure 6: Convergence histories for 3D NACA0012 airfoil with ∆t=2.e-3: (a) 𝒑𝒕=1, (b) 𝒑𝒕=2, (c) 𝒑𝒕=3, (d) 𝒑𝒕 = 𝟒 

 

4) Effect of Local versus Global Pseudo-Time Stepping 

In all the results discussed above, local time stepping has been used in pseudo time for both the IMEX and explicit 

RK schemes, whereby a fixed CFL number in pseudo time is used, resulting in a locally variable pseudo time step 

throughout the mesh. However, as discussed previously, for small to moderate physical time steps, in the case of the 

explicit RK scheme in pseudo time, the maximum stable CFL*
 value is often determined by the larger cells in the 

mesh, where the temporal term in the space-time residual becomes dominant due to the relatively small (i.e. < 1) 

physical CFL number, resulting in slow convergence. Perhaps counter-intuitively, the convergence of the explicit 

RK scheme can be significantly accelerated by abandoning local time stepping and using a global minimum pseudo 

time step. This is illustrated in Figure 7, which reproduces the 2D results of Figure 4, with the addition of the 

convergence histories using a global minimum pseudo time step for both the explicit and IMEX RK41 schemes. As 

shown in Figure 7, for the smallest physical time step of t=2.e-03, the explicit RK41 scheme using local time 

stepping that was shown to be very slow, becomes competitive with the IMEX scheme when switching to global 

time stepping in pseudo time. Additionally, the use of global pseudo-time stepping with the IMEX scheme produces 

almost identical results to the explicit scheme with global pseudo-time stepping. 

 

To examine the behavior of this approach, we consider the pseudo-time stepping equations for a simple BDF1 

temporal discretization using a single stage RK1 (forward Euler) time-stepping scheme in pseudo time, given 

previously by equation (19) for the explicit scheme, and by equation (20) for the implicit scheme. In the explicit 

scheme, for small physical time steps, the second term on the right-hand side in equation (19) can become dominant 

and cause instabilities. While the value of the physical time step t is fixed, for local pseudo time-stepping, the 

(a) 2-stage (b) 3-stage 

(c) 4-stage (d) 5-stage 
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value of  increases with cell size (at fixed CFL*
), adding to the growth and instability caused by the temporal 

term in equation (19). For this reason, the maximum stable CFL*
 for local pseudo-time stepping is often set by the 

largest cells in the mesh and becomes very restrictive. On the other hand, using a (constant) global minimum 

pseudo-time step results in a constant ratio /t =  throughout the entire mesh. In this case, equation (19) can be 

written as: 

 

Qk+1  =  (1  −  α) Qk  +  αQn  −  αΔt M−1 R(Qk) 

 

If the physical time CFL number is close to 1 at the smallest cell in the mesh, the global minimum pseudo time step 

will be close to the physical time step and  ~ 1. In this case the above equation reduces to: 

 

𝑄𝑘+1 = 𝑄𝑛 − Δ𝑡𝑀−1𝑅(𝑄𝑘) 

 

This shows that in such a case, global minimum pseudo-time stepping reduces to explicit time stepping in physical 

time.  

For the implicit pseudo-time scheme described by equation (20) (representative of the IMEX RK scheme), for small 

physical time steps, the factor on the left-hand side can be approximated as (1 + \t) ~ /t. In this case equation 

(19) can be rewritten as: 

𝑄𝑘+1 =
Δ𝑡

Δτ
𝑄𝑘 + 𝑄𝑛 − Δ𝑡𝑀−1𝑅(𝑄𝑘) 

 

When the ratio /t is large, the first term on the right-hand side, which contains the inverse ratio may be 

neglected, showing how the implicit scheme with local pseudo-time stepping takes on the same form as the explicit 

scheme with global minimum pseudo-time stepping, and reduces to explicit time-stepping in physical time. This 

equivalence explains the dramatic improvement in convergence behavior of the explicit scheme using global 

minimum pseudo-time stepping and the similar convergence characteristics of this approach and the IMEX scheme 

in Figure 7(a). This may explain the use of global pseudo-time stepping in the literature, for example in one of the 

cases reported in reference [17]. 

 

   
   (a)             (b)           (c) 

Figure 7:  Comparison of local and global minimum pseudo-time stepping schemes for 2D NACA0012 airfoil at 

t=10.0: (a) ∆t=2.e-3, (b) ∆t=2.e-2, (c) ∆t=2.e-1 corresponding to CFL*
t values for the smallest cell based on 

freestream values of approximately 100, 1000 and 10,000 respectively. 

 

However, as the physical time step increases and the temporal term in the space-time residual becomes less 

important, the global minimum pseudo-time stepping approach remains constrained to operate at fixed pseudo-time 

step value  =  t (determined by the smallest cell) which is much lower than the pseudo-time explicit stability 

limit in the larger cells of the domain. This explains the relative slowdown of the explicit global pseudo-time 

stepping approach with increasing physical time-step size in Figure 7. For a physical time-step size of t=2.e-02 

(corresponding to a minimum cell CFL*
t=1000), the explicit global-minimum pseudo-time stepping scheme 

becomes significantly slower than the IMEX scheme, although it is still faster than the explicit local-time stepping 

scheme. However, for the largest physical time step size of t=2.e-01 (corresponding to a minimum cell 
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CFL*
t=10,000) the explicit global-minimum pseudo-time stepping scheme becomes slower than all other schemes, 

as expected. The relative performance of these schemes depends strongly on the physical time step and the variation 

of cell sizes within the computational mesh. However, in all cases the IMEX scheme with local pseudo-time 

stepping produces the fastest convergence rates. The ability to operate near the local stability limit in pseudo-time is 

important also for multigrid methods, in order to obtain the design error smoothing properties of the scheme on the 

fine mesh level, which are instrumental for the efficiency of the multigrid algorithm. 

V.   P-Multigrid Acceleration 

As demonstrated in Figure 7 in the previous section, the convergence of the pseudo-time stepping approach 

slows down significantly as the physical time step is increased, due to the increased stiffness of the implicit system 

of equations generated by large physical time-step problems. One approach to accelerate the convergence of the 

implicit solver is to use the pseudo-time stepping approach as a smoother on the different levels of a multigrid 

scheme. For high-order tensor-product space-time discretizations, this approach retains the efficiency of pseudo-

time stepping where the use of Jacobian matrices is avoided and only residual evaluations are required. Based on the 

results of the previous sections, we make use of the IMEX RK41 scheme with local pseudo-time stepping 

exclusively as a smoother, since this scheme was shown to provide the best performance overall as a single grid 

solver. For simplicity we return to the 2D vortex convection problem discussed in Section IV.A, and examine the 

convergence of a two-level p-multigrid solver, for DGT/Radau temporal discretizations of orders pt=1,2,3,4 using 

ps=5 (6th order accuracy in space). Here the coarse multigrid level consists of a ps=4 (5th order accuracy in space) 

discretization with the same temporal discretization as the underlying fine mesh. We perform 5 pseudo time-steps on 

the fine level, followed by 200 pseudo time steps on the coarser level, in an attempt to adequately solve the coarse 

grid problem at each p-multigrid cycle. These 2-level multigrid schemes are not computationally efficient due to the 

expense of solving the coarse grid problem. However, they provide an estimate of the optimum convergence in 

terms of p-multigrid cycles achievable for the given fine grid smoother and inter-grid transfer operations. 

Figure 8 compares the convergence rates of the single grid and 2-level multigrid solver for different temporal 

orders of accuracy using a physical time step size of t=0.26, which corresponds to a physical time CFL number of 

CFL*
t=25.1, while Figure 9 provides the same comparisons for a physical time step size of t=2.6, corresponding to 

a physical time CFL number of CFL*
t=251. 

 

    
   (a)          (b)         (c)        (d) 

Figure 8: Comparison of single versus 2-level p-multigrid solver for 2D vortex convection test case for a physical 

time step of t=0.26 for (a) pt=1, (b) pt=2, (c) pt=3 and (d) pt=4 temporal discretizations. 

 

 

      
   (a)          (b)         (c)        (d) 

Figure 9: Comparison of single versus 2-level p-multigrid solver for 2D vortex convection test case for a physical 

time step of t=2.6 for (a) pt=1, (b) pt=2, (c) pt=3 and (d) pt=4 temporal discretizations. 
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The multigrid solver provides a significant speedup in terms of cycles for the larger time-step case, with more 

moderate acceleration being observed for the smaller time-step case. Table 8 depicts the speed up obtained for the 

larger time-step case, showing acceleration factors ranging from 4.8 for the pt=1 temporal discretization to 3.0 for 

the pt=4 discretization. Larger speedups can be expected for larger physical time-step cases, as the stiffness of the 

implicit system increases with increasing physical time-step sizes. These results demonstrate that the IMEX RK41 

scheme remains effective as a fine level multigrid smoother over a range of physical time step sizes and for low to 

high-order accurate DGT/Radau temporal discretizations. However, in order to construct a cost-effective multigrid 

solver, a suitable coarse grid solver that operates on a recursive sequence of coarser meshes must be developed. 

Further improvements may be sought by developing an RK pseudo-time stepping scheme optimized for high 

frequency error damping (rather than explicit time step size as in [17]) and invoking temporal coarsening for high pt 

discretizations. 

 

Table 8: Number of p-multigrid cycles for single level and 2-level p-multigrid solver for physical time step of 

t=2.6 and associated speedup factors at different temporal orders of accuracy. 

 
 

A. Conclusion and Future Work 
In this work we have considered both DG in time and IRK temporal discretizations and clarified the relationships 

between these approaches as well as their stability and accuracy properties, based on results from references [10,19]. 

We have developed an efficient IMEX pseudo-time stepping scheme for solving the implicit systems that arise from 

space-time DG discretizations for varying orders of accuracy in space and time. The IMEX scheme is based on an 

optimized RK41 local pseudo-time stepping scheme that was shown to deliver a speedup of 1.8 over the traditional 

4-stage fourth-order accurate explicit RK scheme, with up to 7.8x speedup demonstrated over a simple single stage 

explicit approach in pseudo-time. The IMEX RK41 scheme was shown to deliver efficient and robust convergence 

rates for space-time DG discretizations over a wide range of temporal orders of accuracy, physical time step sizes 

and for meshes with large variations in cell sizes in both two dimensions and three dimensions. The proposed IMEX 

scheme is instrumental for retaining fast convergence rates for moderate size physical time step problems and was 

also shown to mimic explicit time-stepping in physical time in the presence of small physical time steps. This work 

has also clarified the effect of local versus global pseudo-time stepping on meshes with wide ranges of cell sizes. 

Although the poor convergence properties of the corresponding explicit RK pseudo-time stepping scheme in the 

presence of small physical time steps can be rectified through the use of global minimum pseudo-time stepping, this 

approach was also shown to degrade in the presence of larger physical time steps on meshes with large variations of 

cell sizes. The proposed IMEX scheme was also shown to be suitable for use as a smoother in a p-multigrid solver, 

with the potential to accelerate the convergence of DG-in-time discretizations with large physical time steps. The 

IMEX scheme is well suited for use with scale-resolving methods, where it can remain competitive with explicit 

time-stepping approaches in physical time for small time steps, while at the same time mitigate the effect of overly 

restrictive explicit stability limits due to wide variations in mesh cell size. Future work will focus on the 

development of an optimal IMEX RK scheme for p-multigrid efficiency and demonstration in more complex three-

dimensional scale-resolving simulations. 
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