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Coupled aero-thermal-elastic sensitivity analysis and optimization is required for accurate 
design and optimization in many high-speed flow problems. Hence, the multidisciplinary 
optimization of such problems is the main focus of the current work. In this study, the flow 
simulations are carried out using NSU3D, a three-dimensional implicit finite volume solver 
developed in-house. NSU3D’s flow and sensitivity analysis capabilities have been well tested 
through numerous previous studies. For the thermal and structural solutions, a finite-element 
solver called AStrO is used, which is also developed in-house. AStrO’s thermo-elastic analysis 
and sensitivity analysis capabilities have been demonstrated in previous work as well. In 
earlier papers we have developed and validated an aero-thermo-elastic analysis platform by 
coupling NSU3D and AStrO. The purpose of the current work is to demonstrate aero-thermo-
elastic optimization by coupling the sensitivities from these two solvers. In this paper, the 
coupled sensitivities are verified and used in the multidisciplinary optimization of a heated 
panel in hypersonic flow.   

I. Nomenclature 
L = objective function 
D = design variables 
uF                     =    state variables from the fluid discipline 
uS                     =    state variables from the structure discipline 
uT                     =    state variables from the thermal discipline 
RF                =    residual from the fluid discipline 
RS                =    residual from the structure discipline 
RT                =    residual from the thermal discipline 
Λ"            =     adjoint from the fluid discipline 
Λ#             =    adjoint from the structure discipline 
Λ$             =    adjoint from the thermal discipline 
Ω              =    spatial domain of integration 
R = residual 
C              =   viscous damping matrix 
M              =   mass matrix 
K              =   stiffness matrix 
T = temperature 
Q = volumetric heat source 
k = thermal conductivity 
C = specific heat capacity 
α = thermal expansion 
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E = Modulus of elasticity 
v = Poisson’s ratio 
𝜌  =   density 
t = time  
l = length of the geometry 
u  = displacement vector in a structure 
𝑢̇               =   velocity vector in a structure 
𝑢̈               =   acceleration vector in a structure 
T0 = initial temperature 
𝑢*             =    vector displacement of a point in a structure 
𝑢̇*             =   vector velocity of a point in a structure 
𝑢̈*             =   vector acceleration of a point in a structure 
ti  = traction applied over the surface of a structure in vector form 
𝜉               =   damping coefficient 
𝜎*              =   stress at a point in a structure in vector form 
𝜖*              =   strain at a point in a structure in vector form 
𝐶*/01          =   elastic stiffness tensor 
𝑓*              =   body force per unit volume at a point in a structure in vector form 
𝑁*/            =   shape functions 
 
 
 

II. Introduction 
Most practical engineering problems involve interactions between various disciplines. Therefore, the computational 
design of such problems, must account for the coupling between the different disciplines. This coupling allows for 
each model to provide complementary information to the other, and therefore, eliminates many assumptions. An 
optimum multidisciplinary design is only reached after cycling between the different disciplines involved [1]. An 
important example of this type of problem is fluid-structure interaction. In recent years, the development of 
supercomputers has made simulation of coupled fluid-structure interactions possible. However, in many engineering 
designs it is not sufficient to just take into account the interaction of the fluid forces and structural deformations; 
temperature plays an important role as well [2, 3]. Hypersonic vehicles, for example, go through a wide range of flow 
conditions with large gradients of velocity and temperature close to their surface [4]. One of the major design concerns 
at these hypersonic velocities is the high rates of heat transfer experienced by the vehicle [5]. Therefore, it is essential 
to account for the effect of temperature in order to obtain accurate numerical designs [6, 7].  
      The success of a high-speed aircraft design relies on the precise calculation of all the following: Aerodynamic 
loads (aerodynamic pressure and viscous forces), aero-thermal effects (surface heating rate and inner temperature 
distributions), and structural loads (structural deformation and stresses) [1, 8, 9].  Since the overall performance of an 
aeronautical system is governed in many cases by these coupling effects, the study of aero-thermo-elastic analysis and 
optimization methods are of great importance [10]. Recently, a significant amount of work has appeared focusing on 
aero-thermal, aero-elastic, and aero-thermo-elastic codes for hypersonic flows [4, 11-19]. However, more study is 
needed to understand all of the physics involved and to refine high-fidelity aero-thermo-elastic analysis and design.  
 There are two main approaches to solving optimization problems: gradient-based and global search methods [20]. 
Gradient-based optimization methods are more popular within the field of aerodynamics. This is because of the lower 
number of analysis runs or function evaluation required for these methods in comparison to the global search 
techniques [21]. Gradient-based optimizations require the gradients of the objective function and constraints with 
respect to the design variables. These gradients are referred to as the sensitivity derivatives [22]. 
 The finite-difference method is one of the simplest methods for computing the sensitivity derivatives. Although 
this approach is easy to implement, it is not the most efficient method. One problem with this approach is that it is 
computationally expensive, which makes it unsuitable for complex cases with many design variables [23]. Another 
problem is that the choice of the step size affects the accuracy of the gradient approximation [22]. Therefore, it is 
better to calculate the sensitivities analytically. When calculating the sensitivity derivatives with the analytical 
approach, an additional level of simulation referred to as the sensitivity analysis, is required [22]. For sensitivity 
analysis a choice has to be made between the direct/tangent method and the adjoint method.  
 The adjoint approach has the advantage of computing cost-function gradients at a cost independent of the number 
of design variables [23]. This characteristic makes the adjoint method extremely efficient for high-fidelity, 
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multidisciplinary design problems [24-27]. For such problems, the discrete adjoint is highly favored since it follows 
the discretization of the governing equations naturally and enables a methodical approach for obtaining the sensitivities 
for any arbitrarily complex analysis procedure [21, 28, 29]. 
 In this work we study the optimization of aero-thermo-elastic problems using the flow solver and structural solver 
developed in-house. For this purpose, we use the aero-thermo-elastic analysis platform developed and validated in 
reference [11]. The premise of the current work is that a modern aero-thermo-elastic design optimization must include 
high-fidelity models for all the disciplines involved.  
  This paper is structured as follows. Section III gives details on the aero-thermo-elastic coupling platform by taking 
a look at each of the required components and the governing equations of each discipline. Section IV briefly presents 
the equations that are used to obtain the aero-thermo-elastic sensitivities employed in this study. In section V we take 
into account the aero-thermo-elastic simulation of a heated panel case. This case is used to verify the coupled thermo-
elastic and aero-thermo-elastic sensitivities. The verified adjoint sensitivities are then used in the aero-thermo-elastic 
optimization of the panel in hypersonic flow. Section VI draws conclusions and highlights future work. 
 

III. Aero-Thermo-Elastic Coupling  
Generally, when approaching a multidisciplinary simulation, there are two options available: strong and weak 
coupling. In the first case, the flow, elasticity and heat transfer equations are treated as one single system of equations 
and solved at once using a single numerical framework. In the second case, the solution of each discipline is obtained 
from independent codes and then coupled together by exchanging boundary conditions at the interface between the 
domains [30, 31]. It is easier to achieve stability for the strong coupling approach; however, it suffers from the inability 
to use already available and well-tested solvers. On the other hand, the weak coupling approach is able to use existing, 
well-developed and tested codes for each discipline. This approach does however have its own disadvantages. These 
are: the problem of stability and the difficulty of transferring data between the individual disciplinary codes [32, 33].  

The code-coupling can be very challenging in practice. The two main challenges, which arise from the 
discontinuities between the models, are: time-scale discontinuity, and space-scale discontinuity [7, 34]. In the 
following pages we explain how we dealt with each of these challenges in developing our in-house aero-thermo-elastic 
analysis platform. A detailed description of the aero-thermo-elastic analysis platform is given in references [11, 18, 
19]. This platform couples the three disciplines through a weak coupling approach. This decision was made to allow 
us to take advantage of the already available and tested high-fidelity flow solver and structural solver developed in-
house for multidisciplinary modeling and optimization.  

In the rest of this section, we briefly look at the different components of the numerical set up required to run an 
aero-thermo-elastic simulation: the flow solver, the structural solver (elasticity and thermal equation), fluid-structure 
interaction (FSI) module, and the mesh deformation capability. 

A. Flow Solver 
The flow solver used in this study is the “Navier-Stokes Unstructured 3D” (NSU3D) code, which is a Reynolds-
averaged Navier-Stokes (RANS) solver for unstructured grids [24]. It is a vertex-centered finite volume solver, which 
is second-order accurate in both time and space. This flow solver uses a line-implicit agglomeration multigrid 
algorithm, which can be used either as a non-linear solver, or a linear solver within an approximate Newton method, 
or as a pre-conditioner for GMRES for driving the non-linear steady-state residual to zero [35]. For time-dependent 
problems, all the above-mentioned solvers can be used in a dual-time stepping approach for solving the non-linear 
problem, which arises at each time step [36]. NSU3D has been widely validated for both steady-state and time-
dependent flow problems, having been used in numerous simulations and participations in events such as the Drag 
Prediction Workshop, the High-Lift Prediction Workshop, and the Aero-elastic Prediction Workshop series [37-40]. 
In recent years, NSU3D has been extended for use in coupled aero-elastic, aero-thermal, and aero-thermo-elastic 
calculations [11, 18, 19, 21, 36, 41]. Detailed explanation of this solver can be found in previously available references 
[24, 42, 43]. As such, only a concise description of the formulations is given in this paper.  

The flow solver is based on the conservative form of the Navier-Stokes equations. These may be written as: 
 

45(7,9)
49

+ 	𝛻. 𝐹(𝑢) = 0																																																																											(1) 

For moving mesh problems, the above formulation is written in arbitrary Lagrangian-Eulerian (ALE) form, as: 
 

4B5
49
+ ∫ [𝐹(𝑢) − 𝑥̇𝑢]. 𝑛𝑑𝐵 = 0																																																										K(9) (2) 

D
ow

nl
oa

de
d 

by
 D

im
itr

i M
av

ri
pl

is
 o

n 
Ja

nu
ar

y 
17

, 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
2-

16
15

 



4 
 

here V refers to the volume of the control volume bounded by a control surface B(t), ẋ is the vector of mesh face or 
edge velocities, and n is the unit normal of the face or edge. Vector u denotes the state vector of conserved variables, 
and the flux vector F contains both inviscid and viscous fluxes. The equations are closed with the perfect gas equation 
of state for all cases presented in this work [21, 42].   
 The time derivative term is discretized using a second-order accurate backward difference formula (BDF2) 
scheme, leading to the implicit system of equations at each time step given as: 
 

M
N∆9

𝑉Q𝑢Q − N
∆9
𝑉QRS𝑢QRS + S

N∆9
𝑉QRN𝑢QRN + 𝑆Q(𝑢Q, 𝑥Q, 𝑥̇Q) = 0			              (3) 

where Vn = V(xn) represents the mesh control volumes and 𝑆Q(𝑢Q, 𝑥Q, 𝑥̇Q) represents the spatial discretization terms 
at the nth time step. 

The functional dependence of the implicit system to be solved at each time step can be written in residual form as: 
 

𝑅Q(𝑢Q, 𝑢QRS, 𝑢QRN, 𝑥Q, 𝑥QRS, 𝑥QRN) = 0,							𝑛 = ,2,3, … ,𝑁				                              (4) 

where the initial conditions are given by 𝑢Y and 𝑥Y, and noting that a BDF1 time discretization is used for the first 
time step. 
 At each time step, the implicit residual is solved using a line-implicit solver with agglomeration multigrid. For all 
the cases presented in this work, the fluxes are calculated using the Roe scheme [44]. It should also be mentioned that 
that the flow medium is considered as perfect gas in the numerical simulations. 

Considerable effort has been spent in previous work for implementing and verifying the discrete adjoint approach 
for computing sensitivities within the NSU3D unstructured mesh RANS CFD solver. Exact sensitivities can be 
calculated for both steady-state and time-dependent problems in the NSU3D framework using the adjoint and tangent 
methods [36, 43, 45]. 

B. Structural Solver 
The structural solver used in this study is a finite-element solver named AStrO (Adjoint-based Structural Optimizer), 
which was developed in-house. AStrO has been introduced in previous work [11, 12, 21, 36, 41, 46] and supports both 
linear and nonlinear finite-element modeling of three-dimensional structures [41]. AStrO also supports finite-element 
modeling of the thermo-elastic behavior of structures. AStrO can run static or dynamic analysis of either the heat 
transfer problem, or the elasticity problem, or the two coupled disciplines [46]. The motivation for constructing an in-
house structural solver was to enable tight coupling as well as for calculating sensitivities for coupled CFD and 
Computational Thermal and Structural Dynamics (CTSD) problems using adjoint methods [21] .  
      AStrO is compatible with existing commercial structural analysis software tools such as Abaqus [47]. It contains 
an interface that can process model input files generated by Abaqus [36]. Dynamic systems are modeled with implicit 
second-order accurate time integration by the Hilber-Hughes-Taylor “alpha” method [48]. The discretized equations 
for the elasticity problem are derived from the widely used virtual work formulation [48]. The temperature distribution 
due to heat conduction through a structure is governed by the Poisson equation, which is discretized in a similar 
manner as the equations of elasticity. In the following paragraphs we take a closer look at AStrO’s governing 
equations. 
 The transient elasticity equation solved in AStrO is given as: 
 

∇ ∙ 𝜎 − 𝜉 \5
\9
− 𝜌 \]5

\9]
+ 𝑓 = 0																																																																										(5) 

where f  represents the applied body forces, u is the vector of displacements, 𝜎 is the stress tensor, and 𝜉 is the damping 
coefficient. 

The principle of virtual work [49] applied to the equations of elasticity discretized using the finite element method 
yields: 

 
∫ 𝜎*

4^_
4`a

𝑑Ωb + ∫ 𝜉𝑢̇*	𝑁*/𝑑Ωb + ∫ 𝜌𝑢̈*𝑁*/𝑑Ωb − ∫ 𝑓*𝑁*/𝑑Ωb − ∫ 𝑡*𝑁*/𝑑𝑆# = 0																					(6) 

where 𝑁*/ is a matrix of basis functions and 𝑈/ is a vector of nodal solution parameters, or degrees of freedom. 𝑢̇* and 
𝑢̈* are the velocity and acceleration vectors at a point in the structure, 𝜎 and 𝜖 are the stress and strain, 𝜉 is the damping 
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coefficient,	𝜌 is the mass density, 𝑓* is the applied body force per unit volume, and 𝑡* is the applied surface traction 
per unit area on the structure. The final term is the integral of traction over the surface area of the structure, while all 
other terms are volume integrals over the body of the structure [41, 46]. The matrix equivalent of  Eq. (6) can be 
reduced to the system of equations:  
 

[𝐾]	𝑈 + [𝐶]	𝑈̇ + [𝑀]	𝑈̈ = 𝐹																																																																																	(7) 

where [K] is the stiffness matrix, [M] is the mass matrix, [C] is the viscous damping matrix, F is the vector of forces, 
U  is the vector of nodal values displacements, 𝑈̇ vector of nodal values of velocities, and 𝑈̈ vector of nodal values of 
acceleration.  

The transient heat equation solved in AStrO is given as: 
 

𝜌𝑐 4$
49
+ ∇ ∙ (𝑘∇𝑇) − 𝑄 = 0                                                                     (8) 

where, Q is the rate of internal heat generation per unit volume, k is the thermal conductivity, 𝑐 is the specific heat 
capacity, 𝜌 the density, and 𝑇 is the temperature.  

The discretized governing equations for heat conduction in structures derived from the variational form using the 
finite element method is: 

 
−∫ 𝑞*

4la
47_

𝑑Ω + ∫ 𝜌𝐶m𝑇̇𝑁/𝑑Ωb −b ∫ 𝑄𝑁/𝑑Ωb + ∫ 𝑞*𝑛*𝑁/𝑑S# = 0																											(9) 

where 𝑛* is the normal vector, 𝑞* is the surface heat flux, and 𝑁/ the basis function. The matrix equivalent is then 
obtained as shown in Eq. (10): 
 

[𝐾9opqr]	𝑇 +	[𝑀9opqr]	𝑇̇ = 𝐹9opqr																																																																								(10) 

where the vector T represents nodal values of temperature, [𝐾9opqr] is the global thermal conductivity matrix, 
[𝑀9opqr] is the thermal mass matrix, and 𝐹9opqr is the vector of internal heat generation sources. 

AStrO is capable of modeling the coupled thermo-elastic responses in structures. However, there are several 
simplifying assumptions made. The first assumption is that thermal material properties such as conductivity and 
specific heat capacity have no significant dependence on strain. Furthermore, the heat generated by deformation is 
assumed to be negligible. In other words, the deformation has a one-way dependence on the temperature distribution. 
These assumptions are acceptable, since the cases to be considered are expected to have small values of strain and 
within the elastic regime, selected materials will have low internal damping characteristics, and deformation rates will 
not produce significant heat through phenomena such as viscoelasticity [46].  

Under these assumptions, in any given analysis, the temperature distribution of a structure can be obtained first, 
followed by the deformation solution based on the temperature results in addition to applied loads. To account for the 
dependence of deformation on the temperature distribution, an adjustment to the definition of total strain is required. 
Any point in the structure that is subject to a combination of applied stress and change in temperature will exhibit a 
measure of strain for each of those contributors.  Hence, the total strain can be expressed as: 
 

𝜖09s9t1 = 𝜖0u9qpuu + 𝜖09opqr																																																																						(11) 
 
In the governing equations of elasticity based on the principle of virtual work, stress at a point under the assumption 
of linear elasticity can be expressed as: 
 

𝜎* = 𝐶*0𝜖0																																																																																								(12) 
 
Fundamentals of continuum equilibrium mandate that the stress and strain matrices be symmetric, so that 𝜎*/ = 𝜎/* 
and 𝜖01 = 𝜖10. Therefore, here they have been expressed more concisely as one-dimensional vectors, adopting a single 
subscript index for normal stresses and strains. In Eq. (12), 𝐶*0 is the stiffness matrix of the local material. However, 
𝜖0 must only be the strain due to the applied stress. Therefore, in the presence of thermal expansions, we have: 
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𝜎* = 𝐶*0𝜖0u9qpuu = 𝐶*0v𝜖09s9t1 − 𝜖09opqrw																																																						(13) 
 
The strain due to thermal expansion is assumed to be linearly related to temperature, such that the change in 
temperature from some reference temperature 𝑇qpxmultiplied by a vector of thermal expansion coefficients 𝛼 gives 
the resulting thermal strain to be: 
 

𝜖09opqr = (𝑇 − 𝑇qpx)𝛼0 = ∆𝑇𝛼0																																																																					(14) 
 
Then the governing equations for the elastic response taking into account the change in temperature, becomes: 
 

∫ 𝐶*0v𝜖09s9t1 − ∆𝑇𝛼0w
4^_
4`a

𝑑Ωb + ∫ 𝜉𝑢̇*	𝑁*/𝑑Ωb + ∫ 𝜌𝑢̈*𝑁*/𝑑Ωb − ∫ 𝑓*𝑁*/𝑑Ωb − ∫ 𝑡*𝑁*/𝑑𝑆# = 0										(15) 

 
Separating out the contribution of the thermal expansion from the stress term gives: 
 
∫ 𝐶*0𝜖09s9t1

4^_
4`a

𝑑Ωb + ∫ 𝜉𝑢̇*	𝑁*/𝑑Ωb + ∫ 𝜌𝑢̈*𝑁*/𝑑Ωb − ∫ 𝑓*𝑁*/𝑑Ωb − ∫ 𝑡*𝑁*/𝑑𝑆 − ∫ 𝐶*0∆𝑇𝛼0
4^_
4`a

𝑑Ωb# = 0				(16) 

 
Since the temperature solution is pre-computed, the effect of thermal expansion shows up as part of the load in the 
elasticity equations (or the final three terms in Eq. (16) above). Equation 16 is the augmented form of the governing 
equations for thermoelastic modeling. AStrO’s thermal and thermo-elastic analysis capabilities have been validated 
in references [46] and [11]. 

AStrO has the capability of calculating exact sensitivities using the adjoint method [12, 19, 41, 46]. AStrO also 
offers an on-board optimizer using the steepest-descent line search algorithm with backtracking [50]. This function is 
convenient for simple problems and for trouble shooting, since it does not require linking with external packages. 
Alternatively, more sophisticated optimizers can be linked to AStrO for more complex optimization problems [46].  

C. Fluid-Structure Interaction (FSI) 
Proper data transfer between different disciplines is one of the most important factors in multidisciplinary analysis 
and design. Correct modeling of aero-thermo-elastic problems requires an accurate coupling of the fluid and structure 
codes. Although, in these problems the geometry is shared, the models most often have dissimilar meshes. Moreover, 
boundary data from one domain must be made available on the other domain [51]. The weak coupling method uses 
an iterative approach to converge the temperature and heat flux distributions at the boundaries of the fluid and structure 
domains. The computation alternates between the fluid and structure domains with exchange of the above-mentioned 
boundary conditions [52, 53]. In weakly coupled codes, the CFD and CTSD codes are alternatively called from a 
master program. This master program is also in charge of transferring data between the codes on the CFD/CTSD 
interface.  
 In order to control the stability and convergence in these problems, the choice of the boundary condition is very 
important. In the literature, the continuity of temperature and heat flux at the interface is mainly implemented by 
imposing the wall temperature distribution computed from the CTSD solution on the fluid side and the heat flux 
distribution computed from the CFD solution on the structure side. This method is known as the flux forward 
temperature back (FFTB) method or the Dirichlet-Neumann boundary condition. Many researchers have shown that 
the use of this type of boundary condition is the key to achieving numerical stability and having robust convergence 
[52-55].   

A Fluid Structure Interface (FSI) module has previously been created in-house and used for aero-elastic analysis 
and design problems [21, 36]. This model has been used to transfer the aerodynamic forces from the fluid solver to 
the structure solver, and in return pass the calculated displacements to the fluid surface mesh [36]. This module was 
updated so that it can also transfer temperature and heat flux between the fluid and structure meshes. When dealing 
with the aero-thermo-elastic analysis, we need to exchange the aerodynamic forces and heat fluxes from the fluid 
domain to the structure domain, and in return send the temperatures and displacements from the structure mesh to the 
fluid mesh. The effects of the temperature on the structure are dealt with internally in the structure code as explained 
in the previous section. The transfer of information for the aero-thermo-elastic analysis process is summarized in Fig. 
1. At each coupling time step a static fluid problem is solved followed by a transient structural and thermal problem. 
This approach was taken in order to reduce overall computational expense and is justified by the disparity in time 
scales between the fluid and structural problems [9, 56]. 
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Fig. 1 Transfer of information for the coupled aero-thermo-elastic analysis platform. 

 
 In practice the FSI computes the heat fluxes and the aerodynamic forces at each CFD surface mesh point. These 
values are then projected onto the finite-element basis functions of the structural model where they are assembled in 
the form of heat fluxes and forces on the finite-element nodal locations. Conversely, once the structural temperature 
and displacement solutions have been computed, they are transferred back to the surface CFD mesh in a similar manner 
[21]. This transfer of data between the two meshes can be summarized with the following equations: 
 

z
Q|}~� = [P]Q|��	
T|�� 	= [P]}T|}~�	

																																																																															(17) 

z
F|}~� = [P]F|��			
U|�� = [P]}U|}~�	

																																																																														(18) 

where [P] represents the rectangular transfer matrix which projects pointwise CFD surface heat fluxes and forces onto 
the individual structure mesh surface points. The transpose of the matrix is used to obtain the CFD surface 
temperatures and displacements from the structure mesh [36]. The interpolation patterns which define the [P] matrix 
are computed by locating the perpendicular projection of each point of the surface CFD mesh on the structure model 
elements [21]. This is done through a fast parallel search technique, which is based on the minimum distance search 
[57] in order to locate the closest enclosing face on the exposed surface of the structure mesh for each surface point 
on the fluid mesh. The final transfer corresponds to a piecewise linear interpolation of the aerodynamic loads, heat 
fluxes, displacements, and temperature between the two meshes. Hence, for conforming surfaces, P corresponds to a 
matrix of piecewise linear interpolation coefficients. 

The in-house developed FSI is capable of working with non-matching fluid and structure meshes with different 
element types and mesh resolution. Moreover, the developed FSI has the ability to handle fluid and structure models 
that have non-matching outer-mold line (OML) geometries [36]. Additionally, the FSI formulation is discretely 
conservative for the transfer of forces and heat fluxes from the fluid to the structure and satisfies the principle of 
conservation of virtual work for the transfer of displacements from the structure to the fluid domains [58].  

D. Mesh Deformation 
When dealing with aero-thermo-elastic problems, we require a mesh deformation capability in order to account for 
the displacements computed by the structural solver in response to the aerodynamic and thermal loads. When running 
time-dependent problems, we may also have prescribed surface deflections at certain times, such as when simulating 
prescribed motion of a control surface.  Hence, the CFD solver must be modified to take into account the additional 
dynamics introduced due to the mesh motion, and the fluid equations must be written in the ALE framework [56, 59]. 
NSU3D employs a discretization that respects the Geometric Conservation Law (GCL) [60] to ensure that the flow 
solver maintains its accuracy and stability in the presence of arbitrary mesh motion. Significant work has been done 
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in the past on the development of a robust and efficient mesh deformation technique [61, 62]. This approach is based 
on the linear elasticity model, and the mesh deformation equations are discretized using a second-order accurate 
continuous Galerkin finite-element approach [36]. The equations for the mesh deformation are solved using the same 
line-implicit multigrid algorithm used for solving the flow equations [39].  
 

IV. Aero-Thermo-Elastic Sensitivity Analysis Formulation 
In the previous section we have given details of the coupled aero-thermo-elastic analysis platform. NSU3D’s flow 
sensitivity analysis capabilities have been presented in previous work [21, 36, 41, 63]. AStrO’s thermo-elastic 
sensitivity analysis capability has been validated in references [46] and [19]. In this current work, the goal is to perform 
aero-thermo-elastic optimization using the coupled sensitivities from these two platforms.    

In this section, we describe the implementation of the coupled aero-thermo-elastic sensitivities. For the 
implementation, it is desirable to follow the solution strategies and data structures used for the analysis problem, as 
closely as possible. This allows the use of the same disciplinary solvers for the respective sensitivity problem. 
Furthermore, it means that the data transferred between the disciplines consists of vectors of the same dimensions for 
the analysis, the tangent and adjoint formulations [25, 64]. In the following, the coupled tangent and adjoint 
formulation are presented. These formulations take into account the specifics of NSU3D, AStrO, and the in-house FSI 
module. 

A. Aero-Thermo-Elastic Tangent Sensitivity Analysis 
Starting with the forward sensitivity problem, consider an objective function such as L: 

 
𝐿 = 𝐿(𝐷, 𝑢7(𝐷), 𝑢"(𝐷), 𝑢$(𝐷), 𝑢u(𝐷))																																																													(19) 

As shown in Eq. (19) above, in addition to an explicit dependence on the design inputs D, there exists an implicit 
dependence through the state variables 𝑢7, 𝑢",	𝑢$, 𝑢#, coming from the mesh motion, fluid, thermal, and structure 
disciplines, respectively. In all the following equations the subscripts x, F , T, and S refer to the mesh motion, fluid, 
thermal, and structure disciplines respectively. Using the chain rule, the sensitivity of the objective function with 
respect to the design variables D can be expressed as: 

\�
\�
= 4�

4�
+ 4�

45�

45�
4�

+ 4�
45�

45�
4�

+ 4�
45�

45�
4�

+ 4�
45�

45�
4�
						                              (20)          

Equation (20) can also be expressed in matrix from: 

\�
\�
= 4�

4�
+ � 4�

45�

4�
45�

4�
45�

4�
45�
�

⎣
⎢
⎢
⎢
⎢
⎢
⎢
45�
4�
45�
4�
45�
4�
45�
4� ⎦
⎥
⎥
⎥
⎥
⎥
⎥

																																																					     (21) 

 
The governing nonlinear equations of each discipline in residual form are: 

     𝑅7v𝐷, 𝑢7(𝐷), 𝑥u5qx(𝐷)w 	= 0																																																							  (22) 

𝑅"v𝐷, 𝑢"(𝐷), 𝑇u5qx(𝐷), 𝑢7(𝐷)w 		= 0																																										 (23) 

𝐺#(𝐹K(𝑢"(𝐷), 𝑢7(𝐷))	) = 0																																																												 (24) 

𝐺$v𝐻K(𝑢"(𝐷), 𝑢7(𝐷))w = 0																																																										  (25) 

𝑅#(𝐷, 𝑢#(𝐷), 𝐹K(𝑢"(𝐷), 𝑢7(𝐷))	) = 0																																								  (26) 

𝑅$v𝐷, 𝑢$(𝐷), 𝐻K(𝑢"(𝐷), 𝑢7(𝐷))w = 0																																									 (27) 

𝐺#�v𝑥u5qx(𝐷), 𝑢#(𝐷)w = 0																																																															  (28) 

𝐺$� v𝑇u5qx(𝐷), 𝑢$(𝐷)w = 0																																																															  (29) 
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where 𝑅7, 𝑅", 𝑅#, 𝑅$, represent the residuals of the mesh deformation, fluid, elastic, and thermal analysis problem, 
respectively. In the above equations, variables	𝐺#,𝐺#� ,	𝐺$,	𝐺$�  represent the residuals of the FSI equations for aero-
elastic and aero-thermal data transfer, respectively. 𝐹K(𝑢", 𝑢7) represents pointwise surface forces, and 𝐻K(𝑢", 𝑢7) 
represents pointwise surface heat fluxes. In order to make this a general case, we are assuming that the residual from 
each domain, also depends on the design variable D. 
      Taking into account the governing nonlinear equations of each discipline in residual form as given previously in 
Eq. (22) - Eq. (29), the individual disciplinary sensitivities at one single time step are found to be the solution of the 
following coupled system of equations: 
 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
4��
45�

0 0 0 0 0 0 0 4��
47����

0
4��
45�

4��
45�

0 0 0 0 0 0 0 4��
4$����

− 4"�
45�

− 4"�
45�

𝐼 0 0 0 0 0 0 0

−4��
45�

− 4��
45�

0 𝐼 0 0 0 0 0 0

0 0 4��
4"�

0 𝐼 0 0 0 0 0

0 0 0 4��
4��

0 𝐼 0 0 0 0

0 0 0 0 4��
4��

0 4��
45�

0 0 0

0 0 0 0 0 4��
4��

0 4��
45�

0 0

0 0 0 0 0 0 4���
45�

0 4���
47����

0

0 0 0 0 0 0 0 4���
45�

0 4���
4$����⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
\5�
\�
\5�
\�
\"�
\�
\��
\�
\��
\�
\��
\�
\5�
\�
\5�
\�

\7����
\�

\$����
\� ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡−

4��
4�

− 4��
4�
0
0
0
0

−4��
4�

− 4��
4�
0
0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

											(30)  

In Eq. (30), the first and second equations correspond to equations for the mesh and flow variable sensitivities, 
respectively. The third and fourth equations correspond to the construction of the surface force and heat flux 
sensitivities, given the previous two sensitivities. The fifth and sixth equations correspond to the sensitivity of the FSI 
transfer from the fluid domain to the structural domain. The seventh and eight equations correspond to the sensitivity 
of the thermal and elastic solvers. Finally, the last two equations correspond to the sensitivity of the FSI transfer from 
the structural domain back to the flow solver.  
      Each disciplinary solution procedure requires the inversion of the same Jacobian matrix as the corresponding 
analysis problem, which is done using the same iterative solver. Furthermore, the fluid-structure coupling requires the 
transfer of the force and heat flux sensitivities from the flow domain to the structure domain. In return, we require the 
transfer of the surface displacement sensitivities and surface temperature sensitivities from the structure domain back 
to the fluid domain.  
      Solving the set of equations presented in Eq. (30) provides us with the state variable sensitivities with respect to 
the design variables. Now, we can substitute this into Eq. (21) and solve for the complete sensitivity vector \�

\�
. It can 

be seen from the above equation that when calculating sensitivities with the tangent method, the linearization scales 
directly with the number of design variables.  
      The flow of information in the sensitivity analysis process for the tangent method is summarized in Fig. 2. For 
detailed information on the transfer of sensitivities in the structural domain refer to references [46] and [19]. When 
running transient aero-thermo-elastic sensitivity analysis, similar to the analysis problem, at every time step we solve 
a steady-state problem on the fluid domain, and a transient problem on the structure domain. Therefore, the above 
formulations hold for both steady-state and transient aero-thermo-elastic sensitivity analysis. The difference between 
the static and transient cases shows up on the structural solver. In addition, in the tangent formulation, the Jacobian 
matrices must be linearized with respect to the solution from the fluid and structural domain at every time step.  
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10 
 

 
Fig. 2 Flow of information for the aero-thermo-elastic tangent sensitivity analysis.  

B. Aero-Thermo-Elastic Adjoint Sensitivity Analysis 
For the adjoint formulation, we require the transpose of the forward linearization as shown below: 

 

\�
\�

$
= 4�

4�

$
+ �45�

4�

$ 45�
4�

$ 45�
4�

$ 45�
4�

$
�

⎣
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⎢
⎢
⎢
⎢
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4�
45�

$

4�
45�

$

4�
45�

$

4�
45�

$

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

																															               (31) 

 
      The corresponding adjoint problem can be obtained by pre-multiplying Eq. (31) by the inverse of the large 
coupling matrix, and substituting this into Eq. (21), transposing the entire system, and defining adjoint variables at 
one single time step as solutions to the following coupled system: 
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⎥
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⎥
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⎥
⎤

       (32) 
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      Once again, the solution of the various disciplinary adjoint equations requires the inversion of the corresponding 
disciplinary Jacobians (transposed in this case) which can be accomplished using the same iterative solvers as for the 
analysis and forward sensitivity problems. Additionally, the input to the structural adjoint problem consists of the 
variables Λ7���� and Λ$����, which have the same dimensions as the surface displacements and temperatures output 
from the structural analysis solver. On the other hand, the output of the structural adjoint solver consists of the variables 
Λ"� and Λ��, which are of the same dimension as the force and heat flux inputs to the structural solver in the analysis 
problem, respectively. Once the vector of adjoint variables for each discipline is available, it may be substituted into 
the total sensitivity equation as: 
 

\�
\�

$
= 4�

4�

$
+ �− 4��

4�

$
− 4��

4�

$
− 4��

4�

$
− 4��

4�

$
� ¡

Λ7
Λ"
Λ$
Λ#

¢																											      (33) 

 
Again, it is clear from the above equations that the number of design variables only affects the matrix-vector products 
at the end of the computation process [65].  
      The flow of information for the sensitivity analysis process using the adjoint method is summarized in Fig. 3. For 
a detailed description of transfer of sensitivities in the solid domain refer to reference [46] and [19] . When running 
transient aero-thermo-elastic sensitivity analysis, similar to the analysis problem, we solve a steady-state problem on 
the fluid domain at each time step and a transient problem on the structure domain. Additionally, we require the 
solution history for both the fluid and structure domain at each time step, due to the fact that the corresponding 
Jacobian linearizations are performed about the current state. Therefore, first the analysis is run and the structural and 
flow solution at each time step is written to file and then during the adjoint reverse time integration, these solutions 
are read back from disk. 
 

 
Fig. 3 Transfer of information for the coupled aero-thermo-elastic adjoint sensitivity analysis. 

 
V. Aero-Thermo-Elastic Numerical Results 

In this section, we first present solutions for the aero-thermo-elastic analysis of an aerodynamically heated panel case. 
Next, this heated panel case is used to verify the thermo-elastic sensitivities in AStrO. Then the aero-thermo-elastic 
sensitivities of the coupled platform described in the earlier section are verified using this panel case. Finally, the 
verified coupled adjoint-based sensitivities are used to perform aero-thermo-elastic optimizations on the panel. 
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A. An Overview of  Wind Tunnel Experiment for the Heated Panel  
A schematic of a proposed experiment that could be used to validate the flow/thermal/structural analysis as presented 
in reference [66] is shown in Fig. 4. Here, we consider the case where the panel is supported by immovable supports 
on the bottom corners, and the panel deforms into a convex shape as shown in Fig. 4.  
 

 

 
Fig. 4 Schematic diagram of the experiment that can be used to validate the flow/thermal/structural analysis of the heated 
panel reproduced from reference [66]. 

B. Summary of the Applied Numerical Boundary Conditions for the Heated Panel 
The boundary conditions applied to the coupled problem are summarized in Fig. 5. The top surface of the panel, which 
is the fluid/structure interface, has a surface heat flux applied on the structure side, and an applied temperature enforced 
from the structure side on to the fluid side. The sides of the panel are considered isothermal, with an applied 
temperature of 530R. The bottom surface of the panel is insulated. The panel is fixed on the left and right edges of the 
bottom surface [66, 67]. 

 
 
 

 

 
 

Fig. 5 Applied boundary conditions for the aero-thermo-elastic problem of a heated panel. 

 
The initial free-stream flow parameters for this case are described in Table 1 [66]. The flow has an incidence of 

15 degrees with regards to the panel as shown in Fig. 5. The fluid mesh used for this study has 2,474,940 nodes, with 
4,725,000 prism elements. The fluid mesh has a wall spacing of 6×10-6, which gives a y+ of less than one along the 
panel surface.  

Table 1 Initial free-stream conditions for the coupled flow over the heated panel. 

Free-stream conditions Value 
Free-stream Mach number (𝑀𝑎¥) 6.57 (dimensionless) 
Wall temperature (Tw) 530 R 
Free-stream Reynolds number (𝑅𝑒¥) 0.37 ×106  1/ft 
Free-stream temperature (𝑇¥) 530 K 
Free-stream velocity (𝑈¥) 6612.3 ft/s 
Free-stream pressure (𝑃¥) 0.0971 psi 

  
The test panel is 4in long, has a thickness of 0.1in, and a width of 0.5in. It is made from AM-350 stainless steel. 

The properties for the panel are tabulated in Table 2 [66]. The structure mesh used in this coupled simulation has 3,216 
nodes, with 1,995 hexahedral elements. 

Fluid 

(5) 

(4) 
(3) (3) 

(2) (1) 

(1) Inflow 
(2) Outflow 
(3) Isothermal 
(4) Insulated 
(5) Fluid/Structure Interface 15º 
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Table 2 Panel material properties [66]. 

Property Value 
Density (ρ) 0.282  lbm/in3   

Thermal Conductivity (k) 0.12864 ×10-3   BTU/(s.in.R) 
Specific heat capacity (C) 0.11162  BTU/(lbm.R) 
Thermal expansion (α) 0.62643×10-5  1/R 
Modulus of elasticity (E) 0.35346×108  lbf/in2 
Poisson’s ration (v) 0.25 (dimensionless) 

 
Since the flow field reaches equilibrium much faster than the thermal response of the panel structure, the coupled 

problem is solved as a steady-state problem on the fluid side and as a transient problem on the structural side. The 
time step for the thermal solver is taken as 5s. Thus, it takes six coupled cycles between the fluid and structure solvers 
to reach the transient solution at thirty seconds.  

C. Aero-thermo-elastic Analysis Results for the Heated Panel  
In this section, numerical results from the aero-thermo-elastic analysis of the panel with the convex deformation are 
presented. The interaction between the panel deformation and the flow density distributions at t = 30s for the convex 
panel is shown in Fig. 6, which plots computed values of density non-dimensionalized by the freestream density. 
Although, the test cases are 2D in nature, the calculations are done fully in 3D. Hence, we have plotted the solution 
with a slight perspective to show the full computational domain. The figure clearly shows the development of a shock 
originating from the left support on the windward side. The density of the fluid increases through this shock at first 
but then decreases as the flow expands over the convex panel. A recompression shock is developed as the flow is 
turned by the deformed panel near the right side. These results agree well qualitatively with the computational 
solutions presented in reference [66]. In reference [11], we did a detailed comparison of the numerical results for this 
case against available analytical solutions. For more details on the aero-thermo-elastic results for this case and other 
cases, please refer to the reference [11]. 
 

 
Fig. 6  Flow density distributions at t = 30s, for the heated panel with convex deformation. 

 

D. Thermo-Elastic Sensitivity Analysis Verification for the Heated Panel 
Previously, we mentioned that AStrO has the capability to calculate exact sensitivities using the adjoint method. In 
this section we show verification for these sensitivities for the thermo-elastic simulation of the heated panel case. 

A schematic of the computational model and boundary conditions for the thermo-elastic heated panel problem is 
shown in Fig. 7. The boundary conditions are the same as the aero-thermo-elastic heated panel case. The panel is 
supported by immovable supports on the left and right edges of the bottom surface. The bottom surface of the panel 
is insulated, while the faces on the right and left side of the panel have a constant temperature equal to the initial 
temperature of 530R. In the thermo-elastic simulation, a uniform heat flux is applied to the top surface of the panel to 
mimic the aerodynamic heating of the panel. Under these thermal and structural boundary conditions, similar to the 
aero-thermo-elastic analysis, the panel deforms into a convex shape [66, 67]. 
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Fig. 7  Coupled thermal/structural model and boundary conditions for a heated panel reproduced from reference [35]. 

 
      The material properties of the panel are the same as the panel used in the aero-thermo-elastic analysis problem. 
These properties were summarized in Table 2 [66]. The mesh used in this study is the same as the structure mesh used 
in the aero-thermo-elastic analysis problem presented in the previous section. 

Since we are studying the solution at early times, the heat flux across the panel is nearly uniform, and can be 
approximated by the following equation [66]: 
 

𝑞(𝑡) = 0.026 − 0.0001𝑡	(K$`
*Q].u

)                                                 (34) 
 
Equation (34) is used as a thermal boundary condition in order to mimic the aerodynamic heating for the thermo-
elastic validation. The time step used for the coupled thermo-elastic analysis is 1s. Hence 30 time steps were required 
to heat the panel for 30s.  
      When dealing with thermo-elastic sensitivity analysis, we need to transfer sensitivities between the thermal and 
structural solvers. The transfer of information performed by AStrO during a sensitivity analysis for both the tangent 
and the adjoint method are summarized in in Fig. 8. The one-way dependence between the elastic displacement on 
temperature distribution is clear in this figure. More details regarding the sensitivity analysis formulations and 
implementations in AStrO are given in reference [46].  
 

 
Fig. 8 Flow of information for the thermo-elastic tangent (on the left) and adjoint (on the right)  sensitivity analysis process 
in AStrO 

 
For this case, the objective function is defined using the deformation of the panel in the x- and y-directions, as 

shown below: 
 

𝐿 = 	∑ (𝐷𝑖𝑠𝑝_𝑥(𝑖))N + (𝐷𝑖𝑠𝑝_𝑦(𝑖))N																																																																		Q
*±S (35) 

 
where ‘i’ is the node number and ‘n’ is the total number of nodes in the panel.   

In order to test the adjoint-based sensitivities, the elastic modulus, the thermal conductivity, the coefficient of 
thermal expansion, and the specific heat capacity of the panel material were defined as the design variables. The 
sensitivity of each property was scaled to the original value, resulting in the following design-dependent definitions: 
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⎩
⎪
⎨

⎪
⎧ 𝐸 = 𝐸Y + 10·	𝐷S															
			𝑘 = 𝑘Y + 10R¸𝐷	N																			
				𝛼 = 𝛼Y + 10R¹𝐷M																				
𝐶 = 	𝐶Y + 10RS𝐷¸															

                                                 (36) 

 
      The adjoint-based sensitivities were verified against the sensitivities calculated by the tangent method and 
complex-step method [68]. Tables 3 through Table 6 show a comparison of coupled thermo-elastic sensitivities 
obtained from the complex analysis run with those of the tangent and adjoint linearization for 6 different time steps. 
Each table presents results for one of the design variables defined in Eq. (36). As shown in these tables, the sensitivity 
values from the tangent and adjoint linearization match with the complex-step method to machine precision. For more 
details on this case and other thermo-elastic sensitivity analysis and optimization cases please refer to previous work 
[12, 19].  
 
Table 3 Comparison of objective sensitivities for the heated panel for the adjoint, tangent and complex-step methods for 
design variable 𝑫𝟏 as defined in Eq. (36). 

Time step Adjoint Tangent Complex 
5 -0.0005658745509 -0.0005658745509 -0.0005658745510 
10 -0.0041847191992 -0.0041847191992 -0.0041847191996 
15 -0.0132425156473 -0.0132425156472 -0.0132425156484 
20 -0.0297337370432 -0.0297337370432 -0.0297337370458 
25 -0.0553518559203 -0.0553518559203 -0.0553518559249 
30 -0.0915353372070 -0.0915353372071 -0.0915353372147 

 

Table 4   Comparison of objective sensitivities for the heated panel for the adjoint, tangent and complex-step methods for 
design variable 𝑫𝟐 as defined in Eq. (36). 

Time step Adjoint Tangent Complex 
5 -0.0270281059525 -0.0270281059525 -0.0270281059525 
10 -0.1424427208577 -0.1424427208577 -0.1424427208578 
15 -0.4235076821464 -0.4235076821462 -0.4235076821465 
20 -0.9637033879671 -0.9637033879673 -0.9637033879675 
25 -1.8656308994337 -1.8656308994336 -1.8656308994339 
30 -3.2372661777168 -3.2372661777178 -3.2372661777184 

 

Table 5 Comparison of the objective sensitivities for the heated panel for the adjoint, tangent and complex-step methods 
for design variable 𝑫𝟑 as defined in Eq. (36). 

Time step Adjoint Tangent Complex 
5 0.0644539160860 0.0644539160860 0.0644539160860 
10 0.4214617163555 0.4214617163556 0.4214617163557 
15 1.2889374961929 1.2889374961924 1.2889374961929 
20 2.8522092885360 2.8522092885354 2.8522092885367 
25 5.2696838576481 5.2696838576459 5.2696838576481 
30 8.6764603110799 8.6764603110797 8.6764603110834 

 

Table 6 Comparison of objective sensitivities for the heated panel for the adjoint, tangent and complex-step methods for 
design variable 𝑫𝟒	as defined in Eq. (36). 

Time step Adjoint Tangent Complex 
5 -0.3298385175240 -0.3298385175243 -0.3298385175244 
10 -2.1963367650602 -2.1963367650602 -2.1963367650615 
15 -6.7320990871707 -6.7320990871682 -6.7320990871707 
20 -14.8687791829420 -14.8687791829394 -14.8687791829461 
25 -27.3767070817806 -27.3767070817733 -27.3767070817816 
30 -44.8893798636163 -44.8893798636146 -44.8893798636355 
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E. Aero-Thermo-Elastic Sensitivity Analysis Verification for the Heated Panel with Mach = 0.8 
To verify the aero-thermo-elastic adjoint-based sensitivities, the case of flow with Mach = 0.8 over the panel is 
considered. This is done, since the case of flow with Mach = 6.57 over this panel does not fully converge due to limiter 
unsteadiness. In addition, the limiters are considered frozen in the sensitivity analysis and are not linearized in the 
current tangent/adjoint implementation. Therefore, using the case of flow with Mach = 0.8 over the panel, allows us 
to sidestep the effect of limiters in the sensitivity verification. Additionally, the time-dependent heat flux boundary 
condition which approximates the heat flux from the flow field given by Eq. (34) is employed. This approach was 
used due to the appearance of inconsistent sensitivities in the heat flux routine which remained unresolved at the time 
of publication. However, this test case employs an aerodynamic objective coupled with structural design variables, 
thus providing a test of the coupled aero-thermo-elastic sensitivities. The adjoint linearization is verified using the 
duality relation [50] to the tangent approach, while the tangent sensitivities are verified with the finite-difference 
method [41, 68].  

The aerodynamic objective function for this case is based on the computed drag of the panel. Since the flow has 
an angle of attack of 15°, a function of the force coefficient in the x-direction (aligned with the panel) is used as the 
objective rather than 𝐶� itself. Specifically, the objective L is defined as Eq. (37).  

 
𝐿 = 	 (𝐶7)N																																																																																																											(37) 

      In order to test the adjoint-based sensitivities, the thermal conductivity and thickness of the panel are defined as 
the design variables as presented in Eq. (38). 

¿
𝑘 = 𝑘Y + 10R¸𝐷S																																								

																													
𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 = 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠*Q9*t1 × 𝐷N							

                                      (38) 

      The adjoint based sensitivities were verified against the sensitivities calculated by the tangent and finite-difference 
methods. Table 7 and Table 8 show a comparison of the coupled aero-thermo-elastic sensitivities for flow over the 
panel obtained from the finite-difference analysis run with those of the tangent and adjoint linearization. Table 7 and  
Table 8 show results for the case of using thermal conductivity and thickness of the panel as design variables, 
respectively. Each table has results for different number of time steps. The sensitivities of the objective function match 
down to machine precision between the tangent and the adjoint. These sensitivities match reasonably well with the 
sensitivities calculated through the finite-difference method. As can be seen in both Table 7 and  Table 8, the sensitivity 
values are increasing with the number of time steps. This is to be expected, since as time passes the panel deforms 
more and the drag increases. 

Table 7   Comparison of the sensitivity of the objective function defined in Eq. (37) with respect to the design variable 𝑫𝟏 
defined in Eq. (38), for the heated panel in Mach = 0.8 flow, at different coupling time steps. 

Time Step Adjoint Tangent Finite-Difference 

1 -3.47763135461256× 10R¹ -3.47763135461282× 10R¹ -3.6066387221× 10R¹ 
2 -5.31123417602813× 10R¹ -5.31123417602895× 10R¹ -5.6107710055× 10R¹ 
3 -6.04453180932982× 10R¹ -6.04453180933126× 10R¹ -7.3720293562× 10R¹ 
5 -6.92850553411629× 10R¹ -6.92850553411926× 10R¹ -7.6129645635× 10R¹ 

 
Table 8 Comparison of the sensitivity of the objective function defined in Eq. (37) with respect to the design variable 𝑫𝟐 
defined in Eq. (38), for the heated panel in Mach = 0.8 flow, at different coupling time steps. 

Time Step Adjoint Tangent Finite-Difference 
1 -6.96927382827343× 10R¹ -6.96927382827098× 10R¹ -7.3292648685× 10R¹ 
2 -2.09733547485967× 10RÁ -2.09733547486444× 10RÁ -2.2907747595× 10RÁ 
3 -4.19421030208063× 10RÁ -4.19421030209051× 10RÁ -4.6948589964× 10RÁ 
5 -8.98882633197205× 10RÁ -8.98882633195547× 10RÁ -10.648608982× 10RÁ 
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F. Aero-Thermo-Elastic Design Optimization for the Heated Panel in Hypersonic Flow  
Next, the verified adjoint-based sensitivities are used in the aero-thermo-elastic optimization of the heated panel case 
in hypersonic flow. The initial free-stream flow parameters for this case were given previously in Table 1. The 
optimization is first performed for one coupled time step. Later, the optimization is repeated taking into account five 
coupled time steps. A time step of one second is used. For the optimization cases presented in the coming pages, the 
SNOPT [69] sequential quadratic programming algorithm is used to drive the constrained optimization. 
      The objective function defined for this problem is shown below: 

𝐿(𝑡) = (𝐶7(𝑡x*Qt1))N	 + 𝑛p1prpQ9 × (𝑘9�_ÂÃÄ − v𝑘9_Â_Å_ÃÄ + 0.000072w)
N 

10R¸ × (𝑀𝑎𝑠𝑠9�_ÂÃÄ − 2.5 ×𝑀𝑎𝑠𝑠9_ÂÅ_ÃÄ)
N				(39) 

In Eq. (39), a penalty is put on the mass and the thermal conductivity of the panel. Weights are applied to 
approximately balance the influence of the various terms of the objective function in the optimization process. The 
goal in this optimization problem is to minimize the objective function presented in Eq. (39) with respect to the thermal 
conductivity and the thickness of the panel as shown below: 

¿
𝑘 = 𝑘Y + 10R¸𝐷S																															

																													
𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 = 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠*Q9*t1 × 𝐷N	

                                                     (40) 

 Aero-Thermo-Elastic Design Optimization for the Heated Panel in Mach 6.57 flow, for One Coupled Time Step 
For this optimization problem NSU3D and AStrO are run for only one time step during the optimization process. The 
optimization was performed using SNOPT. The optimum value of the design variables, which reflect the changes in 
the material properties of the panel, are summarized in Table 9. The change in the objective function from the baseline 
panel to the aero-thermo-elastically optimized panel case is shown in Table 10.  

Table 9 Optimum design variables, initial and optimized material properties of the heated panel in Mach 6.57 flow, with 
one coupled time step. 

Design Variable Material Properties  Initial Material Properties Optimized Material Properties 

𝑫𝟏 0.7645006 Thermal Conductivity  0.00012864   BTU/(s.in.R) 0.0002059 BTU/(s.in.R) 

𝑫𝟐 2.504113 Thickness 1	𝑖𝑛 2.504113 in 

 

Table 10 Comparison of the baseline and aero-thermo-elastically optimized objective function for the heated panel in Mach 
6.57 flow, with one coupled time step. 

 Baseline  Aero-Thermo-elastic optimization 
Objective function (Eq. (39)) 1.6722326× 10R¸ 7.8904212 × 10RÁ 

    
The convergence of the optimization process for the panel case is shown in Fig. 9. The optimization is run for 10 

design steps during which the value of the objective function is reduced approximately by a factor of two.  
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Fig. 9  Convergence of the aero-thermo-elastic optimization process for the heated panel case in Mach 6.57  
flow, with one coupled time step. 

 Aero-Thermo-Elastic Design Optimization for the Heated Panel with Mach 6.57, for Five Coupled Time Steps 
For this optimization problem NSU3D and AStrO are run for five time steps during the optimization process. The 
objective function and design variables are similar to the case with a single time step but correspond to the values at 
the final time step. Therefore,  Eq. (39) is used as the objective function and Eq. (40) defines the design variables used 
for this case.   
      The optimum value of the design variables, which reflect the changes in the material properties of the panel, are 
summarized in Table 11. In addition, Table 12 shows the change in the objective function from the baseline panel to 
the aero-thermo-elastically optimized panel case. Comparing the optimized material properties from Table 9 with 
Table 11, it can be observed that the values for the optimized material properties are slightly higher for the optimization 
using five coupled time steps compared to the optimization using a single time step. This behavior is expected since 
the aerodynamic term in the objective function is initially larger for the case with five time steps. This is similar to the 
increase in the sensitivities with the number of time steps seen in Table 7 and  Table 8 

Table 11 Optimum design variables, initial and optimized material properties of the heated panel in Mach 6.57 flow, with 
five coupled time steps. 

Design Variable Material Properties  Initial Material Properties Optimized Material Properties 

𝑫𝟏 0.8556365 Thermal Conductivity  0.00012864   BTU/(s.in.R) 0.000214203 BTU/(s.in.R) 

𝑫𝟐 2.5134456 Thickness 1	𝑖𝑛 2.5134456 in 

 

Table 12  Comparison of the baseline and aero-thermo-elastically optimized objective function for the heated panel in Mach 
6.57 flow, with five coupled time steps. 

 Baseline  Aero-Thermo-elastic optimization 
Objective function (Eq. (39)) 2.2976563 × 10R¸ 1.1060668 × 10R¸ 

 
      The convergence of the optimization process for the panel case using five time steps is shown in Fig. 10. Overall, 
the convergence of the optimization process is similar for this case compared to the previous case using a single time 
step. The simulations were performed on the Teton supercomputer at University of Wyoming Advanced Research 
Computing Center (ARCC) and required approximately 20 hours on 320 cores.  
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Fig. 10  Convergence of the aero-thermo-elastic optimization process for the heated panel case in Mach 6.57 
flow, with five coupled time steps. 

      The interaction between the panel deformation and the flow density distributions at t = 30s for the aero-thermo-
elastically optimized panel design using five time steps is shown in Fig. 11. In this figure, the computed values of 
density are non-dimensionalized by the free-stream density. The outcome of the optimization becomes more apparent 
if we compare Fig. 11 to Fig. 6, presented previously for the baseline panel case .We can clearly see the strength of 
the shocks and flow disturbances are reduced in the flow over the optimized panel in comparison to the flow over the 
baseline panel.  

 
Fig. 11  Flow density distributions at t = 30s, for the aero-thermo-elastically optimized panel design. 

VI. Conclusion 
In previous work, a loosely coupled, three-dimensional, aero-thermo-elastic analysis platform was developed and 
validated. The platform uses the following modules developed in-house and tested previously: the flow solver NSU3D, 
the thermo-elastic capability from the structural solver AStrO, the FSI module, and the mesh deformation capability. 
In this work, the aero-thermo-elastic platform, which consists of high-fidelity solvers for each discipline, was further 
developed for design optimization. AstrO’s thermo-elastic sensitivity analysis capabilities and NSU3D’s flow 
sensitivity analysis capabilities, have been validated in previous work. The main challenge here centered around 
coupling the disciplinary sensitivities from these two platforms for coupled aero-thermo-elastic optimization. Both 
tangent-based and adjoint-based aero-thermo-elastic sensitivities were implemented. The adjoint-based sensitivities 
are shown to be consistent with direct differentiation or the tangent method. Also, preliminary adjoint-based 
optimization results are promising. For the aero-thermo-elastic panel problem used in this paper for sensitivity 
verification and optimization, a fixed heat flux was prescribed on the structure domain due to inconsistencies 
encountered with the linearization of the heat flux routine. Current work is ongoing to enable the inclusion of these 
sensitivities in the coupled aero-thermo-elastic optimization framework. The developed aero-thermo-elastic analysis 
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and design platform should enable new opportunities for design and understanding of physics in high-speed flows and 
hypersonic vehicle design.  
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