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Abstract 

We investigate the use of higher order time integration schemes for discontinuous Galerkin 

(DG) spatial discretizations using tensor product formulations. A space-time DG formulation is 

used to develop DG in time temporal discretizations, which are then compared with fully implicit 

Runge Kutta time integration methods. These temporal discretizations are solved at each time step 

using an explicit pseudo-time stepping approach, which can be accelerated using a p-multigrid 

solver in pseudo-time. For the cases tested herein, the various temporal discretizations achieve or 

exceed their design orders of accuracy. The pseudo time stepping approach is shown to be feasible 

for all schemes, provided the FIRK schemes are written in a form similar to the DGT schemes. 

I. Introduction 

We are interested in the development of implicit time-stepping approaches for CFD turbulence-scale resolving 

methods such as large eddy simulations (LES). In previous work we have developed a high-order discontinuous 

Galerkin (DG) method which incorporates dynamic mesh adaptation through the p4est library [1] operating on an 

overset off-body mesh for high resolution capturing of vortical and wake flows for rotorcraft and wind turbine 

applications [2, 3]. The use of very high order spatial discretizations is motivated by the superior accuracy and low 

cost of these discretizations, particularly when constructed using a tensor product formulation [2, 4, 5]. However, the 

explicit time step limit of the current approach becomes very restrictive as the order of the discretization is raised, as 

well as in regions where the dynamic AMR results in small mesh elements, leading to the requirement of 

considering implicit time-stepping methods. 

In the construction of suitable implicit time-stepping methods for high-order discretizations, there are various 

factors that must be taken into account. Firstly, a suitable temporal discretization must be chosen, most notably one 

which exhibits attractive accuracy and stability properties. Additionally, the evaluation and solution of the resulting 

implicit systems must be efficient enough that they do not compromise the efficiency of the tensor-product 

formulation which makes the use of very high order discretizations feasible in the first place. 

For a general finite-element discretization, using basis functions constructed from polynomials of order p, the 

number of degrees of freedom within an element scales as N=(p+1)
d
, where d denotes the number of dimensions, 

and the cost of evaluating the residual vector scales as N
2
 or (p+1)

2d
. However, using basis functions constructed as 

tensor products of one-dimensional polynomials, the cost of a residual evaluation can be reduced to (p+1)
d+1

, making 

the use of very high order discretization more feasible. In order to capitalize on this favorable scaling, one approach 

to the development of time-implicit methods is to use a space-time discretization, where the time dimension is added 

to the formulation thus increasing d from d=3 to d=4 in the tensor product scaling. However, this scaling only 

applies to the evaluation of solution values or residuals and not to the solution of the non-linear systems that arise in 

the context of each implicit time step, where the Jacobian matrices within each element becomes dense. One 

approach to solving these implicit systems is to use a Newton-Krylov method with preconditioners that can be 
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evaluated using the tensor-product formulation [5, 6]. An alternate approach consists of using explicit time-stepping 

in pseudo-time, to drive the implicit system to a pseudo steady-state [7]. This approach can be further accelerated 

through the use of a p-multigrid method which employs explicit pseudo-time stepping on each level, where coarser 

levels are constructed by reducing the p-order discretization [8–10]. 

Although the DG in time (DGT) schemes that result from the space-time DG formulations have been used 

successfully with tensor-product formulations [5, 6], there are good reasons to investigate other implicit temporal 

discretizations. For example, it is well known that fully-implicit Runge-Kutta schemes (FIRK) (as opposed to 

diagonally implicit RK (DIRK) schemes) are closely related and in some cases equivalent to DGT schemes [11]. 

This means that FIRK schemes can be implemented with the same efficiency as DGT schemes within a tensor-

product approach. The advantage of FIRK schemes is that they have been well studied and can be constructed to 

produce desirable accuracy and stability properties [12, 13]. For example, a Gauss FIRK scheme with s stages has a 

temporal design accuracy of 2s, whereas the Radau 2A schemes have accuracy of 2s-1. Here the number of stages is 

equivalent to the number of degrees of freedom in the time dimension, which corresponds to s=p+1 for DGT 

schemes. This suggests that FIRK schemes may be capable of much higher accuracy than equivalent DGT schemes, 

with some evidence to support this claim shown in references [14, 15]. However, in practice this may not always 

hold, since DGT schemes may themselves exhibit superconvergence for well resolved problems, and in the case of 

stiff problems, the FIRK schemes suffer from order-reduction, where the observed temporal order reduces to the 

stage order [12, 13]. For the aforementioned Gauss and Radau FIRK schemes, the stage order is equal to the number 

of stages [13], meaning that the expected order of accuracy for stiff problems is s, which is equivalent to the nominal 

order of accuracy of p+1 for DGT schemes.  

Perhaps more importantly, the Gauss FIRK schemes are A-stable but not L-stable, whereas the Radau 2A FIRK 

schemes are known to be both A-stable and L-stable. Published numerical results comparing these schemes provide 

evidence that indeed the Radau schemes appear to be more effective for computational fluid dynamics problems, 

albeit on a limited set of problems [14, 15]. Given that DGT schemes using Gauss-Legendre points correspond most 

closely to the Gauss FIRK schemes, this may imply that the straight-forward use of DGT schemes based on the 

same basis functions and quadrature points as their spatial counterparts runs the risk of producing less than optimal 

implicit-time stepping schemes. Furthermore, nonlinear stability of FIRK schemes has also been studied in detail 

[12, 13], which may provide an additional tool for the development of nonlinearly stable time-implicit CFD codes. 

Since we are interested in driving the solution of the resulting implicit systems with explicit pseudo-time 

stepping, the stability of this approach for the various temporal discretizations is also of importance. In reference 

[14], it was shown that various FIRK schemes are in fact unstable for explicit pseudo-time stepping in their original 

form, and a preconditioned form of these temporal schemes is derived, which is shown to be stable in pseudo-time. 

Remarkably, the preconditioned FIRK formulation derived in reference [14] corresponds to the natural formulation 

of DGT schemes, and we show in this paper that the corresponding DGT scheme is indeed stable in pseudo-time in 

its original form. 

 Finally, we also consider stability of these various temporal discertizations in pseudo time for small physical 

time steps. Although this is an area which has not been studied in detail for high-order temporal schemes, it is well 

known that dual time-stepping schemes for BDF2 temporal discretizations become unstable for small physical time 

steps unless certain pseudo-time terms are treated implicitly [16]. This is important because our goal is the design of 

a single implicit time-stepping scheme which can be use within an adaptive h and p refinement strategy with widely 

varying resolution. Additionally, our design criteria for the scheme include the ability to converge regions with 

small physical time steps, which may be close to the explicit time-step limit, at a cost that is not excessively larger 

than the use of explicit time stepping itself, thus avoiding the need to switch between implicit and explicit time steps 

in different regions of the simulation, along with the associated difficulties such strategies entail. 

In the following section we first derive the semi-discrete formulation for the DG approach, where only the 

spatial terms are discretized. In section III, we derive the various temporal discretizations that are considered in this 

paper and show the equivalence between the DGT and FIRK schemes. In section IV, we study the stability of these 

schemes for explicit advancement in pseudo-time. Here we also formulate an implicit approach in pseudo-time that 

is expected to improve stability and performance for small physical time steps. In section V, we describe the p-

multigrid strategy employed to solve some of these implicit temporal systems. The results section contains 

numerical results illustrating the spatial and temporal accuracy of these schemes, as well as the convergence 

effectiveness of the pseudo-time approaches used in this work. A summary and concluding remarks are given in 

section VII. 
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II. Semi-Discrete Formulation for Discontinuous Galerkin Discretization 

Let us consider the multi-dimensional hyperbolic conservation laws as follows.  

 

 
𝜕𝐐(𝐱,𝑡)

𝜕𝑡
+ ∇ ∙ 𝐅(𝐐) = 0, (1) 

 

where 𝐐 is the state variable vector and 𝐅 is the flux function vector. When we multiply by a set of test functions 

𝜙(𝐱) and integrate over a space element, the weak statement for the governing equation can be expressed as: 

 

 ∫ [
𝜕𝐐(𝐱,𝑡)

𝜕𝑡
+ ∇ ∙ 𝐅(𝐐)]𝜙(𝐱) 𝑑Ω𝐸Ω𝐸

= 0. (2) 

 

Integrating by parts and applying Green’s theorem yields: 

 

 ∫
𝜕𝐐(𝐱,𝑡)

𝜕𝑡
𝜙(𝐱)𝑑Ω𝐸Ω𝐸

− ∫ (𝐅 ∙ ∇)𝜙(𝐱)𝑑Ω𝐸Ω𝐸
+ ∫ (𝐅 ∙ 𝐧) 𝜙(𝐱) 𝑑(𝜕Ω𝐸)

∂Ω𝐸
= 0. (3) 

 

The state vector is written as an expansion in terms of the basis functions and the solution degrees of freedom in 

space as: 

𝐐 = ∑ 𝐐𝑖𝑗𝜙𝑖(𝑥)𝜙𝑗(𝑦)

𝑖𝑗

 

 

The first term is temporal derivative integral, and it can be simplified as 

 

∫
𝜕𝐐(𝐱, 𝑡)

𝜕𝑡
𝜙(𝐱)𝑑Ω𝐸

Ω𝐸

= 𝐌
𝜕𝐐𝑖𝑗

𝜕𝑡
 (4) 

 

where 𝐌 is the mass matrix defined as 𝐌 = ∫𝜙𝑖  𝜙𝑗𝑑Ω𝐸 for two-dimensional space. The second and third term of 

Eq.(4) are volume and surface integral, respectively. We can define a spatial residual, 𝐑𝑖𝑗(𝐐), into which the 

volume and the surface integral are combined as follows. 

 

𝐑𝑖𝑗(𝐐) = −∫ (𝐅 ∙ ∇)𝜙(𝐱)𝑑Ω𝐸
Ω𝐸

+ ∫ (𝐅 ∙ 𝐧) 𝜙(𝐱) 𝑑(𝜕Ω𝐸)
∂Ω𝐸

 (5) 

 

Then, we can invoke isoparametric mapping and expand the solution in order to obtain a system of algebraic 

equations to be solved. The details of the expansion and integration processes for the tensor-product form of basis 

functions are explained in [17]. Substituting Eqs. (4) and (5) into Eq. (3) and omitting the 𝑖𝑗-index for simplicity, a 

semi-discrete formulation can be written as: 

 

𝐌
𝜕𝐐

𝜕𝑡
+ 𝐑(𝐐) = 0 (6) 

 

In the present paper, we focus on two-dimensional space for simplicity. Nevertheless, the derived formulations can 

be extended to three-dimensional space in a straight-forward straightforward.  

 

III. Temporal Discretization 

A. Backward Difference Formula (BDF) 

Starting from the set of ordinary differential equations given by Eq. (6), the formulations for the 1
st
 and 2

nd
 order 

accurate backward difference formulae (BDF1 and BDF2) are given respectively as: 
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𝐌

∆𝑡
[𝐐𝑛+1 − 𝐐𝑛] + 𝐑(𝐐𝑛+1) = 0 

(7) 

 𝐌

∆𝑡
[
3

2
𝐐𝑛+1 − 2𝐐𝑛+

1

2
𝐐𝑛−1] + 𝐑(𝐐𝑛+1) = 0 

(8) 

 

Herein, let us define the left-hand-side of the Eq.(3) as 𝐋(𝐐), an unsteady residual that includes the temporal 

discretization as well as spatial discretization, for the corresponding BDF1 and BDF2 schemes as:  

 

BDF1: 𝐋(𝐐𝑛+1) =
𝐌

∆𝑡
[𝐐𝑛+1 − 𝐐𝑛] + 𝐑(𝐐𝑛+1) 

(9) 

BDF2: 𝐋(𝐐𝑛+1) =
𝐌

∆𝑡
[
3

2
𝐐𝑛+1 − 2𝐐𝑛+

1

2
𝐐𝑛−1] + 𝐑(𝐐𝑛+1) (10) 

 

Then, Eqs. (9) and (10) are implicit time-accurate equations for the time advancement of the hyperbolic 

conservation laws given in the formulation of Eq. (1). The solution of these equations can be achieved by solving 

𝐋(𝐐𝑛+1) = 0 at each time step. BDF schemes have a severe limitation when used in conjunction with a high-order 

spatial discretization. BDF schemes can be A-stable only up to second order (the Dahlquist barrier) [18]. Thus, we 

are interested in higher-order A-stable (and even L-stable) schemes including DGT and FIRK. 

 

B. Space-Time Formulation of Discontinuous Galerkin Discretization 

In order to introduce the differences in the formulations between space DG and space-time DG, rather than a 

compact way described in [19], we derive the space-time DG formulation by multiplying the space DG formulation 

given as Eq. (3) by an additional basis function for the time dimension 𝜓(𝑡) and integrating it over a time interval 

𝐼𝑛 = [𝑡𝑛, 𝑡𝑛+1], where  𝑡𝑛+1 = 𝑡𝑛 + ∆𝑡.        

 

∫ [∫
𝜕𝐐(𝐱, 𝑡)

𝜕𝑡
𝜙(𝐱)𝑑Ω𝐸

Ω𝐸

− ∫ (𝐅 ∙ ∇)𝜙(𝐱)𝑑Ω𝐸
Ω𝐸

+ ∫ (𝐅 ∙ 𝐧) 𝜙(𝐱) 𝑑(𝜕Ω𝐸)
∂Ω𝐸

] 𝜓(𝑡)𝑑𝑡
𝐼𝑛

= 0 (11) 

 

Applying Eq.(5) yields 

 

∫ ∫
𝜕𝐐(𝐱, 𝑡)

𝜕𝑡
𝜙(𝐱)𝜓(𝑡)𝑑Ω𝐸𝑑𝑡

Ω𝐸𝐼𝑛
+ ∫ 𝐑(𝐐)𝜓(𝑡)𝑑𝑡

𝐼𝑛
= 0. (12) 

 

The first term can be written as: 

 

∫ ∫
𝜕𝐐(𝐱, 𝑡)

𝜕𝑡
𝜙(𝐱, 𝑡)𝑑Ω𝐸𝑑𝑡

Ω𝐸𝐼𝑛
 = ∫ ∫

𝜕(𝐐𝜙)

𝜕𝑡
𝑑Ω𝐸𝑑𝑡

Ω𝐸𝐼𝑛
− ∫ ∫ 𝐐

𝜕𝜙

𝜕𝑡
𝑑Ω𝐸𝑑𝑡

Ω𝐸𝐼𝑛
 (13) 

 = ∫ [𝐐(𝐱, 𝑡−
𝑛+1)𝜙(𝑡−

𝑛+1) − 𝐐(𝐱, 𝑡−
𝑛)𝜙(𝑡+

𝑛)]
Ω𝐸

𝑑Ω𝐸 − ∫ ∫ 𝐐
𝜕𝜙

𝜕𝑡
𝑑Ω𝐸𝑑𝑡

Ω𝐸𝐼𝑛
 (14) 

 

where 𝜙(𝐱, 𝑡) = 𝜙(𝐱)𝜓(𝑡) and the temporal basis function is assumed to be of the same form as the spatial basis 

function: 𝜓(𝑡) = 𝜙(𝑡). Then, 𝐋(𝐐) can be defined as follows. 

 

DG in time: 𝐋(𝐐𝑛+1) =
1

∆𝑡
[∫ [𝐐(𝐱, 𝑡−

𝑛+1)𝜙(𝑡−
𝑛+1) − 𝐐(𝐱, 𝑡−

𝑛)𝜙(𝑡+
𝑛)]

Ω𝐸

𝑑Ω𝐸 − ∫ ∫ 𝐐𝑛+1
𝜕𝜙

𝜕𝑡
𝑑Ω𝐸𝑑𝑡

Ω𝐸𝐼𝑛
] 

(15) 

      +
1

∆𝑡
∫ 𝐑(𝐐𝑛+1)𝜙(𝑡)𝑑𝑡
𝐼𝑛
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It should be noted that the solution vector in the space DG formulation of Eq. (3) is defined within a space element, 

while that in the space-time DG formulation of Eq. (11) is defined within a space-time element. For example, in 

two-dimensional space, the solution vectors can be expanded in terms of tensor-product basis functions respectively 

as follows:  

 

space DG: 𝐐(𝐱, 𝑡) = ∑𝑄𝑖𝑗(𝑡)𝜙𝑖(𝑥)𝜙𝑗(𝑦)

𝑁

𝑖,𝑗

 (16) 

space-time DG: 𝐐(𝐱, 𝑡) = ∑ 𝑄𝑖𝑗𝑘𝜙𝑖(𝑥)𝜙𝑗(𝑦)𝜙𝑘(𝑡)

𝑁

𝑖,𝑗,𝑘

 

(17) 

 

Herein, let us define a sub-vector that consists of quadrature point values for spatial DG: 𝐪 = 𝑄𝑖𝑗. When the spatial 

p-order is one (𝑝𝑠 = 1), for instance, the sub-vector 𝐪 can be written as:  

     

𝐪 = 𝑄𝑖𝑗 = [

𝑄11

𝑄21

𝑄12

𝑄22

]. (18) 

 

Then, we can also express the quadrature point values in a space-time element as 𝐪𝑘 = 𝑄𝑖𝑗𝑘 . For the temporal p-

order 𝑝𝑡 , it becomes 

𝐪𝑘 = 𝑄𝑖𝑗𝑘 =

[
 
 
 
 
𝐪1

𝐪2

⋮
⋮

𝐪𝑁t]
 
 
 
 

,  (19) 

 

where 𝑁t = 𝑝𝑡 + 1. Similarly, we can define 𝐫𝑘 for the residual vector. While the quadrature point values for the 

time interval [𝑡𝑛, 𝑡𝑛+1] are included in 𝐪𝑘
𝑛+1, boundary point values (solutions at 𝑡𝑛 and 𝑡𝑛+1) are not included since 

Gauss-Legendre quadrature points are defined only inside of the time element. The boundary values are calculated 

by solution expansion of 𝐪𝑘 as follows. 

     

𝐪̂𝑛+1 = ∑ 𝐪𝑘
𝑛+1

𝑁t

𝑘=1

𝜙𝑘(𝑡−
𝑛+1) (20) 

 

where 𝐪̂𝑛+1 is solution value at 𝑡𝑛+1. Upwind differencing is used at the time element boundaries and thus 𝐪̂𝑛 is 

calculated by expanding 𝐪𝑘
𝑛 in the same way within the previous time element [𝑡𝑛−1, 𝑡𝑛] . 

In this work, DGT temporal discretizations using a temporal order which is independent of the spatial order up to 

𝑝𝑡=8 have been implemented and tested. In the following, we describe in more detail the temporal discretization for 

𝑝𝑡 =1, using a tensor product basis in space and time, with Gauss-Legendre quadrature points. This specific 

discretization is then compared with the corresponding Gauss FIRK scheme. First, the right-hand-side of Eq. (15) is 

expanded to obtain a system of algebraic equations. We begin by expanding the solution of 𝐐(𝐱, 𝑡−
𝑛+1) as follows: 

 

𝐐(𝐱, 𝑡−
𝑛+1) = ∑ 𝑄𝑚𝑛𝑙

𝑛+1𝜙𝑚(𝑥)𝜙𝑛(𝑦)𝜙𝑙(𝑡−
𝑛+1)

𝑁

𝑚,𝑛,𝑙=1

 (21) 

 = ∑ {∑ 𝑄𝑚𝑛𝑙
𝑛+1𝜙𝑙(𝑡−

𝑛+1)

𝑁t

𝑙=1

} 𝜙𝑚(𝑥)𝜙𝑛(𝑦)

𝑁

𝑚,𝑛=1

 (22) 
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 = ∑ 𝑄̂𝑚𝑛
𝑛+1𝜙𝑚(𝑥)𝜙𝑛(𝑦) 

𝑁

𝑚,𝑛=1

 (23) 

      

Then,  

 

∫ 𝐐(𝐱, 𝑡−
𝑛+1)𝜙(𝑡−

𝑛+1)
Ω𝐸

𝑑Ω𝐸 = 𝜙𝑘(𝑡−
𝑛+1) ∫ { ∑ 𝑄̂𝑚𝑛

𝑛+1𝜙𝑚(𝑥)𝜙𝑛(𝑦) 

𝑁

𝑚,𝑛=1

} 𝜙𝑖(𝑥)𝜙𝑗(𝑦)𝑑𝑥𝑑𝑦
𝛺

 (24) 

 ≈ 𝜙𝑘(𝑡−
𝑛+1) ∑ { ∑ 𝑄̂𝑚𝑛

𝑛+1𝜙𝑚(𝑥𝜆)𝜙𝑛(𝑦𝜇) 

𝑁

𝑚,𝑛=1

}

𝑁

𝜆,𝜇=1

𝜙𝑖(𝑥𝜆)𝜙𝑗(𝑦𝜇){𝐽𝜔𝜆𝜔𝜇} (25) 

 = 𝜙𝑘(𝑡−
𝑛+1)𝑄̂𝑖𝑗

𝑛+1{𝐽𝜔𝑖𝜔𝑗} (26) 

 = 𝐌𝐪̂𝑛+1𝜙𝑘(𝑡−
𝑛+1) (27) 

 

Here J is the element Jacobian, and 𝜔𝑖 are the quadrature weights. 

Similarly, ∫ 𝐐(𝐱, 𝑡−
𝑛)𝜙(𝑡+

𝑛)𝑑Ω𝐸Ω𝐸
= 𝐌𝐪̂𝑛𝜙𝑘(𝑡+

𝑛). Thus, the first integral of Eq. (15) can be written as: 

 

1

∆𝑡
∫ [𝐐(𝐱, 𝑡−

𝑛+1)𝜙(𝑡−
𝑛+1) − 𝐐(𝐱, 𝑡−

𝑛)𝜙(𝑡+
𝑛)]

Ω𝐸

𝑑Ω𝐸 =
𝐌

∆𝑡
[𝐪̂𝑛+1𝜙𝑘(𝑡−

𝑛+1) − 𝐪̂𝑛𝜙𝑘(𝑡+
𝑛)] (28) 

 

For the case of 𝑝𝑡 = 1, by given in Eq. (20),  

 

𝐪̂𝑛+1 = ∑ 𝐪𝑘
𝑛+1

𝑁t=2

𝑘=1

𝜙𝑘(𝑡−
𝑛+1) = 𝐪1

𝑛+1𝜙1(𝑡−
𝑛+1) + 𝐪2

𝑛+1𝜙2(𝑡−
𝑛+1) (29) 

 

Thus, Eq. (28) can be expressed in a matrix form as:  

 

1

∆𝑡
∫ [𝐐(𝐱, 𝑡−

𝑛+1)𝜙(𝑡−
𝑛+1) − 𝐐(𝐱, 𝑡−

𝑛)𝜙(𝑡+
𝑛)]

Ω𝐸

𝑑Ω𝐸 =
𝐌

∆𝑡
{𝚽𝑛+1 [

𝐪1
𝑛+1

𝐪2
𝑛+1] − 𝚿̂𝑛 [

𝐪̂𝑛

𝐪̂𝑛]} (30) 

 

where  

 𝚽𝑛+1 = [
𝜙1(𝑡−

𝑛+1)𝜙1(𝑡−
𝑛+1) 𝜙1(𝑡−

𝑛+1)𝜙2(𝑡−
𝑛+1)

𝜙2(𝑡−
𝑛+1)𝜙1(𝑡−

𝑛+1) 𝜙2(𝑡−
𝑛+1)𝜙2(𝑡−

𝑛+1)
], (31) 

 𝚿̂𝑛 = [
𝜙1(𝑡+

𝑛) 0

0 𝜙2(𝑡+
𝑛)

]. (32) 

 

When we apply the same expansion process, the second integral of Eq. (15) becomes: 

 

−
1

∆𝑡
∫ ∫ 𝐐𝑛+1

𝜕𝜙

𝜕𝑡
𝑑Ω𝐸𝑑𝑡

Ω𝐸𝐼𝑛
 = −

1

∆𝑡
𝐽𝜔𝑖𝜔𝑗 ∑ 𝑄𝑖𝑗𝜈

𝑛+1𝐷𝑘𝜈𝜔𝜈

𝑁t=2

𝜈=1

 (33) 

 = −
𝐌

∆𝑡
∑ 𝐪𝑣

𝑛+1𝐷𝑘𝜈𝜔𝜈

𝑁t=2

𝜈=1

 (34) 

 = −
𝐌

∆𝑡
{𝐪1

𝑛+1𝐷𝑘1𝜔1 + 𝐪2
𝑛+1𝐷𝑘2𝜔2} (35) 
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where 𝐷𝑘𝜈 =
𝜕𝜙𝑘(𝑡𝜈)

𝜕𝑡
. Eq. (35) can be also expressed in a matrix form as:  

 

−
1

∆𝑡
∫ ∫ 𝐐𝑛+1

𝜕𝜙

𝜕𝑡
𝑑Ω𝐸𝑑𝑡

Ω𝐸𝐼𝑛
= −

𝐌

∆𝑡
𝑫𝝎 [

𝐪1
𝑛+1

𝐪2
𝑛+1] (36) 

 

where 𝑫𝝎 = [
𝐷11𝜔1 𝐷12𝜔2

𝐷21𝜔1 𝐷22𝜔2
].  

The third integral of Eq. (15) is the spatial residual part, which can be written as  

 

1

∆𝑡
∫ 𝐑(𝐐𝑛+1)𝜙(𝑡)𝑑𝑡
𝐼𝑛

 =
1

∆𝑡
∫ {∑𝐫𝑙

𝑛+1𝜙𝑙(𝑡)

𝑁

𝑙=1

} 𝜙𝑘(𝑡)𝑑𝑡
𝐼𝑛

 (37) 

 ≈
1

∆𝑡
∑ {∑ 𝐫𝑙

𝑛+1𝜙𝑙(𝑡𝜈)

𝑁

𝑙=1

}𝜙𝑘(𝑡𝜈)

𝑁

𝜈=1

(𝐽𝑡𝜔𝜈) (38) 

 = 𝐫𝑘
𝑛+1 (

𝜔𝑘

2
) (39) 

 

where 𝐽𝑡 =
𝑑𝑡

𝑑𝑡′
=

𝛥𝑡

2
, t’ being the non-dimensional time coordinate in the isoparametric mapped element. The 

corresponding matrix form is as follows: 

 

1

∆𝑡
∫ 𝐑(𝐐𝑛+1)𝜙(𝑡)𝑑𝑡
𝐼𝑛

=
1

2
𝛀 [

𝐫1
𝑛+1

𝐫2
𝑛+1] (40) 

 

where 𝛀 = [
𝜔1 0
0 𝜔2

]. Combining Eqs. (30), (36), and (40) into Eq. (15) yields a matrix form of 𝐋(𝐐) as: 

 

DG in time: 𝐋(𝐐𝑛+1) =
𝐌

∆𝑡
{(𝚽𝑛+1 − 𝑫𝝎) [

𝐪1
𝑛+1

𝐪2
𝑛+1] − 𝚿̂𝑛 [

𝐪̂𝑛

𝐪̂𝑛]} +
𝛀

2
[
𝐫1

𝑛+1

𝐫2
𝑛+1] (41) 

 

 

C. Fully Implicit Runge-Kutta Scheme (FIRK) 

Two and three stage Gauss schemes and Radau 2A schemes are investigated in Refs. [14,15]. Gauss schemes use 

Gauss-Legendre quadrature points for the multi-stages and thus the formulations are similar to the DG in time 

schemes resulting from our space-time formulation. For simplicity, let us consider two stage Gauss scheme. The two 

stage Gauss scheme takes the form as: 

 

FIRK: 𝐋(𝐐𝑛+1) =
𝐌

∆𝑡
{[

𝐪1
𝑛+1

𝐪2
𝑛+1] − [

𝐪̂𝑛

𝐪̂𝑛]} + 𝑨 [
𝐫1

𝑛+1

𝐫𝟐
𝑛+1] (42) 

 

where the matrix A of coefficients is 

𝑨 =

[
 
 
 
 1

4

1

4
−

√3

6

1

4
+

√3

6

1

4 ]
 
 
 
 

 (43) 
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In Ref. [14], a preconditioned version (p-FIRK) was also studied, and it can be expressed as: 

 

p-FIRK: 𝐋(𝐐𝑛+1) =
𝐌

∆𝑡
{𝑨−1 [

𝐪1
𝑛+1

𝐪2
𝑛+1] − 𝑨−1 [

𝐪̂𝑛

𝐪̂𝑛]} + [
𝐫1

𝑛+1

𝐫𝟐
𝑛+1] (44) 

 

As can be seen, although the original formulation of the FIRK scheme is substantially different than that of the DGT 

scheme above, the preconditioned form is very close to the DGT scheme, especially when considering that the 

matrix is diagonal and that the second term in the first set of brackets represents a constant term in both cases. 

   

 

IV. Pseudo-Time Stepping 

Once we have the formulation of  𝐋(𝐐𝑛+1) for the various temporal discretizations, we are interested in solving 

𝐋(𝐐𝑛+1) = 0 at every time step to advance in time. In order to solve this non-linear set of equations, pseudo-time 

stepping, also known as dual-time stepping, is an often used approach which seeks to mimic the physical time 

evolution of the solution by adding a pseudo-time term 𝐌
𝜕𝐐

𝜕𝜏
 as [7]: 

  𝐌
𝜕𝐐

𝜕𝜏
+ 𝐋(𝐐𝑛+1) = 0 (45) 

 

and integrating in pseudo-time 𝜏 until steady-state is achieved.  

 

A. Convergence Characteristics: FIRK vs. DGT 

Before we start describing how to solve Eqn. (45), we need to make sure that the pseudo-time stepping approach 

converges to a steady-state solution. Following Ref. [14], we consider the application these temporal discretizations 

to the scalar equation: 

 
𝑑𝑢

𝑑𝑡
= 𝑎𝑢 

 

where 𝑎 is a complex coefficient lying in the left-half  plane. A dual time stepping scheme applied for each temporal 

discretization to the above equation as: 
d𝐐

dτ
= −𝐌−1L(𝐐) 

results in a linear constant coefficient inhomogeneous system of the form: 

 

 
d𝐐

dτ
= 𝐁𝐐 + 𝐜 (46) 

where the B matrix is given by the corresponding entry in Table 1 below along with the constant c vector for each 

temporal discretization. The general solution takes the form of: 

 

 𝐐 = ∑𝜅𝑚 exp(𝜆𝑚𝜏)𝝂𝑚

𝑚

+ S(𝜏) (47) 

 

where 𝜅𝑚  are arbitrary constants; 𝜆𝑚  and 𝝂𝑚  are eigenvalues and eigenvectors of the matrix 𝐁 , respectively. 

∑ 𝜅𝑚  exp(𝜆𝑚𝜏)𝝂𝑚𝑚  is the transient solution and S(𝜏) is the steady-state solution. When 𝑅𝑒(𝜆𝑚) < 0, the transient 

term will decay to zero as 𝜏 → ∞, so that the solution approaches S(𝜏). 

Table 1 shows the matrices and the associated eigenvalues for each temporal discretization. As pointed out in 

Ref. [14], the eigenvalues for FIRK could have a positive real part even when 𝑅𝑒(𝑎) < 0, while p-FIRK has both 

roots that have a negative real part whenever 𝑅𝑒(𝑎) < 0, establishing the feasibility of applying the pseudo-time 

integration approach to p-FIRK. Interestingly, as seen in Table 1, the eigenvalues of DGT are considerably similar 

to those of p-FIRK, which also shows the feasibility of applying pseudo-time stepping to DGT. 

D
ow

nl
oa

de
d 

by
 D

im
itr

i M
av

ri
pl

is
 o

n 
Ja

nu
ar

y 
18

, 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
1-

01
56

 



9 

 

 

 

Table 1 The matrices 𝐁 and 𝐜 in the inhomogeneous system of Eq. (46), and the eigenvalues of B 

` 𝐁 𝐜 𝜆 

FIRK 𝑎𝐀 −
1

𝛥𝑡
𝐈 

1

𝛥𝑡
 [

𝑞̂𝑛

𝑞̂𝑛] 
1

4
𝑎 −

1

𝛥𝑡
± 𝑖𝑎√

1

48
 

p-FIRK 𝑎𝐈 −
1

𝛥𝑡
𝐀−1 

1

𝛥𝑡
𝐀−1 [

𝑞̂𝑛

𝑞̂𝑛] 𝑎 −
3

𝛥𝑡
± 𝑖

√3

𝛥𝑡
 

DG in time 𝑎 (
𝛀

2
) −

1

𝛥𝑡
(𝚽𝑘 − 𝐃𝝎) 

1

𝛥𝑡
𝚿̂𝑛 [

𝑞̂𝑛

𝑞̂𝑛] 
𝑎

2
−

1

𝛥𝑡
± 𝑖

√2

2𝛥𝑡
 

 

B. Explicit RK1 Pseudo-Time Stepping 

This nonlinear system can be solved by Newton’s method, or by nonlinear multigrid methods. In the present 

study, for simplicity, we use the explicit RK1 (or the 1
st
 order accurate forward Euler) time stepping in pseudo-time, 

which gives  

 

 
𝐌

∆𝜏
(𝐐𝑘+1 − 𝐐𝑘) + 𝐋(𝐐𝑛+1) = 0 (48) 

 

Here, 𝐐𝑘 is the pseudo-time level and 𝐐𝑛 is the physical-time level such that  

 

 𝐐𝑘+1 ≈ 𝐐𝑘 → 𝐐𝑛+1 as 𝑘 → ∞ and 𝐋(𝐐𝑘) → 0  (49) 

 

Thus, we can write Eq. (48) as: 

 

 𝐐𝑘+1 = 𝐐𝑘 − ∆𝜏𝐌−𝟏𝐋(𝐐𝑘) (50) 

 

This gives an explicit equation to be solved for 𝐐𝑘+1. 

 

 

1) BDF-RK1 

Let us start with BDF schemes to see how we can solve Eq. (50) for each temporal discretization.  

BDF1: 𝐪𝑘+1 = 𝐪𝑘 −
∆𝜏

∆𝑡
[𝐪𝑘 − 𝐪𝑛] − ∆𝜏𝐌−𝟏𝐫𝑘 

(51) 

BDF2: 𝐪𝑘+1 = 𝐪𝑘 −
∆𝜏

∆𝑡
[
3

2
𝐪𝑘 − 2𝐪𝑛+

1

2
𝐪𝑛−1] − ∆𝜏𝐌−𝟏𝐫𝑘 (52) 

 

It should be noted that the values 𝐪𝑛 and 𝐪𝑛−1 are constants throughout the pseudo-time iteration. When 
∆𝜏

∆𝑡
 is small, 

these formulations reproduce the steady-state time-stepping equations, if ∆𝜏 is used in the place of ∆𝑡. If ∆𝑡 ≫ 1, 

then ∆𝜏 explicit stability limit should be the same as the explicit time step for physical time stepping. If  ∆𝑡 ≈ 1 or 

∆𝑡 ≪ 1, then this becomes unstable unless ∆𝜏 is reduced substantially. 

In the formulations of Eqns. (51) and (52), physical-time derivatives contribute to the right-hand-side of the 

equations, which means the contributions are treated explicitly. In order to maintain stability for small ∆𝑡 without 

reducing ∆𝜏 , we need to treat the term which corresponds to 𝐪𝑛+1  implicitly in the BDF formulations [16]. 

Formulations for the explicit or implicit physical time-derivative contribution (PTDC) can be combined as: 
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BDF1-RK1: [1 + 𝜀
∆𝜏

∆𝑡
] 𝐪𝑘+1 = [1 + (𝜀 − 1)

∆𝜏

∆𝑡
] 𝐪𝑘 +

∆𝜏

∆𝑡
𝐪𝑛 − ∆𝜏𝐌−𝟏𝐫(𝐪𝑘) 

(53) 

BDF2-RK1: [1 + 𝜀
3

2

∆𝜏

∆𝑡
] 𝐪𝑘+1 = [1 + (𝜀 − 1)

3

2

∆𝜏

∆𝑡
] 𝐪𝑘 +

∆𝜏

∆𝑡
[2𝐪𝑛−

1

2
𝐪𝑛−1] − ∆𝜏𝐌−𝟏𝐫(𝐪𝑘) (54) 

 

where 𝜀 is an implicit parameter which determines the physical-time derivative contribution to be explicit (𝜀 = 0) or 

implicit (𝜀 = 1). The second term on the right-hand-side is a constant, so for =1 the stability of these equations is 

governed by that of the steady-state problem (i.e. by the spatial residual) and we expect a constant stability limit in 

pseudo time which is independent of the physical time step size.  

 

 

   

2) DGT-RK1 

Similarly, formulations of the explicit or implicit physical time-derivative contribution (PTDC) for DG in time 

can be derived as follows. 

  

DGT-RK1:   

[𝐈 + 𝜀
∆𝜏

∆𝑡
(𝚽𝑘 − 𝑫𝝎)] [

𝐪1
𝑘+1

𝐪2
𝑘+1] = [𝐈 + (𝜀 − 1)

∆𝜏

∆𝑡
(𝚽𝑘 − 𝑫𝝎)] [

𝐪1
𝑘

𝐪2
𝑘] +

∆𝜏

∆𝑡
𝚿̂𝑛 [

𝐪̂𝑛

𝐪̂𝑛] − ∆𝜏𝐌−𝟏 (
𝛀

2
) [

𝐫1
𝑘

𝐫𝟐
𝑘] (55) 

It is worthwhile to note that the matrix [𝐈 + 𝜀
∆𝜏

∆𝑡
(𝚽𝑘 − 𝑫𝝎)] on the left-hand-side is a block-diagonal matrix which 

can be pre-calculated. The inversion process is not expensive. 

 

3) FIRK-RK1 

We also can express the PTDC formulations for FIRK and p-FIRK as: 

FIRK-RK1: [𝐈 + 𝜀
∆𝜏

∆𝑡
] [

𝐪1
𝑘+1

𝐪2
𝑘+1] = [𝐈 + (𝜀 − 1)

∆𝜏

∆𝑡
] [

𝐪1
𝑘

𝐪2
𝑘] +

∆𝜏

∆𝑡
[
𝐪̂𝑛

𝐪̂𝑛] − ∆𝜏𝐌−𝟏𝑨 [
𝐫1

𝑘

𝐫𝟐
𝑘] (56) 

p-FIRK-RK1: [𝐈 + 𝜀
∆𝜏

∆𝑡
𝑨−1] [

𝐪1
𝑘+1

𝐪2
𝑘+1] = [𝐈 + (𝜀 − 1)

∆𝜏

∆𝑡
𝑨−1] [

𝐪1
𝑘

𝐪2
𝑘] +

∆𝜏

∆𝑡
𝑨−1 [

𝐪̂𝑛

𝐪̂𝑛] − ∆𝜏𝐌−𝟏 [
𝐫1

𝑘

𝐫𝟐
𝑘] (57) 

 

V. p-Multigrid Strategy 

A non-linear multigrid strategy provides an avenue for further accelerating the convergence in pseudo time of 

the implicit system problem which avoids the explicit consideration of Jacobian matrices. In particular, a p-multigrid 

method can be constructed where the solution is first computed approximately on the fine grid using a small number 

of explicit iterations in pseudo time, after which the solution is transferred to a “coarser” mesh with fewer degrees of 

freedom obtained by lowering the p-order discretization on the same physical or geometric mesh. After the coarse 

level problem is (partially) solved, the corrections to the coarse level solution can be propagated back to the fine 

level using a prolongation step. When this procedure is applied recursively on progressively finer meshes, a 

complete p-multigrid solver is obtained. By using explicit iterations (in pseudo time) on each level, the efficiency of 

the tensor-product formulation is retained resulting in an efficient solver for very high p-order discretizations. 

In addition to performing explicit time steps on each level of the p-multigrid sequence, a consistent approach for 

restricting the residuals and the solution from fine levels to coarser levels, as well as a prolongation technique for 

transferring the coarse level solution corrections back to finer levels, must be employed. The approach taken in this 

work is to use a Galerkin projection from the fine p to coarse p-1 level within an element. This formulation starts 

with the statement that the solution evaluated at some point x in the element should have the same value expressed 

in terms of the fine or coarse level basis functions: 
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 ∑𝑏𝑗𝜙𝑗
𝑝−1

(𝑥)

𝑝

𝑗=1

= ∑ 𝑎𝑖𝜙𝑖
𝑝
(𝑥)

𝑝+1

𝑖=1

 (58) 

Here 𝑎𝑖  are the solution coefficients on the fine level and 𝑏𝑗  are the corresponding (unknown) coarse level 

coefficients, with the corresponding basis functions being denoted by the 𝜙’s. Pre-multiplying by a test function in 

the p-1 space and integrating over the element gives: 

 ∑∫ 𝜙𝑘
𝑝−1

𝜙𝑗
𝑝−1

element

𝑏𝑗

𝑝

𝑗=1

= ∑ ∫ 𝜙𝑘
𝑝−1

𝜙𝑖
𝑝
𝑎𝑖

element

𝑝+1

𝑖=1

 (59) 

which can be written in matrix form as: 

 𝑀𝑘𝑗
(𝑝−1)×(𝑝−1)

𝑏𝑗 = 𝑁𝑘𝑖
(𝑝−1)×𝑝

𝑎𝑖 (60) 

Here M is seen to be the usual mass matrix in the p-1 space and N is a rectangular matrix. The 𝑏𝑗 coefficients are 

then obtained by inverting the mass matrix as: 

 𝑏 = [𝑀−1]𝑝−1[𝑁](𝑝−1)×𝑝𝑎 (61) 

In the prolongation step, the procedure is reversed, and the coefficients are obtained in terms of the b coefficients as: 

 𝑎 = [𝑀−1]𝑝[𝑁]𝑝×(𝑝−1)𝑏 (62) 

The construction is such that a prolongation operation followed by restriction results in the identity matrix. Notably, 

the prolongation operator constructed in this manner does not correspond to the transpose of the restriction operator, 

as is often used in geometric and algebraic multigrid methods [20].  

 

 

 

VI. Numerical Results 

A. Numerical Tests for the Formal Order of Accuracy 

The conservative form of the two-dimensional (in space) Euler equation is considered as governing equations 

and square Cartesian meshes are used for numerical tests in this section. 
 

1) Spatial Accuracy Study for Ringleb Flow 

Ringleb flow is an exact solution for the two-dimensional Euler equations [21]. This exact solution has been 

used to test the spatial order of accuracy of the discretization [17, 22]. The computational domain is set to 0≤x≤1 

and 0≤y≤1. The exact solution is also used for boundary conditions in the x- and y-directions. The flow is initialized 

with the exact analytic solution and then the simulation is run until the spatial residual converges to machine 

precision. A grid refinement study is carried and the error is calculated by measuring the difference of density 

between the exact solution and the computed solution. 

Table 2 shows L1, L2 and L∞ errors for three spatial discretizations (p=2, 4, 9). The average values of the L2 error 

order are 2.98, 5.08 and 10.68 for p=2, 4 and 9, respectively. L1 and L∞ error orders are also similar. The designed 

formal order of accuracy seems to be achieved for all p-orders in space. 
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Table 2 Spatial accuracy study for Ringleb flow 

 ∆x L1 error  L1 order L2 error L2 order L∞ error L∞ order 

P2 0.2000 2.8007E-06   3.8289E-06   1.6136E-05   

0.1000 3.5406E-07 2.98 4.8820E-07 2.97 2.9687E-06 2.44 

0.0500 4.4524E-08 2.99 6.1669E-08 2.98 4.6975E-07 2.66 

0.0250 5.5833E-09 3.00 7.7510E-09 2.99 6.8463E-08 2.78 

Avg. 
 

2.99 
 

2.98 
 

2.63 

P4 0.2000 4.7068E-09   7.8441E-09   7.3407E-08   

0.1000 1.2795E-10 5.20 2.2032E-10 5.15 2.3379E-09 4.97 

0.0500 3.7273E-12 5.10 6.5383E-12 5.07 7.5168E-11 4.96 

0.0250 1.2032E-13 4.95 2.0208E-13 5.02 2.4372E-12 4.95 

Avg. 

 

5.09 

 

5.08 

 

4.96 

P9 0.7500 8.5877E-09   2.0036E-08   2.6948E-07   

0.5000 8.2675E-11 11.45 5.7677E-10 8.75 1.1527E-08 7.77 

0.3750 5.9244E-12 9.16 1.7035E-11 12.24 3.8535E-10 11.81 

0.3000 6.1323E-13 10.16 9.3003E-13 13.03 1.3772E-11 14.93 

0.2500 8.7751E-14 10.66 1.1466E-13 11.48 7.9181E-13 15.67 

0.2143 2.1695E-14 9.07 3.3885E-14 7.91 3.7392E-13 4.87 

Avg. 

 

10.10 

 

10.68 

 

11.01 

 

 

 

2) Temporal Accuracy Study for An Isentropic Vortex Convection 

An isentropic vortex convection problem [19, 23, 24] is considered to assess temporal accuracy. As an initial 

condition, an isentropic vortex is superposed to the mean flow field. Initial mean flow and perturbation values for 

the isentropic vortex are given by 

 

𝑢∞ = 0.5, 𝑣∞ = 0, 𝑝∞ = 𝜌∞ = 𝑇∞ = 1, (𝛿𝑢, 𝛿𝑣) =
𝛽

2𝜋
𝑒(1−𝑟2)/2(−𝑦̄, 𝑥̄), 𝛿𝑇 = −

(𝛾−1)𝛽2

8𝛾𝜋2 𝑒1−𝑟2
,  

 

where β is the vortex intensity set to 4 and 𝛾 = 1.4. Here, (𝑥̄, 𝑦̄) = (𝑥 − 𝑥𝑣0, 𝑦 − 𝑦𝑣0), where 𝑥𝑣0  and 𝑦𝑣0  are 

coordinates of the center of initial vortex : (𝑥𝑣0, 𝑦𝑣0) = (0,0), and 𝑟2 = 𝑥̄2 + 𝑦̄2. The entire flow field is required to 

be isentropic so, for a perfect gas, 𝑝 𝜌𝛾⁄ = 1. 

From the relations, 𝜌 = 𝜌∞ + 𝛿𝜌 , 𝑢 = 𝑢∞ + 𝛿𝑢 , 𝑣 = 𝑣∞ + 𝛿𝑣 , 𝑇 = 𝑇∞ + 𝛿𝑇 , and the isentropic relation, the 

resulting conservative variables are given by 

 

𝜌 = 𝑇1/(𝛾−1) = (𝑇∞ + 𝛿𝑇)1/(𝛾−1) = [1 −
(𝛾−1)𝛽2

8𝛾𝜋2 𝑒1−𝑟2
]
1/(𝛾−1)

, 𝜌𝑢 = 𝜌(𝑢∞ + 𝛿𝑢) = 𝜌 [1 −
𝛽

2𝜋
𝑒(1−𝑟2)/2𝑦̄] 

𝜌𝑣 = 𝜌(𝑣∞ + 𝛿𝑣) = 𝜌 [1 +
𝛽

2𝜋
𝑒(1−𝑟2)/2𝑥̄], 𝑝 = 𝜌𝛾, 𝑒 =

𝑝

𝛾−1
+

1

2
𝜌(𝑢2 + 𝑣2). 

 

Table 3 Temporal accuracy study for DGT 

 ∆t L1 error  L1 order L2 error L2 order L∞ error L∞ order 

P1 1.000 4.6267E-05 
 

2.4704E-04 
 

4.7856E-03 
 

0.500 7.5068E-06 2.62 3.9115E-05 2.66 7.6858E-04 2.64 

0.250 1.0173E-06 2.88 4.9508E-06 2.98 9.2563E-05 3.05 

0.125 1.3278E-07 2.94 6.3772E-07 2.96 1.1358E-05 3.03 

Avg. 
 

2.81 
 

2.87 
 

2.91 

P2 1.000 2.7632E-06   1.6165E-05   3.0092E-04   

0.500 1.3700E-07 4.33 6.9904E-07 4.53 1.0947E-05 4.78 

0.250 5.1223E-09 4.74 2.6392E-08 4.73 3.8318E-07 4.84 

0.125 1.6802E-10 4.93 8.5126E-10 4.95 1.2780E-08 4.91 

Avg.   4.67   4.74   4.84 
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Table 4 Temporal accuracy study for two stage Gauss and Radau 2A scheme 

 ∆t L1 error  L1 order L2 error L2 order L∞ error L∞ order 

Gauss 1.000 1.2295E-05 
 

7.3265E-05 
 

1.2441E-03 
 

0.500 7.2081E-07 4.09 3.4346E-06 4.41 4.4038E-05 4.82 

0.250 5.3668E-08 3.75 2.5884E-07 3.73 3.8282E-06 3.52 

0.125 3.6222E-09 3.89 1.7224E-08 3.91 2.6195E-07 3.87 

Avg. 
 

3.91 
 

4.02 
 

4.07 

Radau 2A 1.000 3.7273E-05   1.9873E-04   3.7876E-03   

0.500 5.6780E-06 2.71 3.1314E-05 2.67 6.2362E-04 2.60 

0.250 7.4971E-07 2.92 3.9743E-06 2.98 8.0173E-05 2.96 

0.125 9.5939E-08 2.97 5.0059E-07 2.99 9.9944E-06 3.00 

Avg.   2.87   2.88   2.86 

 

The computational domain is set to −10 ≤ 𝑥 ≤ 10 and −10 ≤ 𝑦 ≤ 10. Periodic boundary conditions are used in x- 

and y-directions. The vortex convects to the right with the freestream (𝑢∞ = 0.5) and due to the periodic boundary 

conditions, goes back to the initial location every non-dimensional time interval 𝛥𝑡 = 20.  
Since the flow field is inviscid, the exact solution is just a passive advection of the initial vortex with a mean 

velocity. The overall error, however, includes both spatial and temporal errors. In order to eliminate the spatial error 

and to isolate the temporal error, a reference solution for each temporal p-order discretization is obtained first using 

a time-step of ∆t=0.01. Then, the difference of density between the reference solution and a corresponding computed 

solution is considered as the temporal error.  

Table 3 shows the L1, L2 and L∞ errors at t=2. The average values of the L2 error order for p=1 and 2 in time are 

2.87 and 4.74, respectively. L1 and L∞ error orders also show similar values. The chosen temporal discretizations 

(𝑝𝑡=1, 2) achieve accuracies of approximately 2p+1, within the range of time step sizes tested herein for the given 

∆x and spatial p-order. Thus at least for this well resolved case, it appears that the DGT schemes achieve 

superconvergence compared to the expected accuracy of p+1. 

In Table 4, the temporal accuracy of the two stage Gauss and Radau2A schemes are seen to be approximately 4 

and 3, respectively. This corresponds to the expected order of accuracy for these FIRK schemes which are 2s and 2s-

1, respectively, where s is the number of stages. In terms of the number of stages in the DGT schemes corresponds 

to p+1, this means that the Gauss FIRK scheme achieves accuracy of 2p+2, while the Radau 2A scheme achieves 

accuracy of 2p+1. Similar results on an equivalent test problem for these and higher order FIRK schemes are 

reported in [15]. 

 

B. Comparison of Convergence Performance 

In this section, the convergence performances of BDF1-RK1, DGT-RK1 and FIRK-RK1 are investigated. The 

isentropic vortex convection problem used in the previous section serves as the time-dependent flow problem. Tests 

were performed using a fixed spatial discretization (𝑝𝑠 = 5) on the domain size of −10 ≤ 𝑥 ≤ 10 and −10 ≤ 𝑦 ≤
10. 

 The convergence performance is compared in terms of the number of explicit pseudo-time steps required to 

drive the L2-norm of the residual to less than 10
-12

. The convergence history for the very first step in physical time is 

only compared to see the differences between the schemes more closely. It was verified that the convergence 

behavior for the first physical time step is similar for the rest of the steps, but the plots are not presented here. 

As expected, the solution efficiency depends on the physical time step size, as well as the largest pseudo-time 

step that can be used in the iterative scheme without provoking instabilities. The CFL number is an important 

parameter in this respect. Basically, we assume that the CFL number in pseudo time must be less than one. For high-

order spatial discretizations, however, the actual time step size is severely reduced. We compute the maximum 

allowable ∆𝑡 based on the formulation as follows. 

   

 CFL𝑡 = (|𝑈| + 𝑐)
∆𝑡

min(𝑑𝑥, 𝑑𝑦)
 (63) 

 
CFLt

∗ = (|U| + c)
∆t

min(dx, dy)
∙ (p + 1)1.8 

(64) 
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where CFL𝑡 is a CFL number for physical time step ∆𝑡. CFL𝑡
∗  is a modified CFL number which considers the effect 

of high-order spatial discretization, which has been derive by empirical numerical evidence [22]. CFL𝑡
∗ = 1 means 

that the ∆𝑡 is the maximum allowable time step for a corresponding high-order spatial discretization.  As shown in 

Eq. (63) and (64), they have the relation as:  

 
CFL𝑡

∗

CFL𝑡

= (𝑝 + 1)1.8 (65) 

CFL𝑡
∗  has larger values than CFL𝑡. For example, when p=5,  CFL𝑡

∗  is about 25 times larger than CFL𝑡. Similarly, CFL𝜏
∗  

for pseudo-time step is defined. CFL𝑡
∗  and CFL𝜏

∗  are used as parameters for comparison purposes. 

 

 

1) BDF1-RK1 

First, the effect of the implicit PTDC is studied for BDF1-RK1. As mentioned in the previous section, DGT with 

𝑝𝑡 = 0 corresponds to BDF1.  Figure 1shows the convergence histories of explicit and implicit PTDC for five 

different physical time step sizes ∆𝑡=0.02, 0.05, 0.1, and 0.5. The corresponding CFL𝑡
∗  values are 1.9, 4.8, 9.7, and 

48, respectively. For each physical-time step size, various pseudo-time step sizes ∆𝜏 in terms of CFL𝜏
∗  were tested.  

In each plot, the green solid line and blue dashed-dot-dot line indicate the best convergence rate for the explicit 

and implicit PTDC, respectively. When CFL𝜏
∗  is increased further, the explicit PTDC eventually becomes unstable. 

The red dashed line shows the unstable converge history for the corresponding smallest CFL𝜏
∗  case. The orange line 

corresponds to the implicit PTDC case with the same CFL𝜏
∗ . Overall, as the physical time step size ∆𝑡 increases, the 

convergence rate becomes slow and the maximum CFL𝜏
∗  for stable convergence decreases. In terms of CFL𝜏

∗ , the 

implicit PTDC scheme shows much better stability for small physical time steps. In Figure 1(a), for example, we can 

use CFL𝜏
∗  up to 1.5 for implicit PTDC, while the explicit case already diverges for CFL𝜏

∗ =0.9. On the other hand, for 

large physical time step ∆𝑡, the explicit and implicit PTDC become identical as shown in Figure 1(d).  

It should be noted that the slope of the best convergence curve remains almost the same for the explicit and 

implicit PTDC, although we can use larger ∆𝜏  for the implicit PTDC scheme. For the implicit PTDC, the 

convergence rate becomes slower than that for the explicit counterpart at the same CFL due to the factor  

1 [1 + 𝜀
∆𝜏

∆𝑡
]⁄ . Figure 1(c) shows a good example. The best performance convergence rate for the explicit PTDC 

scheme (green line) coincides with the best for the implicit PTDC scheme (blue line). Performance improvement for 

higher p-order is discussed in the following sections. 

 

 

 

 

 

 

 

  

(a) (b) 
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Figure 1 Convergence histories of explicit/implicit PTDC for BDF1 for ∆𝒕=0.02, 0.05, 0.1, 0.5 

 

2) DGT-RK1 

In order to study the effect of high p-order in time on convergence rate, the convergence histories of 𝑝𝑡 = 0 

(BDF1) and 𝑝𝑡 = 5 are compared. Explicit PTDC is used for both 𝑝𝑡 = 0  and 𝑝𝑡 = 5 to isolate the effect of high-

order 𝑝𝑡 .  Figure 2 shows the case of the physical time step ∆𝑡=0.1. Like the line colors in Figure 1, the green solid 

line indicates the best convergence rate and the red dashed line shows the unstable converge history for the smallest 

CFL𝜏
∗ . For 𝑝𝑡 = 5  case, the convergence rate is about four times slower than that for BDF1. While the best 

performance occurs with CFL𝑡
∗ =0.8 for BDF1, the convergence of 𝑝𝑡 = 5  already becomes slow at CFL𝑡

∗ =0.7 

indicating the beginning of instability. Both 𝑝𝑡 = 0  and 𝑝𝑡 = 5 become fully unstable at CFL𝑡
∗=0.9. 

   Figure 3 shows the same comparison for the physical time step ∆𝑡=0.26. Interestingly, 𝑝𝑡 = 5 shows a slightly 

better convergence rate. BDF1 shows the best performance at CFL𝑡
∗ =0.4 (green line). Compared to the case of 

∆𝑡=0.1, we can see again that the convergence rate becomes five times slower, as commented in the discussion for 

Figure 1. On the other hand, CFL𝑡
∗  up to 1.2 works for 𝑝𝑡 = 5. It should be noted that the convergence performance 

for 𝑝𝑡 = 5 remains almost same for both ∆𝑡=0.1 and 0.26. 

 

 

 

 

 

  

Figure 2 Effect of high-order 𝒑𝒕 on convergence rate for ∆𝒕=0.1 (explicit PTDC): (a) BDF1, (b) 𝒑𝒕=5 DGT 

 

(c) (d) 

(a) (b) 

D
ow

nl
oa

de
d 

by
 D

im
itr

i M
av

ri
pl

is
 o

n 
Ja

nu
ar

y 
18

, 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
1-

01
56

 



16 

 

  

Figure 3 Effect of high-order 𝒑𝒕 on convergence rate for ∆𝒕=0.26 (explicit PTDC): (a) BDF1, (b) 𝒑𝒕=5 DGT 

 

 

 

 

 

 

 

 

 

 

 

 

  

(a) (b) 

(a) (b) 

D
ow

nl
oa

de
d 

by
 D

im
itr

i M
av

ri
pl

is
 o

n 
Ja

nu
ar

y 
18

, 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
1-

01
56

 



17 

 

  

  

Figure 4 Convergence histories of explicit/implicit PTDC for DGT with ∆𝒕=0.02: (a) 𝒑𝒕=0, (b) 𝒑𝒕=1, (c) 𝒑𝒕=2, 

(d) 𝒑𝒕=3, (e) 𝒑𝒕=4, (f) 𝒑𝒕=5  

  

Figure 5 Convergence histories of explicit/implicit PTDC for DGT with ∆𝒕=0.26: (a) 𝒑𝒕=1, (b) 𝒑𝒕=5 
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Next, the effect of the implicit PTDC scheme for DG in time is investigated.  Figure 4 shows the explicit and 

implicit PTDC schemes for DGT with  𝑝𝑡=0~5. A small physical time step size ∆𝑡=0.02 is considered since the 

difference between the explicit and implicit PTDC schemes becomes clear for small ∆𝑡. The notation of line color 

follows the same pattern as in the previous figures. Overall, the implicit PTDC scheme shows better convergence 

performance. For BDF1 (𝑝𝑡=0) in (a), as commented for Figure 1, the difference in the best performing convergence 

rate is insignificant, although larger CFL𝑡
∗  can be used for the implicit PTDC scheme. As 𝑝𝑡  increases, however, the 

implicit PTDC shows much better convergence performance. For 𝑝𝑡  =5 in Figure 4(f), the implicit PTDC provides 

10x speed-up. 

The number of sub-iterations where the L2-norm of the residual becomes less than 10
-12

 are summarized in Table 

5.  As 𝑝𝑡  increases, the number of cycles needed for explicit PTDC increases rapidly from 9 for 𝑝𝑡=0 (BDF1) to 107 

for 𝑝𝑡=5. On the other hand, the number of cycles needed for the implicit PTDC remains same around 10, even for 

𝑝𝑡=5, which suggests a large benefit of the implicit PTDC when it is used for small physical time step ∆𝑡.  

 

Table 5 Best performance in terms of the number of sub-iterations for DGT with ∆𝒕=0.02 

 explicit PTDC (𝜀 = 0) implicit PTDC (𝜀 = 1) 

𝑝𝑡   CFL𝜏
∗  # of sub-iteration CFL𝜏

∗  # of sub-iteration 

0 0.8 9 1.5 8 

1 1.0 9 5.0 4 

2 0.8 19 2.0 7 

3 0.6 40 1.7 7 

4 0.4 68 1.5 8 

5 0.3 107 1.3 10 

 

Table 6 Best performance in terms of the number of sub-iterations for DGT with ∆𝒕=0.26 

 explicit PTDC (𝜀 = 0) implicit PTDC (𝜀 = 1) 

𝑝𝑡   CFL𝜏
∗  # of sub-iteration CFL𝜏

∗  # of sub-iteration 

1 1.2 80 1.6 61 

5 1.2 177 4.0 34 

 

 

Figure 5 and Table 6 show the same comparison for the case of larger physical time step size ∆𝑡=0.26. The 

implicit PTDC scheme also shows better convergence performance, but the 5x faster speed-up is smaller than the 

case of ∆𝑡=0.02 since the difference between explicit and implicit PTDC schemes decreases as ∆𝑡 increases. 

In summary, for smaller physical time steps ∆𝑡, the implicit PTDC scheme shows much better performance, 

especially at higher 𝑝𝑡  order. For larger ∆𝑡 , the explicit and implicit PTDC schemes become more and more 

identical, but higher 𝑝𝑡  order shows better performance than lower 𝑝𝑡  orders. 

 

3) FIRK-RK1 

The effect of implicit PTDC for FIRK is investigated in this subsection. In order to compare DGT with FIRK, 

the temporal p-order is fixed as 𝑝𝑡=1 and 𝑝𝑠=5 is used. Two-stage pre-conditioned Radau 2A scheme is also tested. 

Figure 6 shows comparison of the convergence histories for ∆𝑡 =0.01. Blue solid/red dashed/green dashed-

dot/orange dashed-dot-dot lines indicate DGT/FIRK-G/pFIRK-G/pFIRK-R, respectively. FIRK-G and FIRK-R 

indicate Gauss and Radau 2A scheme, respectively. Each convergence history corresponds to the best performance 

of convergence for each scheme. Figure 6(a) shows the explicit PTDC cases. For this small ∆𝑡, the original FIRK-G 

shows the fastest convergence rate, while DGT is the slowest. For the implicit PTDC case in Figure 6(b), however, 

DGT convergence rate is about two times faster, compared to the explicit PTDC. FIRK-G, pFIRK-G and pFIRK-R 
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show almost same the convergence rate even for the implicit PTDC scheme. This trend is also seen for ∆𝑡=0.02 in  

Figure 7. 

Similarly, Figure 8 shows the same comparison for ∆𝑡=0.26. The original FIRK-G becomes unstable for this 

large ∆𝑡 even with very small CFL𝑡
∗  (CFL𝑡

∗ ≪ 0.4 was also tested, but not presented here). Although DGT, pFIRK-G 

and pFIRK-R show slight speed-up for the implicit PTDC, the results of all schemes remain mostly same for the 

explicit and implicit PTDC. In Figure 9, as expected, the explicit or implicit PTDC becomes identical for ∆𝑡=2.6.  

It is worthwhile to note that when ∆𝑡 is large, the pre-conditioned Radau 2A (pFIRK-R) acts just like DGT for 

both the explicit and implicit PTDC. For small ∆𝑡, the convergence history of pFIRK-R is similar to that of DGT for 

the explicit PTDC, but similar to that of the pre-conditioned Gauss (pFIRK-G) for the implicit PTDC. It can be said 

that overall, pFIRK-R acts like DGT, but the implicit DGT out-performs the pFIRK-G and pFIRK-R for small ∆𝑡. 

 

  

Figure 6 Comparison of convergence histories for ∆𝒕=0.01: (a) explicit PTDC, (b) implicit PTDC  

 

 

 

 

  
Figure 7 Comparison of convergence histories for ∆𝒕=0.02: (a) explicit PTDC, (b) implicit PTDC 
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Figure 8 Comparison of convergence histories for ∆𝒕=0.26: (a) explicit PTDC, (b) implicit PTDC 

 

   

Figure 9 Comparison of convergence histories for ∆𝒕=2.6: (a) explicit PTDC, (b) implicit PTDC 

 

C. Convergence Acceleration Using p-Multigrid Method  

In this section we examine the performance of the p-multgrid solver for the DG in time discretizations. The 

space-time formulation with p-multigrid is also tested using the isentropic vortex problem discussed in the previous 

section. The space-time DG discretization supports decoupled p-orders in space and time, thus allowing for p-

multigrid to be applied in space only, in time only, or in both space and time simultaneously. Furthermore, as 𝑝𝑡=0 

corresponds to a BDF1, the implementation and solver performance is verified by ensuring that results obtained 

using the DG in time implementation at 𝑝𝑡=0 is consistent with the results obtained using the BDF1 implementation 

discussed in the previous section. 

 Figure 10 shows the convergence histories of the space-time DG discretization on a 40x40 grid for the 

isentropic vortex problem. The p-orders in space and time are 𝑝𝑠=5 and 8 (sixth- and nineth-order spatial accuracy), 

and 𝑝𝑡 =0 (first-order temporal accuracy), respectively. The results compare a single level approach to 2-level 

multigrid (MG V2). In terms of p-multigrid cycles, the 2-level multigrid approach is 2x times and 3x times faster 

than single level for 𝑝𝑠=5 and 𝑝𝑠=8, respectively. 

Next, higher temporal orders of accuracy are tested for DG in time. Figure 11 shows the convergence histories 

for 𝑝𝑠=5 and 8, and 𝑝𝑡=8. As the p-order in time increases to 𝑝𝑡=8, the convergence rates with respect to the number 

of multigrid cycles become 4x and 3x slower than 𝑝𝑡=0 case, as shown in Figure 11, for the single level 𝑝𝑠=5 and 8, 

respectively. The 2-level multigrid system is 2x times and 3x times faster than single level system for 𝑝𝑠=5 and 8, 

which is consistent with p-multigrid results for DG in space only. Note that for the higher-order temporal 
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discretizations, p-coarsening in both space and time is done on the coarse multigrid level. Although the comparisons 

are done here in terms of multigrid cycles, for a two level non-recursive multigrid method, the cpu time to 

convergence is much larger than that of the single level solver, due to the requirement of solving the coarse level to 

completion at each multigrid cycle. However, two level multigrid comparisons in terms of multigrid cycles are 

useful as they provide an estimate of the theoretical optimal speedup that a well formulated recursive multigrid 

algorithm can provide. 

 

 

 

 

 

 

  

Figure 10 Convergence histories of p-multigrid for BDF1 (𝒑𝒕=0): (a) 𝒑𝒔=5, (b) 𝒑𝒔=8 

 

 

 

 

  

Figure 11 Convergence histories of p-multigrid for DGT (𝒑𝒕=8): (a) 𝒑𝒔=5, (b) 𝒑𝒔=8 

 

VII. Conclusion 

In this work, we present a high-order space-time DG discretization based on a tensor-product formulation. The 

method allows an arbitrary high-order for both temporal and spatial discretization. This method is compared with 

multi-stage fully implicit Runge Kutta schemes, which are shown to take on a similar form. For two-dimensional (in 

space) compressible inviscid flows, spatial and temporal accuracy studies are performed for Ringleb flow and for the 

convection of an isentropic vortex, respectively. The temporal discretizations are solved at each time step using an 

explicit pseudo-time stepping approach, which can be accelerated using a p-multigrid solver in pseud-time. For the 

cases tested herein, the various temporal discretizations achieve or exceed their design orders of accuracy. The 
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pseudo time stepping approach is shown to be feasible for all schemes, provided the FIRK schemes are written in a 

form similar to the DGT schemes. 
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