
Advances in the Pseudo-Time Accurate Formulation of

the Adjoint and Tangent Systems for Sensitivity

Computation and Design

Emmett Padway ∗

Dimitri Mavriplis †

Department of Mechanical Engineering, University of Wyoming, Laramie, WY 82071

This paper presents progress in the pseudo-time accurate formulation of the adjoint and
tangent systems for sensitivity computation and design to better compute sensitivities for
non-converging simulations. Previous efforts presented the formulation and verification for
two explicit schemes and a quasi-Newton method. The previous quasi-Newton method for-
mulation had assumptions that limited the generality of its potential applications as it was
only exact for Newton-Chord Method nonlinear solvers with fixed linear smoothers. This
paper presents a new quasi-Newton method formulation using a more general assumption
and shows that in the limit of exact solution of the linear system the exact sensitivities are
recovered; additionally, this method is guaranteed to converge under certain conditions.
Furthermore, this work shows that the approximation of the sensitivities also becomes
more accurate as the nonlinear problem is solved. Finally, this method is applied to three
design optimization cases with non-converging analysis problems.

I. Introduction

Multidisciplinary Design Optimization (MDO) along with Adaptive Mesh Refinement (AMR) have
become larger parts of the expanding field of Computational Fluid Dynamics (CFD) as computers and

algorithms have developed. Much MDO is done using gradient driven optimization as this allows for far fewer
function evaluations when compared to global methods, such as genetic algorithms. This is necessary when
the function evaluations are as expensive as they are for many CFD simulations. The optimization toolboxes
used for these purposes (SNopt,1,2 DAKOTA,3 etc.) are indifferent to the source of the gradient and this has
allowed researchers to provide sensitivities through a selection of commonly used methods: finite-difference
(real or complex-step), tangent, or adjoint methods. The last two methods4 are more accurate than the
traditional finite-difference method (providing they are properly implemented) and are developed through
conditions on convergence to generate mathematical equations to solve for the sensitivities. The main benefit
of the complex-step finite-difference method is that for small complex steps it provides the exact sensitivities
of the computational process; it provides these sensitivities because it is the complex-step differnentiation of
the analysis simulation process. We argue that these are the appropriate sensitivities to use in unconverged
problems. The downsides of this method are the slowdown of the process due to the inclusion of complex
arithmetic, as well as the fact that this method scales with the number of design variables. In unconverged
flows, the finite-difference sensitivities computed either with real or complex-step perturbations are the
sensitivities of the solution process; with the complex-step computed sensitivities lacking the round-off error
of the traditional finite-difference method. The tangent formulation for the sensitivities of the steady-state
problem scales similarly to the finite-difference method, in that it generates a linear system which scales
with the number of design variables; however, the formulation is based on the requirement that the analysis
problem be fully converged to generate its linear system. The adjoint problem for the steady-state analysis
uses that same residual requirement, but is different in that it transposes the system and scales independently

∗Graduate Student, Member AIAA; email: epadway@uwyo.edu
†Professor, AIAA Associate Fellow; email: mavripl@uwyo.edu

1 of 32

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 D

im
itr

i M
av

ri
pl

is
 o

n
Ja

nu
ar

y
18

, 2
02

2
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

02
0-

31
36

 AIAA AVIATION 2020 FORUM

 June 15-19, 2020, VIRTUAL EVENT

 10.2514/6.2020-3136

 Copyright © 2020 by Emmett Padway, Dimitri Mavriplis. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

 AIAA AVIATION Forum

http://crossmark.crossref.org/dialog/?doi=10.2514%2F6.2020-3136&domain=pdf&date_stamp=2020-06-08

of the number of design variables– it scales with the number of objective functions. For many aerospace
applications the number of design variables is one to two orders of magnitude higher than the number of
objective functions and the adjoint method is a powerful and preferred technique to obtain sensitivities.
Additionally the adjoint solution is well suited for AMR as a tool to refine a computational mesh to increase
accuracy in an output of interest.5,6

As stated above, both the adjoint and tangent systems require that the analysis problem be fully converged –
or in the case of the unsteady adjoint, each implicit time step – indicating that the governing equations have
been satisfied to machine precision. However, as CFD has developed and matured and the field has attempted
more difficult problems (higher-order formulations, blunt geometries, or time-accurate simulations) this
constraint has become difficult or impractical to obey, and numerous design or mesh refinement cycles
have been done using adjoint systems linearized about partially converged analysis solutions. This defect
shows itself in less robust and more difficult to solve adjoint systems that are also sensitive to the specific
state of the analysis problem about which they are linearized when the analysis simulation is terminated.7,8

For AMR, this can lead to obtaining different AMR patterns which can lead to refining the mesh in areas that
may not contribute to the output of interest, and not refining in areas where the output of interest is affected.
This can impact the accuracy of the analysis problem as the mesh adaptation proceeds. In the realm of
design optimization, which is the focus of this paper, inaccurate adjoints can lead to inaccurate sensitivities,
which can change the course of the design cycle and lead to stagnation– as the Karush-Kuhn-Tucker (KKT)
conditions, which govern termination, require that the gradient vanish at a local extremum.2

As mentioned above, Krakos and Darmofal7 illustrate that for a nonconvergent case, the state about which
the adjoint is linearized can notably affect the sensitivity calculations. The authors then show that by
running the non-convergent steady-state case as a time-accurate case and applying the unsteady adjoint to
the time-accurate case returns useful and accurate adjoint computed sensitivities for the time-averaged lift.
The authors suggest that, for steady-state cases which can be solved by strong solvers but which may show
physical unsteadiness, the time-accurate approach is in fact the proper analysis framework to use lest CFD
practitioners risk obtaining unphysical and non-useful sensitivity vectors. Krakos et al. follow their previous
work with an investigation of statistical and windowing techniques to allow only partial time integration for
periodic analysis flows with time-averaged outputs of interest.9 The authors demonstrate that with proper
windowing techniques only partial time integration is required to obtain accurate sensitivities. However
even for time-accurate formulations, Mishra et al.10 have demonstrated growing sensitivity error during the
adjoint reverse time-integration due to partial convergence of the analysis problem at each implicit time step,
which is a common practice in applied CFD problems.
To summarize, the works of Krakos and Darmofal show that the appropriate way to handle these systems
is by running the time-accurate analysis problem and then using statistical techniques for less expensive
unsteady adjoints. However, Mishra et al. show that the time-accurate problem is too expensive to solve
and the error will grow through the backwards-in-time integration. In order to tackle these sorts of cases,
Padway and Mavriplis8 run the steady state problem and use the pseudo-time accurate formulation for
a pseudo-time averaged objective functional to compute the adjoint and tangent sensitivities, which will
correspond exactly to the sensitivities obtained through the complex step differentiation of the solution
process. Their argument is that these sensitivities, which correspond to the linearization of the simulation
itself are the ones to use for optimization rather than sensitivities provided by an adjoint linearized about
an unconverged state.
Luers et al.11 illustrate the importance of accurate gradients in well converging cases that have not reached
deep convergence. Their paper shows steady-state optimizations for a CRESCENDO turbine cascade, and
contrasts the optimization for finite-difference computed gradients to that driven by adjoint computed gradi-
ents in a case with a 5 order drop in the analysis residual. It is shown that that by using the finite-difference
provided gradients the optimized efficiency increases by a greater percentage than by using the adjoint pro-
vided gradients, while still obeying the constraint of the analysis problem. In an effort to address this expense
of deep convergence, Brown and Nadarajah12 investigate an upper bound for the error in the adjoint com-
puted sensitivities arising from partial convergence of the analysis problem. From these error estimates, the
authors can focus computational resources on the more crucial stages of the design cycle, i.e., get a mostly
directionally correct sensitivity vector early on in the design cycle and obtain more accurate vectors as the
optimizer moves closer to the minimum and accuracy in the sensitivity vector is at a premium. The work of
Brown and Nadarajah is a natural solution to the issues demonstrated by Luers et al. in their volumetric
optimization cases. Shimizu et al., rather than computing the error directly, have worked to lessen it by

2 of 32

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 D

im
itr

i M
av

ri
pl

is
 o

n
Ja

nu
ar

y
18

, 2
02

2
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

02
0-

31
36

applying least squares shadowing and windowing techniques towards better behaved adjoint systems and
more accurate adjoint computed sensitivities with an application to chaotic adjoint problems.13,14

This work comes from the work of Padway and Mavriplis8 on the effects of incomplete analysis problem
convergence in steady state problems. In this paper we develop a new approach to the quasi-Newton
nonlinear solver that in the limit of exact solution of the linear system will correspond exactly to the
sensitivities obtained by the complex-step differentiation of the simulation at every step in the iterative
history. Additionally, this method will also show good behavior at larger linear system tolerances. This
paper shows verification of the methods through a comparison of the computed sensitivities with complex-
step finite-difference sensitivities, and proceeds to examine the accuracy of sensitivities obtained in this
manner as a function of the linear system tolerance and its application to design.

II. Background and In-House Solver

II.A. Governing Equations

We developed an in-house flow solver to solve the steady-state Euler equations on unstructured meshes. The
steady-state compressible Euler equations (which may also be referred to as the analysis problem) can be
written as follows.

∇ · F (u(D)) = 0 (1)

Which can also be written as:
R(u(D), D) = 0 (2)

where u is the conservative variable vector, D is the design variable vector, and F (u) is the conservative
variable flux.

II.B. Spatial Discretization

The residual about the closed control volume is given as:

R =

∫
dB

[F (u(D))] · n(x(D)),dB =

nedge∑
i=1

F⊥ei (u(D), nei(x(D)))Bei(x(D)) (3)

This equation gives the operator in the aforementioned requirement for the adjoint and tangent systems. In
the discretized form of the residual operator, x is the mesh points, F is the numerical flux across the element
boundary, B is the element boundary, and n is the edge normal on the element boundary. The solver used
in this work is a steady-state finite-volume cell-centered Euler solver with second-order spatial accuracy
implemented for triangular elements. Second-order accuracy is implemented through weighted least squares
gradient reconstruction.15 The solver has three different flux calculations implemented and linearized, these
are the Lax-Friedrichs,16 Roe,17 and van Leer18 schemes. In this work, only the Lax-Friedrichs and Van-Leer
schemes are used. In order to slope limit the solution reconstruction near shock discontinuties, a modified
Venkatakrishnan limiter is used; Venkatakrishnan’s limiter19 is modified in a few important ways.

1. All max and min functions use smooth max and mins to allow differentiability

2. All switches in the code dependent on the flow state are done in a smooth and blended manner using
a sin shut-off function to aid differentiability

3. The limiter is augmented with a stagnation point fix20 that turns off the limiter entirely if the local
mach number is below a certain value (again done in a smooth manner)

4. Finally, the limiter contains a realizability check21 that, if violated (pressure, energy, or density are
reconstrcuted to below 5% of the cell center value), the cell gradient is set to 0. Then the cell (as a
whole) becomes first order, this is used rather than employing face-based limiting.

This limiter in algorithm (1) provides better convergence properties than the standard VK Limiter, and
is used in this work. It can also be noted that due to the use of smooth max and min functions, as well
as a smoothly blending shut-off (SSO) function outlined in equation (4),22 every step in this limiter is

3 of 32

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 D

im
itr

i M
av

ri
pl

is
 o

n
Ja

nu
ar

y
18

, 2
02

2
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

02
0-

31
36

Algorithm 1 Augmented Venkatakrishnan Limiter

1: procedure VK Limiter
2: M1 = .80,M2 = .85, εlim = 1e− 5, εTFOs

= −.95, εTFOe
= −.9

3: ε =
√
κ(r1)

3
, where r1 is the radius of the circumscribed circle of the triangular cell

4: Mmax = M̄
5: for i = 1, ..., fields do
6: Φi = 1
7: δumini =∞, δumaxi = 0
8: for j = 1, ..., neighbors do

9: δumini = min(δumini , ūi − ¯
uji)

10: δumaxi = max(δumaxi , ūi − ¯
uji)

11: Mmax = max(Mmax,Mi)

12: σMach = 1− SSO(Mmax,M1,M2)
13: for j = 1, ..., neighbors do
14: ∆− = ∇ūi · ~rj
15: s = SSO(∆−, 0, εlim)
16: ∆+ = (1− s)(umini − ūi) + s(umaxi − ūi)
17: φ =

∆2
++ε2+2∆+∆−

∆2
++ε2+2∆+∆−+2∆2

−

18: Stagnation point fix
19: φ = σMach + (1− σMach)φ
20: Φi = min(Φi, φ)

21: Begin realizability check
22: for j = 1, ..., neighbors do
23: urcj = ui + Φ∇ūi · ~rj
24: δρ = ρrcj − ρ̄
25: δP = Prcj − P̄
26: δE = Ercj − Ē
27: se = SSO(δe, εTFOs , εTFOe)
28: sp = SSO(δp, εTFOs , εTFOe)
29: sρ = SSO(δρ, εTFOs

, εTFOe
)

30: s = min(sρ, se, sp)
31: Φ = sΦ

4 of 32

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 D

im
itr

i M
av

ri
pl

is
 o

n
Ja

nu
ar

y
18

, 2
02

2
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

02
0-

31
36

differentiable. This makes the linearization of the limiters possible and much easier to code, as we avoid
multiple branching statements.

SSO(x, xs, xe) =

0 ifx < xs
1
2

(
sin
(
π
2

2x−(xe+xe)
xe−xs

)
+ 1
)

ifxs < x < xe

1 ifx > xe

(4)

II.C. Steady-State Solver

The solver technology for this code uses either explicit time stepping through pseudo time using a forward
Euler time discretization, or a low storage five stage Runge-Kutta scheme, or a quasi-Newton method.
The quasi-Newton method is implemented using pseudo-transient continuation (PTC) with a BDF1 pseudo
temporal discretization scheme. For Newton’s method the time-stepping procedure is written as:

uk = uk−1 + ∆u (5)

where we compute ∆u by solving the following system of linear equations.

[P] ∆u = −R(u) (6)

We can substitute our expression for ∆u into the time-stepping equation (5) to obtain our final form of this
equation.

uk = uk−1 − [Pk−1]
−1
R (7)

Here [Pk−1] is a first-order spatially accurate Jacobian augmented with a diagonal term to ensure that it is
diagonally dominant, shown in equation (8).

[Pk−1] =

[
∂R

∂uk−1

]
1

+
vol

∆tCFL
(8)

Please note the subscript on the jacobian above denotes that it is a 1st order jacobian; in this work the
subscripts of 1 and 2 will denote first and second order spatially accurate jacobians respectively. The
equation for the local explicit time step limit ∆t is given as:

∆ti =
ri√

(u2 + v2) + c
(9)

where ri is the circumference of the inscribed circle for mesh cell i, u and v are the horizontal and vertical
velocity components respectively, and c is the speed of sound in the triangular element.
Furthermore, the CFL is scaled either with a simple ramping coefficient (β) and cap criterion:

CFLk+1 = min(β · CFL,CFLmax) (10)

or with a linesearch and CFL controller,23 which seeks to minimize the L2 norm of the pseudo-temporal
residual, defined as:

Rt(u+ α∆u) =
vol

∆t
α∆un +R(u+ α∆un) (11)

when the pseudo-temporal residual decreases, we consider this to be a satisfactory value for α and we change
the CFL accordingly. The pseudocode explains the actual process for the linesearch and CFL controller.
The parameters itermax, c, αl1 , αl2 , β1, and β2 are all user defined input values, defaulted to 30, .9, .1, .75,
.1, and 1.5 respectively. One benefit of this combined line-search and CFL controller is that we do not have
to differentiate it, and can simply store the values of CFL and α and use these fixed values in the forward
and reverse linearizations and still obtain machine-level correspondence when comparing those sensitivity
values to those of the complex-step differentiated solution process. This is possible because the combined
CFL controller and line-search is a piece-wise constant function with a zero derivative.

5 of 32

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 D

im
itr

i M
av

ri
pl

is
 o

n
Ja

nu
ar

y
18

, 2
02

2
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

02
0-

31
36

Algorithm 2 CFL controller

1: procedure Line Search and CFL Controller
2: rt0 = ‖Rt(u+ ∆u)‖2
3: rs0 = ‖R(u)‖2
4: rs1 = ‖R(u+ ∆u)‖2
5: if rs0 < rs1 then
6: for k = 1, ..., itermax do
7: α = cα
8: rt1 = ‖Rt(u+ α∆u)‖2
9: if rt1 < rt0) then exit

10: if α < αl1 then
11: α = 0
12: CFL = β1CFL
13: else if αl1 < α < αl2 then
14: CFL = CFL
15: else if α < αl2 then
16: CFL = min(β2CFL,CFLmax)

In order to solve the linear system we use a point-implicit Jacobi or point-implicit Gauss-Seidel solver. This
is done by lagging the off-diagonal components, with the right hand side being the linear residual of the
original system. In this work the residual is the second-order accurate spatial residual operator, and [Pk−1]
is based off the first-order accurate residual operator outlined in equation (8). Equation (6) is then solved
iteratively as:

[D] ∆(∆u)l = −R(u)− [Pk−1] ∆ul (12)

where the matrix [D] is the element block diagonal entry in the Jacobian matrix.

∆ul+1 = ∆ul + ω(∆(∆u))l (13)

These linear solvers can also be applied as smoothers either to a BiCGStab or a GMRES linear solver. The
flexible GMRES linear solver is the more commonly used one in this Newton-Krylov nonlinear solver, and
the algorithm below shows its implementation, where the operator M−1 is the preconditioning matrix using
the block Jacobi or block Gauss-Seidel relaxation schemes outlined above. The FGMRES solver outlined in
algorithm (3)24 is implemented to solve the stiff steady state tangent and adjoint systems as well.

Algorithm 3 Flexible Restarted GMRES

1: procedure Flexible GMRES
2: for k = 1, ..., ncycles do
3: r0 = b−Ax0, β = ‖r0‖ , v1 = r0/β
4: for j = 1, ...,m do
5: zj = M−1vj
6: vj+1 = Azj
7: for i = 1, ..., j do
8: hi,j = (vj+1, vi)
9: vj+1 = vj+1 − hi,jvi

10: hj+1,j = ‖vj+1‖ , vj+1 = vj+1/hj+1,j

11: Define Zm = [z1, ..., zm] , H̄m = [hi,j]1<i<j+1,1<j<m

12: Solve least squares problem for ym
13: x0 = x0 + Zmym

6 of 32

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 D

im
itr

i M
av

ri
pl

is
 o

n
Ja

nu
ar

y
18

, 2
02

2
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

02
0-

31
36

II.D. A Review of Tangent and Adjoint Systems

II.D.1. Tangent Formulation

For an aerodynamic optimization problem, we consider an objective functional L(u(D), x(D)), for example
lift or drag, where u is the conservative variable vector, and x is the vector of point coordinates. In order to
obtain an expression for the sensitivities we take the derivative of the objective functional:25

dL

dD
=
∂L

∂x

∂x

∂D
+
∂L

∂u

∂u

∂D
(14)

For the above expression ∂L
∂x and ∂L

∂u can be directly obtained by differentiating the corresponding subroutines

in the code. ∂x
∂D is calculated by solving the spring analogy mesh deformation equation:

[K]
∂xv
∂Di

=
∂xs
∂Di

(15)

and we calculate ∂xs

∂Dj
through differentiating the shape design variables. For the global inverse distance

weighted method,26 the mesh sensitivities are computed directly as a function of the surface coordinate
sensitivities:

∂xvi
∂Dj

=

∑
wik(~rik)

∂xsk

∂Dj∑
wik(~rik)

(16)

It is not possible to obtain ∂u
∂D through linearization of the subroutines in the code without linearizing the

entire analysis solution process, as will be covered in later sections. In order to solve for this term we use
the constraint that for a fully converged flow R(u(D), x(D)) = 0. By taking the derivative of the residual
operator we obtain the equation below.[

∂R

∂x

]
∂x

∂D
+

[
∂R

∂u

]
2

∂u

∂D
= 0 (17)

We can isolate the sensitivity of the residual to the design variables to obtain the tangent system.[
∂R

∂u

]
2

∂u

∂D
= −

[
∂R

∂x

]
∂x

∂D
(18)

We solve this linear system, using hand differentiated subroutines to provide the left hand matrix
[
∂R
∂u

]
2
,

the right hand side
[
∂R
∂x

]
∂x
∂D (which scales with the design variables), and obtain ∂u

∂D . We then substitute
∂u
∂D into equation (14) to obtain the final sensitivities.

II.D.2. Discrete Adjoint Formulation

The adjoint formulation begins with the same sensitivity equation:

dL

dD
=
∂L

∂x

∂x

∂D
+
∂L

∂u

∂u

∂D
(19)

Using the condition R(u(D), D) = 0, we return to equation (18) and pre-multiply both sides of the equation
by the inverse Jacobian matrix to obtain:

∂u

∂D
= −

[
∂R

∂u

]−1

2

[
∂R

∂x

]
∂x

∂D
(20)

Substituting the above expression into the sensitivity equation yields:

dL

dD
=
∂L

∂x

∂x

∂D
− ∂L

∂u

[
∂R

∂u

]−1

2

[
∂R

∂x

]
∂x

∂D
(21)

We then define an adjoint variable Λ such that:

ΛT = −∂L
∂u

[
∂R

∂u

]−1

2

(22)

7 of 32

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 D

im
itr

i M
av

ri
pl

is
 o

n
Ja

nu
ar

y
18

, 2
02

2
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

02
0-

31
36

which gives an equation for the adjoint variable:[
∂R

∂u

]T
2

Λ = −
[
∂L

∂u

]T
(23)

We can solve this linear system and obtain the sensitivities for the objective function as follows:

dL

dD
=

[
∂L

∂x
+ ΛT ∂R

∂x

]
∂x

∂D
(24)

We can then define a mesh adjoint variable Λx:

[K]
T

Λx =

[
∂L

∂x

]T
+

[
∂R

∂x

]T
Λ (25)

and the final expression for sensitivity is given as:

dL

dD
= Λx

T ∂xs
∂D

(26)

The adjoint system is of interest, because as mentioned in the introduction, it results in an equation for the
sensitivity that does not scale with the number of design variables.

III. Development of the Pseudo-Time Accurate Tangent

In this section we show the previous tangent formulation8 and the new one developed in this paper for
the quasi-Newton nonlinear solver. We also discuss the impacts on implementation and accuracy of some
of the assumptions made in the previous formulation and the one presented here. As stated above, the
assumptions made are exact when the linear system at each iteration is solved to machine precision. In such
cases the tangent sensitivities would exactly correspond to the sensitivities of solution process itself, and
will correspond exactly to the sensitivities obtained by the complex-step finite difference method at each
step of the solution process. The idea is that a sensitivity vector obtained from the differentiation of the
solution process is preferable to one obtained by linearizing the adjoint system about an unconverged state,
because, as stated above, adjoint systems of unconverged analyses are very sensitive to the specific state
about which they are linearized and we cannot say with certainty what they correspond to mathematically.
This formulation is the equivalent of using the derivative of the solution process to drive the optimization.
We note that in this section and the derivation of the adjoint section, when taking the derivative of an
operator with respect to the design variables, ∂

∂D is an abbreviation of ∂
∂x

∂x
∂D .

III.A. Tangent System for Newton-Chord Method

For this section, Newton’s method was implemented using pseudo-transient continuation (PTC) with a BDF1
scheme in the context of a quasi-Newton method. This is specifically not a full Newton method as it uses an
approximation to the Jacobian matrix which is only first-order spatially accurate, and the resulting linear
system is only approximately solved. For Newton’s method the time-stepping procedure is written as in
equation (7).

uk = uk−1 − [Pk−1]
−1
R (27)

where [Pk−1] is a first-order accurate Jacobian augmented with a diagonal term to ensure that it is diagonally
dominant as in equation (8).

[Pk−1] =

[
∂R

∂uk−1

]
1

+
vol

∆tCFL
(28)

If we take the derivative of each side of equation (27) we obtain:

du

dD

k

=
du

dD

k−1

− [Pk−1]
−1

[
∂R

∂D
+

[
∂R

∂uk−1

]
2

du

dD

k
]
−R(uk−1)

[
∂ [Pk−1]

−1

∂D
+
∂ [Pk−1]

−1

∂u

du

dD

k−1
]

(29)

If we choose to neglect the change in the preconditioner we can simplify the above equation a great deal,
as is shown below, by avoiding taking derivatives of inverse Jacobians. This can be done either by using

8 of 32

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 D

im
itr

i M
av

ri
pl

is
 o

n
Ja

nu
ar

y
18

, 2
02

2
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

02
0-

31
36

a frozen Jacobian, which is also known as a Newton-Chord method, or by arguing by egodicity that for
partially converged cases, oscillations about some mean are independent of the initial state. It should be
noted that although the derivative of the the inverse preconditioner is nonzero, the argument used is based
on the assumption that the residual at this point is very small. This small residual vector will be multiplying
the derivative of the preconditioner inverse in the last term on the right hand side of equation (29), and
will have a negligible contribution. Alternatively, this is the exact linearization if we perform a smoothing
operation independent of the simulation characteristics (a fixed number of smoothing passes, for example),
thereby ensuring the derivative of the partial linear system solve is in fact equal to zero. This method will
not work for any linear solvers that have a dependence on the right hand side of the linear system, and so
is limited to relaxation methods. This of course excludes the use of GMRES (or any Krylov solver) because
while they are linear solvers, they are path dependent. Proceeding with the simplified equation:

du

dD

k

=
du

dD

k−1

− [Pk−1]
−1

[
∂R

∂D
+

[
∂R

∂u

]
2

du

dD

k−1
]

(30)

This can then be rewritten as:
du

dD

k

=
du

dD

k−1

+ ∆

(
du

dD

)
(31)

and we solve the following linear system:

[Pk−1] ∆

(
du

dD

)
= −

[
∂R

∂D
+

[
∂R

∂u

]
2

du

dD

k−1
]

(32)

It is important to note that we are not taking the exact inverse of the preconditioner matrix in the iterative
equation above, rather we are performing the exact number of steps to invert it as we did in the analysis
problem, as we are drawing directly of the analysis solution process. If this iterative process is run at the
converged state then it corresponds to the dual direct differentiation;27,28 its adjoint presented later is the
exact dual of that process.

III.B. Tangent System for quasi-Newton Method

For this section, we begin from equation (7)

uk = uk−1 − [Pk−1]
−1
R (33)

where [Pk−1] is again a first-order accurate Jacobian augmented with a diagonal term to ensure that it is
diagonally dominant, as described in equation (8).

[Pk−1] =

[
∂R

∂uk−1

]
1

+
vol

∆tCFL
(34)

If we take the derivative of each side of equation (34) we obtain:

du

dD

k

=
du

dD

k−1

− [Pk−1]
−1

[
∂R

∂D
+

[
∂R

∂uk−1

]
2

du

dD

k
]
−

[
d [Pk−1]

−1

dD

]
R(uk−1) (35)

Here, rather than neglecting the change in the preconditioner we use a definition of the derivative of the
matrix inverse defined by:

d [K]
−1

dx
= − [K]

−1

[
dK

dx

]
[K]
−1

(36)

This assumption will not be exact for any case in which the linear system solve is not exact to machine
precision. However, it will allow us to have a clearly defined source of error in our computation and evaluate
how much the linear tolerance of the system affects the sensitivity computation. Furthermore, we can argue
that the error from this sensitivity will go to 0 as we approach full convergence, and we can investigate the
behavior in near-ergodic limit cycle oscillations. By computing the total derivative of the nonlinear solver–

9 of 32

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 D

im
itr

i M
av

ri
pl

is
 o

n
Ja

nu
ar

y
18

, 2
02

2
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

02
0-

31
36

as in equation (35)– and substituting in the expression from (36) into equation (35), the below expression is
generated.

duk

dD
=
duk−1

dD
− [Pk−1]

−1

[[
∂R

∂uk−1

]
2

duk−1

dD
+

[
∂R

∂x

]
dx

dD

]
+ [Pk−1]

−1 d [Pk−1]

dD
[Pk−1]

−1
R(uk−1, D) (37)

Expanding the total derivative shows that this is in fact the sum of two matrix vector products:

duk

dD
=
duk−1

dD
− [Pk−1]

−1

[[
∂R

∂uk−1

]
2

duk−1

dD
+

[
∂R

∂x

]
dx

dD

]
+ [Pk−1]

−1

[
∂Pk−1

∂uk−1

duk−1

dD
+
∂Pk−1

∂x

dx

dD

]
[Pk−1]

−1
R(uk−1, D)

(38)

While the full hessian is an undesireable item to compute, this formulation requires two hessian vector prod-
ucts that can be obtained through complex perturbations to the conservative variables and nodal coordinate
vectors, and subsequent evaluation of the jacobian. This avoids the need for the full hessian computation.
Furthermore, one of the matrix inverses can be removed by reusing the computation of ∆u and rewriting
the equation as:

duk

dD
=
duk−1

dD
− [Pk−1]

−1

[[
∂R

∂uk−1

]
2

duk−1

dD
+

[
∂R

∂x

]
dx

dD

]
+ [Pk−1]

−1

[
∂Pk−1

∂uk−1

duk−1

dD
+
∂Pk−1

∂x

dx

dD

]
∆u

(39)

This can then be rewritten as:
du

dD

k

=
du

dD

k−1

+ ∆

(
du

dD

)
(40)

and we solve the following linear system:

[Pk−1] ∆

(
du

dD

)
= −

[[
∂R

∂uk−1

]
2

duk−1

dD
+

[
∂R

∂x

]
dx

dD

]
+

[
∂Pk−1

∂uk−1

duk−1

dD
+
∂Pk−1

∂x

dx

dD

]
∆u (41)

It is important to note that this expression is only exact for machine-zero solution of the linear system at
every iteration, but for those cases we will have exact correspondence between this and the complex-step
computed sensitivities. This saves us from needing to differentiate the entire linear solution process, which is
intractable for many cases for the forward mode, and even more difficult for the reverse mode. The reverse
differentiation of a Krylov solver would be an onerous task that would yield little gain. One additional
point is that with this method there are no conditions on exact duals of the linear solver, and one can use
different solvers for the forward and the reverse linearizations. We can also note that, where in the initial
formulation– in equation (38)– we see 3 approximate linear solves; when we group terms and use the already
stored information from the analysis solve we are left with only one approximate linear solve, the same as
in the analysis problem’s nonlinear solver. Although we are not limited to using the same linear solver for
the analysis and tangent problems and its dual for the adjoint problem, by doing so we gain in that we
are guaranteed to have a converging tangent and adjoint solver. We would then be solving using the same
algorithm that ran without divergence through the analysis portion, when we apply this algorithm to the
tangent and adjoint problem we have the same eigenvalues, same condition numbers, and same convergence
properties. Therefore, if our analysis problem did not diverge, neither will the tangent or the adjoint.

IV. Development of the Pesudo-Time Accurate Adjoint

As stated above, the pseudo-time accurate adjoint method is drawn from the derivation of the unsteady
adjoint. In this method we look at each pseudo-time step and work backwards through pseudo-time to get
the pseudo-time accurate adjoint solution. In this derivation the objective function is a pseudo-time averaged
functional, averaged over the last m steps for a program that runs through n pseudo-time steps. From this
we define our objective function L as:

L = L(un, un−1, ..., un−m, D) (42)

10 of 32

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 D

im
itr

i M
av

ri
pl

is
 o

n
Ja

nu
ar

y
18

, 2
02

2
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

02
0-

31
36

where un is the conservative variable vector at the final time step n and D is the design variable vector. For
the constraint we cannot select R(u,D) = 0, as this is not true at each pseudo-time step; instead, we select a
constraint based on the pseudo-time evolution of the solution, for which, the kth constraint will be referred
to as Gk. We know because we are using first order time-stepping that the constraint is dependent only on
the old time-step, the new time-step, and the design variables, expressed as follows.

Gk = Gk(uk, uk−1, D) = 0 (43)

We define an augmented objective function with n constraints and n Lagrange multipliers:

J(D,un, un−1, un−2, ...,Λn,Λn−1, ...) = L(un, un−1, ..., un−m, D)

+ ΛnTGn(un(D), un−1(D), D)

+ Λn−1TGn−1(un−1(D), un−2(D), D)

+ ...

+ Λ1TG1(u1(D), u0(D), D)

(44)

In order to get an expression for the adjoint we take the derivative of the augmented objective function with
respect to the conservative variables at different pseudo-time steps, and choose our Lagrange multiplier such
that these partial derivatives are equal to 0.

∂J

∂un
=

∂L

∂un
+ ΛnT

∂Gn

∂un
= 0

∂J

∂un−1
=

∂L

∂un−1
+ ΛnT

∂Gn

∂un−1
+ Λn−1T ∂G

n−1

∂un−1
= 0

∂J

∂un−2
=

∂L

∂un−2
+ Λn−1T ∂G

n−1

∂un−2
+ Λn−2T ∂G

n−2

∂un−2
= 0

...

∂J

∂u1
=

∂L

∂u1
+ Λ2T ∂G

2

∂u1
+ Λ1T ∂G

1

∂u1
= 0

(45)

Using L = L(un, un−1, ..., un−m, D), we get the following equation.

∂J

∂un
=

∂L

∂un
+ ΛnT

∂Gn

∂un
= 0

∂J

∂un−1
=

∂L

∂un−1
+ ΛnT

∂Gn

∂un−1
+ Λn−1T ∂G

n−1

∂un−1
= 0

...

∂J

∂un−m
=

∂L

∂un−m
+ Λn−(m−1)T ∂G

n−(m−1)

∂un−m
+ Λn−mT

∂Gn−m

∂un−m
= 0

∂J

∂un−(m+1)
= Λn−mT

∂Gn−m

∂un−(m+1)
+ Λn−(m+1)T ∂G

n−(m+1)

∂un−(m+1)
= 0

...

∂J

∂u1
= Λ2T ∂G

2

∂u1
+ Λ1T ∂G

1

∂u1
= 0

(46)

Using the equation for the adjoint at the final pseudo-time step we obtain:[
∂Gn

∂un

]T
Λn = −

[
∂L

∂un

]T
(47)

using the other adjoint equations we get an adjoint recurrence relation for k = 2, 3, ...,m:

∂Gk−1

∂uk−1

T

Λk−1 = − ∂Gk

∂uk−1

T

Λk (48)

11 of 32

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 D

im
itr

i M
av

ri
pl

is
 o

n
Ja

nu
ar

y
18

, 2
02

2
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

02
0-

31
36

with the adjoint recurrence relation for k = m+1, ..., n-1 as follows.

∂Gk−1

∂uk−1

T

Λk−1 = − ∂Gk

∂uk−1

T

Λk −
[

∂L

∂uk−1

]T
(49)

If the objective function is only dependent on the final time-step we only have one recurrence relation for all
k = 2, 3, ..., n-1:

∂Gk−1

∂uk−1

T

Λk−1 = − ∂Gk

∂uk−1

T

Λk (50)

Lastly, we can take the derivative of equation (44) with respect to the design variables to get the sensitivity
equation.

dJ

dD
=
∂L

∂D
+ ΛnT

∂Gn

∂D
+ Λn−1T ∂G

n−1

∂D
+ Λn−2T ∂G

n−2

∂D
+ ... (51)

IV.A. Adjoint Computed Sensitivites for Newton-Chord Method

We refer once again to equation (7)

uk = uk−1 − [Pk−1]
−1
R (52)

We move all terms to one side and obtain the following equation as the constraint.

Gk(uk(D), uk−1(D), D) = uk − uk−1 + [Pk−1]
−1
R(uk−1) = 0 (53)

We have the preconditioner matrix defined as seen previously in (8):

[Pk] =

[
∂R(uk)

∂uk

]
1

+
vol

∆tkCFLk
(54)

We then take the derivatives of our constraint equations. These are written as follows.

∂Gk

∂uk
= I

∂Gk

∂uk−1
= −I + [Pk−1]

−1

[
∂R(uk−1)

∂uk−1

]
2

+
∂ [Pk−1]

−1

∂uk−1
R(uk−1)

∂Gk

∂D
= [Pk−1]

−1 ∂R(uk−1)

∂D
+
∂ [Pk−1]

−1

∂D
R(uk−1)

(55)

By using the same logic as in the pseudo-time accurate Newton-Chord tangent method, we choose to neglect
terms multiplied by the residual and simplify the constraint derivatives to those below. As in the tangent
system we are now making only an approximation of the exact sensitivity and error equations, with the goal
being to run long enough in the oscillatory portion of the convergence history to get a good enough adjoint
approximation to compute sensitivities, or to freeze the preconditioner inverse for exact sensitivities.

∂Gk

∂uk
= I

∂Gk

∂uk−1
= −I + [Pk−1]

−1

[
∂R(uk−1)

∂uk−1

]
2

∂Gk

∂D
= [Pk−1]

−1 ∂R(uk−1)

∂D

(56)

Using the equation for the adjoint at the final pseudo-time step with our constraint derivatives we get the
same initial source term.

[I] Λn = −
[
∂L

∂un

]T
(57)

12 of 32

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 D

im
itr

i M
av

ri
pl

is
 o

n
Ja

nu
ar

y
18

, 2
02

2
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

02
0-

31
36

Substituting in the constraint derivatives into equation (50) returns:

[I] Λk−1 = −
[
−I + [Pk−1]

−1

[
∂R(uk−1)

∂uk−1

]
2

]T
Λk (58)

we can also write this recurrence relation in delta form so that it more closely follows the analysis problem.
To this end, we define a ∆Λ such that Λk−1 = Λk + ∆Λ. Which gives the recurrence relation as:

∆Λ = −
[
[Pk−1]

−1

[
∂R(uk−1)

∂uk−1

]
2

]T
Λk (59)

distributing the transpose allows us to rewrite the equation.

∆Λ = −
[[
∂R(uk−1)

∂uk−1

]
2

]T
[Pk−1]

−T
Λk (60)

This motivates us to define a secondary adjoint variable for each recurrence relation:

[Pk−1]
T
ψk = Λk (61)

we then rewrite the delta form of the adjoint recurrence relation as follows.

∆Λ =

[[
∂R(uk−1)

∂uk−1

]
2

]T
ψk (62)

It is important to note that, as in the tangent mode, to obtain exact correspondance, these linear systems
must be solved as the exact dual of the analysis solve, as we are attempting to transpose exactly the analysis
solve. This secondary adjoint variable will then be used in the sensitivity equation (51) and we obtain:

dJ

dD
=
∂L

∂D
+ ψnT

∂R(un−1)

∂D
+ ψn−1T ∂R(un−2)

∂D
+ ...+ ψ1T ∂R(u0)

∂D
(63)

IV.B. Adjoint Computed Sensitivites for quasi-Newton Method

For this section we begin with the derivatives of our constraint equations as shown in equation (55), before
the simplification shown for the Newton-Chord method. These are written as follows.

∂Gk

∂uk
= I

∂Gk

∂uk−1
= −I + [Pk−1]

−1

[
∂R(uk−1)

∂uk−1

]
2

+
∂ [Pk−1]

−1

∂uk−1
R(uk−1)

∂Gk

∂D
= [Pk−1]

−1 ∂R(uk−1)

∂D
+
∂ [Pk−1]

−1

∂D
R(uk−1)

(64)

By using the differentiation of a matrix inverse shown in equation (36) we can obtain the derivative of the
constraint term shown below:

∂Gk

∂uk
= I

∂Gk

∂uk−1
= −I + [Pk−1]

−1

[
∂R(uk−1)

∂uk−1

]
2

− [Pk−1]
−1 ∂ [Pk−1]

∂uk−1
[Pk−1]

−1
R(uk−1)

∂Gk

∂D
= [Pk−1]

−1 ∂R(uk−1)

∂D
− [Pk−1]

−1 ∂ [Pk−1]

∂D
[Pk−1]

−1
R(uk−1)

(65)

Using the definition of the nonlinear solver increment we can simplify the above equation with:

∂Gk

∂uk
= I

∂Gk

∂uk−1
= −I + [Pk−1]

−1

[[
∂R(uk−1)

∂uk−1

]
2

− ∂ [Pk−1]

∂uk−1
∆u

]
∂Gk

∂D
= [Pk−1]

−1

[
∂R(uk−1)

∂D
− ∂ [Pk−1]

∂x

dx

dD
∆u

] (66)

13 of 32

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 D

im
itr

i M
av

ri
pl

is
 o

n
Ja

nu
ar

y
18

, 2
02

2
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

02
0-

31
36

Please note that we can compute these hessian vector products using complex frechet derivatives, rather
than hand differentiating the residual operator twice to obtain the Hessian operator; even though we are in
the adjoint mode, the hessian vector products are not transpose matrix vector products and can therefore
be computed using frechet derivatives. Using the equation for the adjoint at the final pseudo-time step with
our constraint derivatives we get the same initial source term as in the Newton-Chord formulation.

[I] Λn = −
[
∂L

∂un

]T
(67)

Substituting in the constraint derivatives from equation (66) into equation (50) returns:

[I] Λk−1 = −
[
−I + [Pk−1]

−1

[[
∂R(uk−1)

∂uk−1

]
2

− ∂ [Pk−1]

∂uk−1
∆u

]]T
Λk (68)

we can write this recurrence relation in delta form as in the Newton-Chord formulation.

∆Λ = −
[
[Pk−1]

−1

[[
∂R(uk−1)

∂uk−1

]
2

− ∂ [Pk−1]

∂uk−1
∆u

]]T
Λk (69)

Distributing the transpose returns:

∆Λ = −
[[
∂R(uk−1)

∂uk−1

]
2

− ∂ [Pk−1]

∂uk−1
∆u

]T
[Pk−1]

−T
Λk (70)

This motivates us to define a secondary adjoint variable for each recurrence relation, the same one as in the
Newton-Chord formulation:

[Pk−1]
T
ψk = Λk (71)

we then rewrite the delta form of the adjoint recurrence relation as follows.

∆Λ = −
[[
∂R(uk−1)

∂uk−1

]
2

− ∂ [Pk−1]

∂uk−1
∆u

]T
ψk (72)

It is important to note that, as noted before we do not need exact dual correspondence here between the
adjoint solver and the tangent one. Regardless of duality this formulation will recover machine precision
accuracy in the sensitivities in the limit of the linear system being solved to machine precision. We substitute
the constraint derivatives from equation (66) into the sensitivity equation (51) and we obtain:

dJ

dD
=
∂L

∂D
+ΛnT [Pn−1]

−1

[
∂R(un−1)

∂D
− ∂ [Pn−1]

∂x

dx

dD
∆u

]
+ ...+Λ1T [P0]

−1

[
∂R(u0)

∂D
− ∂ [P0]

∂x

dx

dD
∆u

]
(73)

We can refer back to our definition of the secondary adjoint variable to simplify this equation and remove
an additional linear solve and get the equation below:

dJ

dD
=
∂L

∂D
+ ψnT

[
∂R(un−1)

∂D
− ∂ [Pn−1]

∂x

dx

dD
∆u

]
+ ...+ ψ1T

[
∂R(u0)

∂D
− ∂ [P0]

∂x

dx

dD
∆u

]
(74)

We can note that the adjoint sensitivity formulation uses only one approximate linear solver per nonlinear
step, like the forward and tangent solvers. Should we want to guarantee convergence of the adjoint problem,
we can use the dual solver of the primal linear solver used at each nonlinear iteration.

V. Verification

In this section, we run on an unstructured triangular mesh consisting of 4212 elements shown in Figure (1).
All verification cases were run in M = .6 flow with α = 1o. We use the tangent and adjoint computed
sensitivities of the lift objective functional as proxies for the behavior of the tangent and adjoint systems,
and as a means to examine their behavior, convergence, and verify their correctness. The design variables are
equidistant Hicks-Henne bump functions and the mesh sensitivities were calculated with the spring analogy
outlined previously.

14 of 32

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 D

im
itr

i M
av

ri
pl

is
 o

n
Ja

nu
ar

y
18

, 2
02

2
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

02
0-

31
36

Figure 1. Computational mesh for NACA0012 airfoil

V.A. Tangent Verification

For the pseudo-time accurate tangent system verification we compare the complex step computed sensitivities
to those provided by the tangent system. Since the pseudo-time accurate tangent formulation is designed to
compute the exact derivative we expect to see exact correspondence between the two methods, i.e. differences
of the order of machine zero.

V.A.1. Newton-Chord Method

The verification in this section is done by implementing a Newton-Chord method restarted at the 26th
iteration. This verification is accomplished by starting the analysis problem at initial conditions and running
a quasi-Newton algorithm for 25 steps, at which point we freeze the Jacobian and continue solving the
analysis problem with the frozen Jacobian. The complex-step finite-difference sensitivities were calculated
by restarting at the 26th iteration with the frozen Jacobian and introducing a complex perturbation to the
design variables, therefore ensuring the complex perturbation does not affect the frozen Jacobian. To run
the pseudo-time accurate tangent, the tangent problem was restarted at the 26th iteration. To parallel the
Newton-Chord solution the preconditioner matrix on the left hand side of equation (32) is the frozen Jacobian
matrix, and the terms on the right hand side are the linearization of the spatial residual operator, which
changes through pseudo-time. As we have taken the exact derivative of the process outlined in the analysis
solution process, we expect exact correspondence between the complex step derivative and the pseudo-time
accurate tangent sensitivity. The functional and residual behavior are depicted in Figure (2). Figure (3) plots
the difference between the complex and pseudo-time accurate adjoint method sensitivities at each pseudo
time step, and confirms that we obtain sensitivities which agree to machine precision.

15 of 32

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 D

im
itr

i M
av

ri
pl

is
 o

n
Ja

nu
ar

y
18

, 2
02

2
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

02
0-

31
36

(a) Functional (b) Residual

Figure 2. Convergence of objective function and residual for Newton-Chord Method

(a) Design Variable 1 (b) Design Variable 2

Figure 3. Difference between pseudo-time accurate tangent computed sensitivities and complex sensitivities for Newton-
Chord method at each pseudo-time step

V.A.2. quasi-Newton Method

The verification in this section is done by using a very tight tolerance on the linear system of 1e − 13.
The hessian vector products are computed using complex-step perturbation to the conservative variables
and nodal coordinates as stated previously. We plot the convergence of the nonlinear residual, and the
objective of the analysis system in Figure (4). We also plot the difference between the complex and pseudo-
time accurate tangent method sensitivities at each pseudo-time step in Figure (5). At each step we obtain
machine level correspondence between the complex-step and tangent computed sensitivities provided that
the linear system is solved to machine precision; this is sufficient verification of the implementation.

V.B. Adjoint Verification

Because the adjoint computed sensitivities are computed through reverse integration in pseudo-time, a
comparison similar to the graphical representation in the tangent section is not practical. As such, we
have provided Table (1) showing the difference between the complex and adjoint provided sensitivities on
truncated runs for verification purposes. The Newton-Chord (NC) and quasi-Newton inverse identity (QNII)
adjoints and complex sensitivities are shown to verify the implementation. Please note that for the Newton-
Chord formulation, we use a dual block jacobi smoother as the linear solver (for which the dual is trivial to

16 of 32

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 D

im
itr

i M
av

ri
pl

is
 o

n
Ja

nu
ar

y
18

, 2
02

2
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

02
0-

31
36

(a) Functional (b) Residual

Figure 4. Convergence of objective function and residual for quasi-Newton Method

(a) Design Variable 1 (b) Design Variable 2

Figure 5. Difference between pseudo-time accurate tangent computed sensitivities and complex sensitivities for quasi-
Newton method at each pseudo-time step

implement), but for the quasi-Newton method we are not restricted to dual solvers, or even the same type
of solver. Some tests were performed using BiCGStab for the analysis and tangent, and Gauss-Seidel for the
adjoint to verify the theory, whose result are not shown here. In the table, we can see that regardless of the
convergence of the residual, which we marked by reporting the L2-norm of the spatial residual in the final
column of the table, we obtain exact correspondence between the sensitivities provided by the adjoint and
complex-step methods.

17 of 32

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 D

im
itr

i M
av

ri
pl

is
 o

n
Ja

nu
ar

y
18

, 2
02

2
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

02
0-

31
36

Scheme Steps Complex Sensitivity Adjoint Sensitivity ||Residual||2
NC 10 -2.344315562026746 -2.344315562026735 0.3205858355993253E-03

NC 20 -5.117070610162804 -5.5117070610162807 0.2522158472255535E-03

QNII 10 -3.482196439075767 -3.482196439075786 0.2982633094835574E-03

QNII 20 -2.264493935071775 -2.264493935071703 0.1691766297621063E-03
Table 1. Comparison of adjoint and complex-step computed sensitivities

VI. Investigation of Sensitivity Computation

VI.A. Impact of Appromixate Linear Solves on Sensitivity Accuracy

This section shows the effect of an approximate linear solution on the accuracy of the identity of the differ-
entiation of the inverse matrix in the sensitivity computation shown in equation (36). We can see in Figure
(6) that for the linear tolerance 1e − 1 that the complex and tangent sensitivities converge to their final
values at the same rate as the analysis problem itself, which is expected based on the formulation. We can
then see in Figure (7), which depicts the maximum difference between the complex and tangent sensitivities
over the iteration history of the analysis solution process, that the maximum difference is of the order of the
linear tolerance of the linear system. Furthermore, as the analysis problem converges, so do the complex and
tangent sensitivities to each other despite the inexact differentiation. We can see that at full convergence of
the analysis problem, the tangent and complex-step sensitivities correspond to each other to a high degree
of precision and these would also correspond to the steady-state tangent and adjoint computed sensitivities
linearized about the converged analysis state.

(a) Design Variable 1 (b) Design Variable 2

Figure 6. Sensitivity convergence for linear tolerance, 1e− 1: difference between current and final sensitivity values

Figure (8) contains the same information as Figure (6), and Figure (7) is the sister plot of Figure (9) but
the two later plots show resuls with a tighter linear system tolerance of 1e−4. We can see that as before the
maximum iterative difference is again on the order of the linear system tolerance, and that as the analysis
converges so do the tangent and complex sensitivities to each other, down to nearly machine precision.
Having seen the impact of the tighter linear system tolerance on the maximum iterative difference between
the tangent and complex sensitivities, we simulate the analysis problem with linear tolerances at every order
from 1e − 1 to 1e − 13, and plot the maximum iterative difference in Figure (10). The maximum iterative
difference is directly related to the linear system tolerance. This allows for good estimates of the maximum
iterative error as a function of the linear system tolerance. The minimum iterative difference shows similar
behavior, but it is a function of the linear tolerance and the convergence of the non-linear problem.

18 of 32

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 D

im
itr

i M
av

ri
pl

is
 o

n
Ja

nu
ar

y
18

, 2
02

2
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

02
0-

31
36

(a) Design Variable 1 (b) Design Variable 2

Figure 7. Iterative sensitivity difference for linear tolerance, 1e− 1

(a) Design Variable 1 (b) Design Variable 2

Figure 8. Sensitivity convergence for linear tolerance, 1e− 4: difference between current and final sensitivity values

(a) Design Variable 1 (b) Design Variable 2

Figure 9. Iterative sensitivity difference for linear tolerance, 1e− 4

19 of 32

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 D

im
itr

i M
av

ri
pl

is
 o

n
Ja

nu
ar

y
18

, 2
02

2
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

02
0-

31
36

(a) Maximum Iterative Difference (b) Minimum Iterative Difference

Figure 10. Iterative difference vs. linear tolerance

VI.B. Iterative Dependence of Sensitivity Computation

Given that the adjoint variable at a given iteration is the dependence of the objective function at the function
evaluation iteration to a perturbation at the adjoint computation iteration, we can learn a great deal from
looking at the behavior of the adjoint as measured by the magnitude of the L2-norm of the adjoint field
variables. We show in Figure (11) that the magnitude of the norm of the adjoint field behaves like the inverse
of the analysis problem convergence. We can see that the adjoint magnitude, plotted on a reversed x-axis, is
greatest at convergence of the analysis problem and near machine zero at initialization. Furthermore, we can
see that the adjoint magnitude is negligible during the region dominated by the pseudo-transient behavior
early on in the analysis problem simulation and that it is only significant during the region dominated by
the quadratic convergence behavior. Figure (12) shows that the adjoint very quickly integrates to near the
final sensitivity as it integrates backwards through time, in contrast the tangent system has very inaccurate
gradients early on, and then only computes useful ones in the quadratic convergence region. This would
indicate that full differentation of the analysis solve is not necessary, rather the differentiation algorithm
could be run only through the quadratic convergence region of the simulation.

(a) Residual Convergence (b) Adjoint Magnitude Behavior

Figure 11. Residual convergence and adjoint magnitude behavior for Quasi-Newton scheme

20 of 32

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 D

im
itr

i M
av

ri
pl

is
 o

n
Ja

nu
ar

y
18

, 2
02

2
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

02
0-

31
36

(a) Tangent Sensitivity Convergence (b) Adjoint Sensitivity Convergence

Figure 12. Sensitivity convergence for Quasi-Newton scheme

VII. Optimization Results

VII.A. Optimization of Symmetric Airfoil with Detached Bow Shock

The case presented in this section is a NACA0012 airfoil shown in Figure (1) with symmetric design variables
in M = 1.25 flow with α = 3o. The objective function here is a iteration averaged composite objective
function of lift, drag, and entropy, where m = 75.

L =

n∑
i=n−m

ωL(cL − CLT
)2
i + ωD(cD − CDT

)2
i + ωs(s− sT)2

i (75)

The targets for lift, drag, and entropy are denoted by CLT
, CDT

, and sT respectively. The target lift
coefficient is set to .211 which is the objective function value in this basline simulation, the target drag
coefficient and entropy are set to 0. The respective weights are set to 1.0 for all terms. This objective
function will make the optimizer try to keep the lift constant, minimize the drag, and decrease the shock
strength. The limiter used here to prevent divergence is the modified VK limiter presented in the beginning
of the paper. The nonlinear convergence plot in Figure (13) shows that the convergence has stalled; for this
case, the linear system in the Newton-Krylov solver is converged 5 orders of magnitude at each nonlinear
iteration. If we run the adjoint formulation and look at the accumulation of the sensitivities as we integrate
backwards in pseudo-time, we see these sensitivities are very well behaved, shown in Figure (14). This
indicates that we could only partially integrate backwards in time, and optimize based off those sensitivities.
We do so in this work, and average the objective function over the last 75 iterations and integrate backwards
only through that averaging window to calculate the sensitivities.
The summary of the design cycle is in Figure (15), which shows a rapid convergence of the objective function
and a convergence of the optimality condition to machine precision, this is despite the partial backwards in
pseudo-time integration of the sensitivities, which were only integrated back through the function averaging
window. This figure also shows that the optimized airfoil (in red) has shrunk at every coordinate along the
chord when compared to the baseline airfoil (in black). This accords with the physical intuition for such
a case. In this simulation (based off the Euler equations) the best way to decrease drag and entropy is to
weaken the shock strength by lowering the airfoil thickness.
When we look at the density and mach number fields in Figure (16) we can see that there is a lower flow
speed-up on the back half of the suction side of the airfoil, this lowers the pressure differential and decreases
the drag.
We then can compare this adjoint based optimization to one that uses complex sensitivities to drive the
optimization. Since we want the sensitivity of the process and the complex sensitivities are these sensitivities
we compare the results of the two optimizations to get a sense of how much we are harmed by using this
approximation of the derivative of the linear system solve, for both wide and narrow design variable bounds.

21 of 32

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 D

im
itr

i M
av

ri
pl

is
 o

n
Ja

nu
ar

y
18

, 2
02

2
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

02
0-

31
36

Figure 13. Analysis convergence plot

Figure 14. Backwards in iteration-space integretation of sensitivites

The bounds refer to the maximum and minimum values of the amplitudes of the Hicks-Henne bump functions
in these optimizations; the wide bounds are set to −1e − 2 and 1e − 2 respectively, the narrow bounds are
set to −1e− 3 and 1e− 3 respectively.
Table (2) shows very close correspondence between the complex and adjoint optimizations; the difference
between them shows the adjoint computed sensitivities returning a better final design. The natural concern
with the narrow bound optimization is that the optimality is only machine zero because all the design
variables are at the bounds; this is not the case. While the first 19 design variables are all at the bounds, the
20th design variable (the aftmost one) is not at the bound but has a machine zero gradient; so the optimality
condition is satisfied. We also ran this case using a steady state adjoint to provide the sensitivities, and
while the final designs were very similar, the optimizer stagnated for a long period of time before terminating

22 of 32

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 D

im
itr

i M
av

ri
pl

is
 o

n
Ja

nu
ar

y
18

, 2
02

2
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

02
0-

31
36

(a) Design Cycle Convergence (b) Airfoil Comparison

Figure 15. Design cycle summary

Bounds Complex Optimality Adjoint Optimality Complex Objective Adjoint Objective

Narrow Bounds 2.9E-13 2.9E-13 7.7685583E-03 7.7685583E-03

Wide Bounds 2.6E-03 5.4E-03 2.9609739E-03 2.7440594E-03
Table 2. Comparison of adjoint and complex-step optimizations

due to numerical difficulties. This can be attributed to the noise in the sensitivity vector that comes from
the steady state adjoint, even for this case which shows minimal unsteadiness in the solution output. One
caveat to these cases is that all cases were run with a linear tolerance of 1e− 5 which is far more restrictive
tolerance than what is typically required, especially for inexact Newton solvers. The next step is examining
the results for an optimization as a function of the linear tolerance and comparing these results to those of
an optimization that uses the complex-step sensitivities.

VII.A.1. Investigation of Linear Tolerance on Design Optimization

Tolerance Bounds Complex Optimality Adjoint Optimality Complex Objective Adjoint Objective

1e-2 Narrow 1.7E-12 2.9E-13 7.7685583E-03 7.7685533E-03

1e-3 Narrow 2.9E-12 3.0E-13 7.7685583E-03 7.7685583E-03

1e-4 Narrow 2.9E-13 7.8E-13 7.7685583E-03 7.7685533E-03
Table 3. Comparison of adjoint and complex-step optimizations

Table (3) shows that the linear tolerance has little effect on the adjoint sensitivities, as the adjoint sensitivity
based optimizations were very similar to one another regardless of linear tolerance. This is an encouraging
result, that allows further investigation into additional optimization cases with confidence. It is worth noting
that the optimality is slightly better behaved for the adjoint rather than the complex sensitivities.The overall
behavior indicates that using the pseudo-time adjoint calculated sensitivities is effective even with a loose
linear tolerance, and that use of a partial backwards in time integration to calculate the sensitivities that
drive the optimizer is feasible. We will do so in the following results sections.

VII.B. Optimization of Symmetric Airfoil with Trailing Edge Unsteadiness

We then move onto a case with trailing edge unsteadiness in transonic flow. This case is unsteady because we
simulate a NACA0012 with a truncated (at 97% of the chord) blunt trailing edge shown in Figure (17). This
mesh went through 4 refinement cycles (using an in-house mesh refinement module) to get sufficient fineness
near the trailing edge and shock location without exerting too much computational expense elsewhere. The
case presented in this section is a NACA0012 airfoil with symmetric design variables in M = 0.8 flow with

23 of 32

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 D

im
itr

i M
av

ri
pl

is
 o

n
Ja

nu
ar

y
18

, 2
02

2
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

02
0-

31
36

(a) Baseline Design Density (b) Optimized Design Density

(c) Baseline Design Mach Number (d) Optimized Design Mach Number

Figure 16. Flow field comparison

α = 3o. The objective function here is a composite objective function of lift and drag averaged over the last
200 iterations:

L =

n∑
i=n−m

ωL(cL − CLT
)2
i + ωD(cD − CDT

)2
i (76)

where we have targets for lift and drag, denoted by CLT
, and CDT

respectively. The target lift coefficient is
set to .6 which is the objective function value in this baseline simulation and the target drag coefficient is set
to 0. The respective weights are 2.0 for ωL and 1.0 for ωD. This objective function will make the optimizer
try to keep the lift constant while minimizing the drag. The limiter used here to prevent divergence is the
modified VK limiter presented in algorithm (1). We can see that the nonlinear convergence is shown in
Figure (18), which shows that the convergence has stalled and has small scale oscillations. The linear system
from the Newton-Krylov solver is converged 4 orders of magnitude at each nonlinear iteration.
Looking at the design cycle summary we can see a large decrease in the functional even though the optimality
condition is not satisfied to machine precision. We see in Figure (19) that the objective function is decreased
to a factor of 1

6 and the airfoil shows interesting behavior. The front 60% of the airfoil gets thinner, but

24 of 32

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 D

im
itr

i M
av

ri
pl

is
 o

n
Ja

nu
ar

y
18

, 2
02

2
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

02
0-

31
36

(a) Airfoil Mesh (b) Airfoil Trailing Edge

Figure 17. Truncated Airfoil Mesh

Figure 18. Analysis Convergence Plot

the rear 37% gets thicker. We hypothesize this helps control the drag and shock behavior as the increase
in thickness in the rear of the airfoil is similar to the behavior in the Aerodynamic Design Optimization
Discussion Group (ADODG) NACA0012 case.29

When we look at the density field plots in Figure (20) at the final nonlinear iteration and compare the
baseline to the optimized we can see the shock has gotten much weaker and moved further back along the
airfoil.
The change in shock strength and location becomes clearer when we look at the mach field in Figure (21).
We can also see that although the streamlines and shedding appears to be stronger in the optimized case
than the baseline case, we are optimizing based off the last 200 nonlinear iterations, and that over that

25 of 32

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 D

im
itr

i M
av

ri
pl

is
 o

n
Ja

nu
ar

y
18

, 2
02

2
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

02
0-

31
36

(a) Design Cycle Convergence (b) Airfoil Comparison

Figure 19. Design cycle summary

(a) Baseline Design (b) Optimized Design

Figure 20. Density field comparison

window, the objective function average is far decreased, as we saw in Figure (19). When we ran using the
steady adjoint as the source of the sensitivities as a comparison, in order for the optimizer to be successful
we had to greatly increase the computational expense due to strengthening the linear solver and requiring
more function evaluations. To obtain a successful optimization our preconditioned FGMRES linear solver
used 25 krylov vectors with 10 restarts and 250 gauss-seidel smoothing iterations (per vector). The final
design using the steady state adjoint had a higher optimality value and objective function (for a greater
computational expense) than the optimization using the pseudo-time accurate approach.

26 of 32

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 D

im
itr

i M
av

ri
pl

is
 o

n
Ja

nu
ar

y
18

, 2
02

2
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

02
0-

31
36

(a) Baseline Design (b) Optimized Design

(c) Baseline Trailing Edge with Streamlines (d) Optimized Trailing Edge with Streamlines

Figure 21. Mach field comparison

VII.C. Optimization of ADODG NACA0012 Airfoil with Trailing Edge Unsteadiness

The final case has a similar set up to the ADODG NACA0012 case29 but again with a trailing edge un-
steadiness in transonic flow. This case begins with a NACA0012 (as in the previous case) with a truncated
(at 95% of the chord) blunt trailing edge shown in Figure (22). This mesh went through 3 refinement cycles
(using an in-house mesh refinement module) to get sufficient fineness near the trailing edge while minimizing
overall computational expense. The case presented in this section is a NACA0012 airfoil with symmetric
design variables in M = 0.85 flow with α = 0o. The objective function here is drag averaged over the last
200 iterations:

L =

n∑
i=n−m

cDi
(77)

This objective function will make the optimizer try to minimize the drag. On a symmetric structured mesh,
lift would be equal to zero, in our unstructured case this is not the case. We chose to not optimize with
a target lift of 0 because that would ask the optimizer to optimize based off the error. The limiter used
here to prevent divergence is again the modified VK limiter presented in algorithm (1). Figure (23) shows

27 of 32

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 D

im
itr

i M
av

ri
pl

is
 o

n
Ja

nu
ar

y
18

, 2
02

2
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

02
0-

31
36

(a) Airfoil Mesh (b) Airfoil Trailing Edge

Figure 22. Truncated Airfoil Mesh

that convergence of the nonlinear problem has ceased and the analysis is stalled in limit cycle oscillations,
the largest scale oscillations shown in this work. The linear system from the Newton-Krylov solver is, as in
previous cases, converged 4 orders of magnitude at each nonlinear iteration.

Figure 23. Analysis Convergence Plot

Looking at the design cycle summary in Figure (24) we can again see a large decrease in the functional even
though the optimality condition is still not satisfied to machine precision. We see the objective function
get decreased to a factor of 1

10 and the airfoil shows interesting behavior. The front 60% of the airfoil
gets thinner, but the rear 35% gets thicker, similarly to the previous trailing edge unsteadiness case. We
hypothesize, as before, that this helps control the drag and shock behavior. Future cases could be run using
the ADODG NACA0012 thickness constraints in the optimization to verify correspondance between that

28 of 32

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 D

im
itr

i M
av

ri
pl

is
 o

n
Ja

nu
ar

y
18

, 2
02

2
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

02
0-

31
36

well-tested benchmark and this optimization methodology.

(a) Design Cycle Convergence (b) Airfoil Comparison

Figure 24. Design cycle summary

When we look at the density field in Figure (25) at the final nonlinear iteration and compare the baseline
to the optimized we can see that the shock has again gotten much weaker and moved further back along the
airfoil as in the previous case.

(a) Baseline Design (b) Optimized Design

Figure 25. Density field comparison

The change in shock strength and location becomes clearer when we look at the mach field in Figure (26).
We can also there is little difference in the streamlines and shedding between the optimized case and the
baseline case, and the shock – which is the primary driver of the drag – has nearly disappeared.

29 of 32

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 D

im
itr

i M
av

ri
pl

is
 o

n
Ja

nu
ar

y
18

, 2
02

2
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

02
0-

31
36

(a) Baseline Design (b) Optimized Design

(c) Baseline Trailing Edge with Streamlines (d) Optimized Trailing Edge with Streamlines

Figure 26. Mach field comparison

VIII. Conclusion

We developed pseudo-time accurate formulations of the tangent and adjoint systems for quasi-Newton solvers
that return machine precision sensitivities in the limit of exact solution of the linear problem at each nonlinear
iteration. These formulations are guaranteed to converge if the analysis problem converges and the adjoint
uses the exact dual of the analysis linear solver. We first verified that these formulations are exact when
the linear system is solved to near machine-precision. We then applied this formulation to varying levels of
linear tolerance to see behavior of these formulations in non-converged and inexactly solved linear systems
and showed that we can obtain an error estimate of these sensitivities as a function of both the linear tolerance
and non-linear system convergence. We then showed that when these adjoint formulations are applied to
a non-converging detached bow shock case, the sensitivities are negligibly affected by any backwards-in-
pseudo-time integration outside of the objective function averaging window. We then ran an optimization
on this case using varying linear tolerances and varying design bounds and found that the complex and
adjoint sensitivities return very close designs to one another, which further strengthens the correspondence
between these approaches. We then applied this adjoint formulation to two more non-converging cases with

30 of 32

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 D

im
itr

i M
av

ri
pl

is
 o

n
Ja

nu
ar

y
18

, 2
02

2
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

02
0-

31
36

trailing edge unsteadiness and showed a large drop in the objective function value when driving the optimizer
with these sensitivities for both cases. This method of sensitivity analysis in such flows was more robust and
cheaper than using the steady-state adjoint and obtained sensitivities and designs that were comparable to
those by complex-step finite differentiation.

IX. Acknowledgments

This work was supported in part by NASA Grant NNX16AT23H and the NASA Graduate Aeronautics
Scholars Program. Computing time was provided by ARCC on the Teton supercomputer. The first author
would like to thank Jan Kiviaho for his suggestion of certain resources and Hiro Nishikawa for his comments
on limiters.

References

1Gill, P. E., Murray, W., and Saunders, M. A., “User’s Guide for SNOPT Version 7: Software for Large-Scale Nonlinear
Programming,” .
2Gill, P. E., Murray, W., and Saunders, M. A., “SNOPT: An SQP algorithm for large-scale constrained optimization,” SIAM

review , Vol. 47, No. 1, 2005, pp. 99–131.
3Adams, B., Bauman, L., Bohnhoff, W., and Others, “Dakota, A Multilevel Parallel Object-Oriented Framework for Design

Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 6.0 User’s Manual,” 2015.
4Nadarajah, S. K., The Discrete Adjoint Approach to Aerodynamic Shape Optimization, Ph.D. Dissertation, Department of

Aeronautics and Astronautics, Stanford University, USA, 2003.
5Nemec, M. and Aftosmis, M. J., “Toward Automatic Verification of Goal-Oriented Flow Simulations,” Tech. Rep. Tech. Rep.

TM-2014-218386, NASA Ames Research Center, August 2014.
6Venditti, D. A. and Darmofal, D. L., “Anisotropic Grid Adaptation for Functional Outputs: Application to Two-Dimensional

Viscous Flows,” J. Comput. Phys., Vol. 187, No. 1, May 2003, pp. 22–46.
7Krakos, J. A. and Darmofal, D. L., “Effect of Small-Scale Output Unsteadiness on Adjoint-Based Sensitivity,” AIAA Journal ,

Vol. 48, No. 11, 2010, pp. 2611–2623.
8Padway, E. and Mavriplis, D. J., “Toward a Pseudo-Time Accurate Formulation of the Adjoint and Tangent Systems,” 57th

AIAA Aerospace Sciences Meeting, AIAA Paper 2019-0699, San Diego CA, January 2019. https://doi.org/10.2514/6.2019-0699.
9Krakos, J. A., Wang, Q., Hall, S. R., and Darmofal, D. L., “Sensitivity analysis of limit cycle oscillations,” Journal of

Computational Physics, Vol. 231, No. 8, 2012, pp. 3228 – 3245.
10Mishra, A., Mavriplis, D. J., and Sitaraman, J., “Multipoint Time-Dependent Aero-elastic Adjoint-based Aerodynamic Shape
Optimization of Helicopter Rotors,” May 2015, pp. 828 – 844, AHS Forum 71,Virginia Beach VA, May 2015, pp 828 - 844.
11Luers, M., Sagebaum, M., Mann, S., Backhaus, J., Grossmann, D., and Gauger, N. R., “Adjoint-based Volumetric Shape Op-
timization of Turbine Blades,” AIAA Paper 2018-3638, 2018 Multidisciplinary Analysis and Optimization Conference, Atlanta,
GA, June 2018, https://doi.org/10.2514/6.2018-3638.
12Brown, D. A. and Nadarajah, S., “An Adaptive Constraint Tolerance Method for Optimization Algorithms Based on the
Discrete Adjoint Method,” 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA
SciTech Forum, AIAA Paper 2018-0414, Kissimmee, Florida, 01/2018, https://doi.org/10.2514/6.2018-0414.
13Shimizu, Y. S. and Fidkowski, K., “Output Error Estimation for Chaotic Flows,” 46th AIAA Fluid Dynamics Conference,
AIAA AVIATION Forum, AIAA Paper, 2016-3806, Washington D.C., 06/2016. https://doi.org/10.2514/6.2016-3806.
14Shimizu, Y. S. and Fidkowski, K., “Output-Based Error Estimation for Chaotic Flows Using Reduced-Order Modeling,”
2018 AIAA Aerospace Sciences Meeting, AIAA SciTech Forum, (AIAA Paper 2018-0826), Kissimmee, Florida, 01/2018.
https://doi.org/10.2514/6.2018-0826.
15Mavriplis, D., “Revisiting the Least-Squares Procedure for Gradient Reconstruction on Unstructured Meshes,” 16th AIAA
Computational Fluid Dynamics Conference, Fluid Dynamics and Co-located Conferences, AIAA Paper 2003-3986, Orlando,
Florida, 06/2003. https://doi.org/10.2514/6.2003-3986.
16LeVeque, R. J., Numerical Methods for Conservation Laws, Vol. 3, Springer, 1992.
17Roe, P., “Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes,” Journal of Computational Physics,
Vol. 135, No. 2, 1997, pp. 250 – 258.
18van Leer, B., “Flux-vector splitting for the Euler equations,” Eighth International Conference on Numerical Methods in
Fluid Dynamics, edited by E. Krause, Springer Berlin Heidelberg, Berlin, Heidelberg, 1982, pp. 507–512.
19Venkatakrishnan, V., “On the accuracy of limiters and convergence to steady state solutions,” 31st Aerospace Sciences
Meeting, AIAA Paper 1993-880, Reno NV, January 1993. https://doi.org/10.2514/6.1993-880.
20Michalak, C. and Ollivier-Gooch, C., “Accuracy preserving limiter for the high-order accurate solution of the Euler equations,”
Journal of Computational Physics, Vol. 228, No. 23, 2009, pp. 8693 – 8711.
21Nishikawa, H., “Robust numerical fluxes for unrealizable states,” Journal of Computational Physics, Vol. 408, 2020,
pp. 109244.
22Anderson, W. K., Newman, J. C., and Karman, S. L., “Stabilized finite elements in FUN3D,” Journal of Aircraft , Vol. 55,
No. 2, 2018, pp. 696–714.
23Mavriplis, D., “A residual smoothing strategy for accelerating Newton method continuation,” arXiv preprint
arXiv:1805.03756 , 2018.

31 of 32

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 D

im
itr

i M
av

ri
pl

is
 o

n
Ja

nu
ar

y
18

, 2
02

2
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

02
0-

31
36

24Saad, Y., Iterative methods for sparse linear systems, Vol. 82, Society for Industrial and Applied Mathematics, 2003.
25Mavriplis, D. J., “VKI Lecture Series: 38th Advanced Computational Fluid Dynamics. Adjoint methods and their application
in CFD, Time Dependent Adjoint Methods for Single and Multi-disciplinary Problems,” Sep 2015.
26Luke, E., Collins, E., and Blades, E., “A fast mesh deformation method using explicit interpolation,” J. Comput. Physics,
Vol. 231, 01 2012, pp. 586–601.
27Nielsen, E., Lu, J., Park, M., and Darmofal, D., “An Exact Dual Adjoint Solution Method for Turbulent Flows on Un-
structured Grids,” 41st Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings, AIAA Paper 2003-272, Reno,
Nevada, 01/2009. https://doi.org/10.2514/6.2003-272.
28Mavriplis, D. J., “Multigrid Solution of the Discrete Adjoint for Optimization Problems on Unstructured Meshes,” AIAA
Journal , Vol. 44, No. 1, 2006, pp. 42–50.
29Bisson, F. and Nadarajah, S., “Adjoint-Based Aerodynamic Optimization of Benchmark Problems,” AIAA Paper 2015-1948,
53rd AIAA Aerospace Sciences Meeting, Kissimmee, FL, January 2015, https://doi.org/10.2514/6.2015-1948.

32 of 32

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 D

im
itr

i M
av

ri
pl

is
 o

n
Ja

nu
ar

y
18

, 2
02

2
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

02
0-

31
36

	Introduction
	Background and In-House Solver
	Governing Equations
	Spatial Discretization
	Steady-State Solver
	A Review of Tangent and Adjoint Systems
	Tangent Formulation
	Discrete Adjoint Formulation

	Development of the Pseudo-Time Accurate Tangent
	Tangent System for Newton-Chord Method
	Tangent System for quasi-Newton Method

	Development of the Pesudo-Time Accurate Adjoint
	Adjoint Computed Sensitivites for Newton-Chord Method
	Adjoint Computed Sensitivites for quasi-Newton Method

	Verification
	Tangent Verification
	Newton-Chord Method
	quasi-Newton Method

	Adjoint Verification

	Investigation of Sensitivity Computation
	Impact of Appromixate Linear Solves on Sensitivity Accuracy
	Iterative Dependence of Sensitivity Computation

	Optimization Results
	Optimization of Symmetric Airfoil with Detached Bow Shock
	Investigation of Linear Tolerance on Design Optimization

	Optimization of Symmetric Airfoil with Trailing Edge Unsteadiness
	Optimization of ADODG NACA0012 Airfoil with Trailing Edge Unsteadiness

	Conclusion
	Acknowledgments

